A Model-Driven Approach For Information System Migration

Raymonde Le Delliou’, Nicolas Ploquin®, Mariano Belaunde’, Reda Bendraou®, Louis Féraud’
1 Electricité de France, 2 SOFT-MAINT, 3 France Télécom, 4 LIP6, 5 IRIT
1 juliette.le-delliou@edf.fr, 2 nploguin@sodifrance.fr, 3

mariano.belaunde(@rd.francetelecom.com, 4 Reda.Bendraou@lip6.fr, 5 Louis.Feraud@irit.fr

Abstract

In 2002 and 2003, the TRAMs project, led by a
consortium of French companies and universities,
experimented the application of emerging model
engineering techniques to Information System (IS)
migration. The main objectives were to define a
methodology and to specify an open and modular
migration framework to solve IS migration complexity
on the basis of models and meta-models, as well as
model transformation. A concrete result of this project
was the development of a demonstrator that performed
the migration of a large COBOL legacy application of
an insurance company to use a JAVA and HTML based
interface. In this migration use case, we used a
common intermediate meta-model based on ISO/RM-
ODP  (Reference Model of Open Distributed
Processing) extended with the UML Action Semantics
formalism.

Keywords—model driven architecture, modeling,
meta-modeling, model transformation, Information
System migration, legacy code.

1. INTRODUCTION

To deal with increasing competition, companies
have to face constant strategic, organizational or
technical changes which imply repetitive modifications
of their Information Systems (IS). The massive
introduction of internet technologies is one example.
Though IS migration solutions exist on the market, all
these solution are ad-doc solutions that are difficult to
reuse and most of them rely on proprietary tools.

This paper will describe the experiments made in a
cooperative French project called TRAMs to solve
some of the challenges of IS modernization, by using
extensively model-oriented engineering techniques. In
particular there is an attempt to integrate RM-ODP
with Action Semantics to enable fine-grained

representation of the applications an enterprise may
wish to migrate.

TRAMs, was launched in 2002 and was partially
funded by the French government in the context of
RNTL national research program. The consortium
comprises:

e two French industrial groups, France Télécom
and Electricit¢ De France, having to migrate
large legacy applications,

e two universities, LIP6 Paris 6 and IRIT Paul
Sabatier Toulouse, known for their works on
modeling, meta-modeling, languages and model
transformation,

e SOFT-MAINT, a company specialized in large-
scale IS migration projects.

One of the primary objectives of TRAMSs’s was the
definition of a methodology and the provision of a
generic architecture to help mastering IS migrations. In
particular our ambition was to ensure that it is possible
to reuse the good practices on migration technology in
multiple and repetitive migration projects. The more
efficiently an enterprise organizes knowledge reuse for
their Information System (IS) evolution, the less it
would cost at the end to integrate the new technologies,
even if the initial investment may be high. One of the
important issues also addressed by the project was the
problem of maintenance after a migration occurs. Is
maintenance facilitated when models are first class
artifacts?

The approach taken by TRAMs to reduce IS
migration complexity was to decompose a migration as
a sequence of transformations that apply on models. A
model represents an abstraction of an input, an output
or an intermediate result. Some of these
transformations may involve a lot of "manual" human
operations — such as reverse engineering— while others
may be totally automated. The inputs and outputs of IS



migration were re-formulated and formalized in terms
of meta-models in order to apply model engineering
techniques, like model-to-model transformation or code
generation. In short, transforming an IS comes down to
transforming models of the IS.

TRAMs makes use of various OMG modeling
standards, such as MOF and UML for model
representation [MOF] [UML], XMI for tool exchange
[XMI], SPEM for migration process and process
patterns description [SPEM] also In addition it used a
combination of the ISO/RM-ODP standard [ISO95]
[ISO2002] and UML’s Action Semantics to define an
intermediate common enterprise model capable of
expressing low-level computations. The advantage of
using these standards, instead of proprietary
formalisms, is easy to understand if a company aims to
take advantage of present or future products in the
market place. However, our methodology and
architecture does not enforce the usage of these
standards as long as other formalisms are able to play
the same role.

