
  

 
 
 
 
 
 
 
 
 

WWoorrkksshhoopp  oonn  OODDPP  ffoorr  EEnntteerrpprriissee  CCoommppuuttiinngg  
((WWOODDPPEECC  22000044)) 

 
A. Vallecillo, P. Linington and B. Wood (Eds.) 

 
Monterey (CA), September 20, 2004 

http://www.lcc.uma.es/~av/wodpec2004/ 
 

Proceedings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In conjunction with: 
 

The 8th International IEEE Enterprise 
Distributed Object Computing Conference 
20-24 September 2004, Monterey, California, USA 
http://www.edocconference.org 

 
Sponsored by IEEE Computer Society, 
IEEE Communications Society, 
and the University of Alabama at Birmingham (UAB) 
University of Málaga. ETSI Informática.  
Dept. Lenguajes y Ciencias de la Computación. 

 
Technical Report No. ITI-04-07



  

 
Editors 
 
 
Antonio Vallecillo 
University of Málaga 
ETSI Informática 
Campus Teatinos 
29071 Málaga (Spain) 
av@lcc.uma.es 
http://www.lcc.uma.es/~av 
 
Peter F. Linington 
Computing Laboratory 
University of Kent 
Canterbury 
Kent, CT2 7NF (UK) 
P.F.Linington@kent.ac.uk 
http://www.cs.kent.ac.uk/people/staff/pfl/ 
 
Bryan W. Wood 
Open-IT Limited 
11 Wilton Court 
Sheen Road 
Richmond 
Surrey TW9 1AH (UK) 
Bryan.Wood@Open-IT.co.uk 
http://www.open-it.co.uk 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 84-688-8046-9 
 
 
 
© The authors 
Impreso en España – Printed in Spain 
September 2004 
 



 iii 

 
 

Table of Contents 
 
Preface ………………………………………………………………………………………… vii 
 
Workshop on ODP for Enterprise Computing (WODPEC 2004) 

A. Vallecillo, P. Linington, B. Wood ………………………………………………….. 1 
 
Semantic interoperability: using RM-ODP to bridge communication gaps between stakeholders  

H. Kilov ……………………………….……………………………………………….. 4 
 
What Foundations does the RM-ODP Need?  

P. Linington ….......................................………………………………………………..15 
 
Action Templates and Causalities in the ODP Computational Viewpoint  

R. Romero, A. Vallecillo ………………………………………………….....................23 
 
The role of the RM-ODP Computational Viewpoint Concepts in the MDA approach   

J.P. Almeida, M. van Sinderen, L. Ferreira Pires …………………………................... 28 
 
Applying Model-Driven Development to Business Systems using RM-ODP and EDOC  

Y. Nagase, D. Hashimoto, M. Sato …………………………………………………….36 
 
Architecting frameworks for specific applications with RM-ODP   

A.P. Gonçalves Serra, S.A. Vicente, D. Karam Jr, M. Martucci Jr. ……………………43 
 
A Model-Driven Approach for Information System Migration  

R. Le Delliou, N. Ploquin, M. Belaunde, R. Bendraou, L. Féraud ……………………..50 
 
Challenges for ODP-based infrastructure for managing dynamic B2B networks  

L. Kutvonen …………………………………………………………………………….57 
 
Proposal for a Model Driven Approach to Creating a Tool to Support the RM-ODP 

D. Akehurst ……………………………………………………………………………. 65 
 
 
 
 





 v 

 
 

List of Authors 
 

Akehurst, D. 65 
Almeida, J.P. 28 
Belaunde, M. 50 
Bendraou, R. 50 
Féraud, L. 50 
Ferreira Pires, L. 28 
Gonçalves Serra, A.P.  43 
Hashimoto, D. 36 
Karam Jr, D.  43 
Kilov, H. 4 
Kutvonen, L. 57 
Le Delliou, R. 50 
Linington, F. 1, 15 
Martucci Jr, M  43 
Nagase, Y, 36 
Ploquin, N. 50 
Romero, R. 23 
Sato, M 36 
Sinderen, M. van 28 
Vallecillo, A. 1, 23 
Vicente, S.A.  43 
Wood, B. 1 

 
 
 
 

Program Committee 
 

David Akehurst            University of Kent (UK) 
Jean Bérubé              Idigenic (Canada) 

 Jonathan Billington      University of South Australia (Australia) 
 Celso González           IBM (Canada) 
 Haim Kilov               Stevens Institute of Technology (US) 
 Lea Kutvonen             University of Helsinki (Finland) 
 Juliette Le-Delliou      EDF (France) 
 Peter F. Linington       University of Kent (UK) 
 Arve Meisingset          Telenor (Norway) 
 Joaquin Miller           X-Change Technologies (US) 
 Tom Rutt                 Coast Enterprises, INCITS T3 IR (US) 
 Akira Tanaka             Hitachi (Japan) 
 Sandy Tyndale-Biscoe    Open-IT (UK) 
 Antonio Vallecillo       University of Málaga (Spain) 
 Bryan Wood               Open-IT (UK) 

 





 