In the context of this work, we will assume the
following definition of a model: a model is a
description or a specification of a system and its
environment for some certain purpose [MDAG]. In line
with actual meta-modeling principles, a model will
always be defined in the terms of a meta-model. For
instance, a complete RM-ODP specification can be
formalized as a collection of one or more models, each
of them being defined in relation to specific meta-
models, such as a meta-model for the enterprise view
and another for the computational view.

2. METHODOLOGY AND
OVERVIEW

FRAMEWORK

In order to define a general methodology for
information system migrations, TRAMs project has:

e Firstly, provided a typology of migration
projects according to the kind of information
that is impacted, For instance, we have
migrations that imply changes on the business
process, and/or in the applications interfaces and
data. Some migrations are on technology
oriented while other are fundamentally driven
by a business change.

e Then, identified and implemented various
process patterns, which may or may not include
the usage of common intermediate formalism,
which potentially can be reused in various
migration projects.

An important outcome of the project was the
classification of migration activities that are part of
the preparation from those that are part of the
execution of the migration.
In parallel to this work on methodology, the
TRAMSs project has specified an architecture — the
so called TRAMs framework — that allows
managing successive migrations based on the
usage of model repositories and model
transformers.

To define a migration framework one has to think

about the relevant components needed:

e  to prepare the migration,
® to execute the migration.

Preparing a Migration implies the ability to represent
and store a description of the migration process to be
performed. In the project, we used the SPEM
formalism and notation and a MOF-based repository
capable to store SPEM models.

Within the preparation phase, after designing the
migration process model, one has to think how to
implement each process activity. This was done by
enriching the process description with the so-called
"instrumentation model" which indicates what software
components are used in each activity, or what kind of
manual actions need to be done for the activity to be
fulfilled. Storing a model of the implementation (the
instrumentation model) ensures that information is not
lost. This information can be re-used when a new
migration has to be performed.

Migration preparation involves also the definition
and/or the identification of the meta-models to
represent the inputs or the outputs of the IS migration.
Finally, each transformation component needs to be
specified and implemented. In the case of a model-to-
model transformation it is possible to use an executable
specification  language.  Typically, a  generic
transformation engine will execute transformation
specified as a list of rules. Section IV presents some of
model transformation techniques experimented within
this project.

The kinds of tools that are used during the execution of
the migration are typically:

e Specialized reverse engineering tools — such and
parsers and pattern analyzers — to scan the
available legacy code and to discover any
relevant high-level structure,

e CASE tools, with graphical capabilities, such as
UML tools,



e Model repositories to store and publish the
input, output or intermediate models,

¢  Model-to-model  transformers and code
generators.

TRAMs Framework |

% Migration Specification
o

LS. Vn
Business, LS. _Vn+1
data, Business,
software data,
+ Changes software
Migration development
M M meta-model

Figure 1: TRAMs Framework

The Figure 1 depicts the TRAMs framework
architecture. On the top are showed the tools that are
used for preparing the migration and in the bottom the
tools used when executing the transformation. In the
middle, a management component centralizes all
information needed by a user to control and monitor
the migration process.

To summarize, the TRAMs framework is generic
and open. It does not impose any process or tool: each
company can define its own migration process, use
their own proprietary formalisms and connect their own
tools. However, in order to take plain advantage of
model-oriented engineering techniques it is important
to use as much as possible data representations that are
based on meta-models.

Meta-modeling is the key to achieve tool fine-grained
inter-operability, as opposite of interface-based inter-
operability that permits in most cases only coarse-
grained inter-operability. For instance, any tool that
supports SPEM models storage can play the role of the
process repository as long as it supports import/export
functions. In addition, any model transformer that
knows the type of the input and output models and that
implements the transformation specification rules can
play the role of a transformer.

An initial implementation of the TRAMs framework
principles was achieved by the end of 2002. This initial

demonstrator performed the migration of the GUI
capabilities of a large COBOL-based insurance
application into two distinct targets: one based on
HTML and Java script and a second one based on Java
applets technology. The final demonstrator, presented
in 2003 demonstrated the migration of business
computational parts of the application. For that purpose
an intermediate meta-model based on RM-ODP and
Action semantics was used (see section III).

3. MODELING THE MIGRATION PROCESS

An example of a typical pattern for a migration
project is depicted in Figure 2. This pattern results
from the experience of the industrial partners involved
in TRAMs..

D) ) D) D)
Pre-study Preparing  Achieving each Validation
migration migration step migration

WD rse
Figure 2 : TRAMSs process-type

The pre-study is a phase in which the relevance for
making a migration is done. Sometimes it is better to
get rid of an obsolete application simply by re-written it
completely from scratch. Sometimes, however, this is
un-realistic, simply because no one is capable to
understand the business rules that are hidden in an
obsolete application!

In the “Preparing migration” phase, one has to:

e Identify the migration nature to measure migration
complexity. Is it a business or technologic
evolution? Does it imply changing the data
storage, the user interfaces, the network elements,
and so on.

e Identify — and if needed specify - the meta-models
to be used during the migration. In the TRAMs
2003 final demonstrator, we used a COBOL meta-
model in conjunction with a BMS meta-model to
represent the source data. The BMS - Basic
Mapping Support - is the transactional GUI system
used in the insurance application. In addition, we
used a meta-model to represent RM-ODP
augmented with UML action semantics concepts.

¢ Model the migration process in SPEM, and try to
reuse any pre-existing process pattern (if
applicable). By modeling the process one may
decide on the numbers of models that are to be
managed separately — for instance the GUI aspect



may be put in a separated model in order not to
pollute pure business data models. At this stage
also, one may decide to use an intermediate meta-
model that the company may want to use for
various successive migrations.

The Figure 3 depicts the pattern that was used in the
final demonstrator for the execution of the migration. .
First, we have a reverse-engineering phase, then the
input models are transformed — most automatically - in
terms of the "neutral" intermediate meta-model. Then
this intermediate representation is re-worked using
heuristics and manual annotations into a more
conceptual  model.  Finally  this  re-worked
representation is used as the input for generating the
artifacts needed by the target platform.

00—
Retro- S—P Changes P—C Generation
engineering Transformation Transformation

-
\_/
-7

e D e
g S
m\ A
= 1,
oy O

Figure 3: Process pattern for the migration of
a COBOL Interface to Java/HTML

When a company needs to perform multiple and
repetitive migrations, a common intermediate meta-
model helps to:

e Decrease significantly the number of model
transformers to be developed (for all the
migrations to be done),

e Decrease times and costs of the information system
evolution during further migrations. Thus, it may
be possible to reuse the models stored in previous
migrations as well as to reuse the transformers).

On the other hand a dedicated source-to-target
solution may be much simpler to develop, simply

because we can concentrate directly on the mapping
rules that are needed in the specific migration case.

To summarize, the determining decision-making
factors are:

e  The number of similar migrations expected to be
performed (or if it is a one-shot),

e  The durability of the target applications, if they
are to be maintained and the length of
maintenance period,

e The availability of a transformer. In such a
case, we can easily understand that we will tend
to favor the option that reuse the available
transformer rather than the option that requires
developing new ones.

4. A COMMON INTERMEDIATE MIGRATION
MODEL BASED ON RM-ODP AND ACTION
SEMANTICS

The common intermediate meta-model used in the
final TRAMs demonstrator is a collection of models
based on ISO/RM-ODP (Reference Model of Open
Distributed Processing) and on OMG's UML Action
Semantics.

RM-ODP supplies the proper concepts for
distributed computer system specifications. RM-ODP
is based on an object approach. The system is
described from five complementary viewpoints [IEEE-
1471] [PUT], covering as well business aspects as the
most technical aspects.

Identifying those viewpoints allows system
specification to express at the same time but distinctly:
the business the IS supports (Enterprise Viewpoint), the
way it is modeled in the computer system regarding
information and functions (Information Viewpoint,
computational Viewpoint, Engineering Viewpoint) and
the technical choices of the computer system mapping
user requirements (Engineering Viewpoint, Technology
Viewpoint).

The key points of RM-ODP are the sufficient
completeness of its concepts and structuring rules and
the relevance of its abstraction levels. In this way, the
software architecture of the system to be built can be
well specified using this set of concepts [BGL99]
[BGLO1] [BLO1] [ODAC] [DASIBAO].

However, these abstractions are quite high level ones
and do not allow to express the very detailed
information that can be found in a software code. As an
example, RM-ODP does not allow to specify actions
connected with operations of a class nor does it allow
specifying with enough detail their underlying



semantics. Migration applications clearly bring out the
need for formalizing coding instructions, while
remaining standard and platform-independent. Action
Semantics turned out to be the right candidate for this
criterion.

We then chose to integrate Action Semantics meta-
model with RM-ODP meta-model.

We identified shared or common concepts from each
standard, and displayed a logical continuity from one
standard towards the other, i.e. from the more abstract
concept towards the more detailed concept.

As an example, we will focus on the computational
viewpoint, which is the central element of our two
meta-models  integration. Junction points were
identified to achieve the coupling of this RM-ODP
viewpoint with Action Semantics [SERP04].

If we consider the RM-ODP concepts of Action and
Operation, according to the ODP standard, an Object
has a Behavior, which is defined by a set of Actions

and an Action is "something which happens".

In Action Semantics, the Action concept is a first
class one, and is actually the fundamental concept of
the Actions package. An Action is defined, in Action
Semantics, as "a behavioral specification that acts on
inputs to produce outputs". Even if both definitions do
not strictly express the same semantic, it seems obvious
that the ODP definition is more abstract and includes

the one given by Action Semantics standard.
1..n +abstraction

On the other hand, in ODP, an Interface is composed
of Interactions, all of the same type (Signal, Operation
or Flow). An Operation has a signature defined by a
name as well as parameters. In UML, an Operation
(defined in the Core package) corresponds to the
specification of a Method. It has a name and zero or n
parameters  inherited  respectively  from  the
ModelElement and  BehavioralFeature, abstract
classes. A Method is implemented by a Procedure
(package Actions/Action Foundation). Then we can
easily map the ODP Operation concept to the UML
Operation.

On Figure 4, the "Operation" rectangle represents
both the UML and the ODP Operation concepts. This
unique rectangle represents our first junction point and
enables us to link the two meta-models. The second
junction point is represented by the "Action" rectangle,
which also links the two meta-models.

The  final  meta-model  integrating  ODP
Computational viewpoint meta-model and UML Action
Semantics meta-model (Figure 4) is now complete and
covers both the software architecture and the coding
instructions allowing a behavior specification, thus
opening the way towards a complete code generation
from models.

1 Consists of

InterfaceTemplate

Signal Interface Template Operation Interface Template FlowInterfaceTemplate
wCausality : SignalCausality wCausality : OperationCausality wCausality : FlowCausality

Signature

MamepiSIing ControlFlo 2o a collection of ..
<numberOfParameter : Int - +consequent ZF

Abstraction
Primitive Binding
0..n
+describes 1 1
1| Behavior | [ Binding Object |

1 Pin

+type
multiplicity : Multiplicity | —2PS| Classifier
ordering : OrderingKind 0.1 (fromCore)

0.* +antecedant
0.n +composed_Of +/dvailableOutput
0.1 +predecessor | 1 . saction - +sburce
l.n +outputPir
Parameter P OutputPin
+successor Action (vm T 4 {orderedp..+
: . 5 oRjete . n
‘ ‘ 1+ specification «Type :any “SReadonly - Boolean +argument | O~
Signal Fi Operation b name : String v @1action {prdered)
‘ o ‘ ‘ peration | +action’ | 1 0.1
.| +tlow
‘ Interrogation ‘ ‘ Annoucement ‘ sibputPin - 0. o | *
1 ] -gayailablelnput DataFlow
Has% \ias Ter ﬂu =| InputPin t‘dssﬂnauon
1.n 1 . Procedure i + +flow
.n liprocedure yresul] 0.* 1
Invocation i Terminaison specifies Method +bod}language : Name 1 fordered)
: T i g _(rom Core) body : Stiing | g *Procedure
Name : String <Name : String A 0.+ O-lisList: Boolean | 0.1
1 1.n

Figure 4: An extract of the final meta-model coupling RM-ODP Computational viewpoint and
UML Action Semantics



5. USING MODEL TRANSFORMATION
TECHNIQUES FOR TRANSLATING COBOL
PROGRAMS INTO JAVA

The transformation process relies on model
transformation techniques. TRAMs partners are
involved in the OMG initiative for standardizing model
transformation techniques known as MOF Q/V/T
Request for Proposal. In this context, some of them
already developed their own transformation engine.

TRAMs project thus has experimented three types of
transformers, which are all based on rules expressing
correspondence between concepts of two meta-models
or within a meta-model:

e Model In Action (MIA), based on a SOFT-
MAINT tool: the language is fully declarative and
is based on predicate logic, ,

e TRL - formely called MTRANSs - , based on a
France Télécom tool: the rules have a declarative
signature and an imperative body [BEL],

e Attribute Grammars: the rules are mathematic
expressions in SSL [KAST] [KNUTH].

The rules are executed by transformation engines in
compliance with the structure shown in Figure 5.

Transformation

Abstract syntax Rules ,  Abstract syntax
Source MM : Target MM
Y
transformation
spécification Defined by
Defined by pect ined by
execution
. Target
Source , Transformation S nodd
model engine

Figure 5: Model transformation process

All  three  approaches allow  composing
transformations, to trace concept evolution during
transformation, to reuse the transformer or at least part
of it. Only Attribute Grammars allow inferring
modifications automatically, whereas MIA and TRL
are the ones that can offer a user friendly concrete
notation.

As shown in section II, a migration is typically
divided in three sub-processes. As an example, we
present here the transformation of computing
information from COBOL into Java which was part of
the 2003 demonstrator (Figure 6).

1

Parsing Transformation Generation

AN
RM-ODP /
—

Cobol Action
Semantics

Figure 6: Transformation sub-process for
computing information

This transformation is composed of several steps.
The first consists in parsing source code from Cobol
programs. This operation also consists in selecting
relevant computing information. We extract control
flow models by use of slicing techniques. Result
models are based on a platform specific meta-model for
Cobol source code, CobolSemTRAMSs. This meta-
model may be considered as an action meta-model and
define concepts such as CobolProgram,
CobolVariableData, CobolProcedure, If, While,
Affectation, Comparison, etc.

The following step transform Cobol-oriented models
into platform independent models based on the RM-
ODP/Action Semantics meta-model presented in §III.
Transformation rules are expressed by mapping
COBOL meta-model concepts to Action Semantics
meta-model ones.

Few mapping rules:

CobolProgram > Class

CobolVariableData = Attribute
CobolProcedure > Method
CobolStatementBlock = GroupAction

If = Conditional Action

While 2 LoopAction

Affectation > AddAttributeValueAction
ArithmeticExpression = ApplyFunctionAction
Comparison — ApplyFunctionAction

Action Semantics concepts are quite similar to Java
actions concepts. Therefore, we decided to also
consider the RM-ODP/Action Semantics meta-model
as a target meta-model for this transformation sub-
process. The last step thus consists in generating the
Java source code from intermediate models. Each
Cobol program is translated as a Java class.

The resulting program is merged with Java code
generated by other transformation sub-processes. Final
programs may be built and contain all required
functionalities extracted from Cobol programs.
However, the generated Java code stays excessively
“Cobol-oriented”. Transformation rules may be
improved to get better Java programs.

6. CONCLUSION AND FURTHER WORKS

The TRAMs project has demonstrated how to take
advantage of the emerging model-oriented techniques
to facilitate successive migrations within a large
company. As we mentioned in the introductory section,
the cost of building a model-aware migration
framework may be high, but return of investment can



be quickly be positive if the company has to perform
various successive migrations to take advantage of the
new technologies.

The TRAMs project final results were mainly a
methodology and architectural principles that helps to
apply the best practices for migration projects — like
well-known migration patterns. The experiments
achieved during this project have allowed SOFT-
MAINT to improve their migration tools and to wide
its offer towards other migration markets on which the
company already has know-how stored in models
(FORTRAN for example). We should note that
TRAMs feedback in model transformation has also
influenced the OpenQVT response (the so called
"French submission") to the OMG's Q/V/T RFP.

This work has also made a fruitful attempt to combine
the high-level architectural concepts of RM-ODP with
low-level computational constructs bring by the Action
Semantics standard. This integration has permitted us
to use directly RM-ODP as an intermediate language
for the representation of the applications that are part
of the information system of an enterprise, and which
could be subject to maintenance and evolution.

We believe that there is still a lot of research work that
needs to be done in the field of information system
migration. In particular, we need to study and classify
the strategies that can improve the analysis of the code
that is reversed as a model. The difficult part of a
migration is still the ability to produce high-level
models from low-level code.

GLOSSARY
BMS: Basic Mapping Support
EDOC : Enterprise Distributed Object Computing
ISO: International Organization for
Standardization
MDA : Model Driven Architecture
MOF : Meta Object Facility
OMG : Object Management Group
PIM Platform Independent Model
PSM Platform Specific Model
Q/V/T: Query/View/Transformation
RFP: Request For Proposal
RM-ODP: Reference Model of Open Distributed
Processing
SPEM : Software Process Engineering Meta-
model
UML : Unified Modeling Language
XMI : XML Metadata Interchange
XSLT : eXtensible Stylesheet Language

Transformation
W3C: World Wide Web Consortium

REFERENCES

[BEL] M. Belaunde, M. Peltier: From EDOC components to CCM
components: a precise mapping specification (2002). /n Proc.
ETAPS 2002, Grenoble, France. LNCS 2306 Springer (2002)
[BGL99] X. Blanc, M.P. Gervais and R. Le Delliou, “Using the
UML Language to Express the ODP Enterprise Concepts”, in
Proceedings of the 3rd International Enterprise Distributing Object
Computing Conference (EDOC'99), IEEE Press (Ed), Mannheim,
Germany, September 1999

[BGLO1] X. Blanc, M-P. Gervais, R. Le Delliou “On the
Construction of Distributed RM-ODP specifications” Proceeding of
the Third IFIP International Working Conference on Distributed
Applications and Interoperable Systems (DAIS 2001).

[BLO1] X. Blanc, R. Le Delliou, “Information System architecture
with RM-ODP: an on-the-field experience” Proceeding of the Open
Distributed Processing: Enterprise, Computation, Knowledge,
Engineering and Realisation (WOODPECKER 2001). pp27-37. June
2001.

[DASIBAO] A. Picault, P. Bedu, J. Le Delliou, J. Perrin, B.
Traverson «Specifying an Information System architecture with
DASIBAO, a standard based method”, Proceeding of the
International Conference on Enterprise Information Systems (ICEIS
2004)

[IEEE-1471] IEEE « Recommended practice for architectural
description of software-intensive systems » IEEE Std 1471-2000.
[ISO95] ISO/IEC IS 10746-x, ITU-T Rec.X90x Open Distributed
Processing-Reference Model Part x, 1995.

[ISO2002] ISO/IEC IS 15414 Open Distributed Processing
Reference Model —Enterprise Language, may 2002

[KAST] U. Kastens: Ordered Attributed Grammars. Acta
Informatica (1980), 13(3): 229-256

[KNUTH] D. Knuth: Semantics of context free languages.
Mathematical Systems theory (1968)

[MDA] « Model Driven Architecture — Architecture board ORMSC
» — document number ormsc/2001-07-01 — OMG-2001

[MDAG] « MDA Guide » — document number ab/2001-01-03 —
OMG-2003

[MOF] OMG. “Meta-Object Facility (MOF) Specification v1.4”.
TC.  Document  formal/02-04-03 OMG.  April  2002.
http://www.omg.org

[ODAC] M.P. Gervais, ODAC : An Agent-Oriented Methodology
Based on ODP Journal of Autonomous Agents and Multi-Agent
Systems, Kluwer Publishers (Jan. 2002)

[PUT] J-R. Putman, « Architecting with RM-ODP », Prentice-Hal,
2001

[SPEM] Software Process Engineering Metamodel, Draft Adopted
Specification, November 2001

[SERP04] R. Bendraou, S. Bouzitouna and M. P. Gervais, From
MDA Platform-Specific Model to Code Generation: Coupling of
RM-ODP and UML Action Semantics Standards, to appear in
Proceedings of the International Conference on Software
Engineering Research and Practice (SERP'04), Las Vegas, USA,
June 2004

[UML] : "OMG Unified Modeling Language Specification", Object
Management Group, March 2003, OMG TC Document UMLI1.5
(Action Semantics) formal/03-03-01, www.omg.org

[XMI] OMG “XML Metadata Interchange (XMI) v1.1”. TC
Document ad/99-10-02 OMG. 1999. http://www.omg.org

[XML] Extended Markup Language Version 1.0, W3C
Recommandation

http://www.w3.0org/TR/1998/REC-xml-19980210.pdf



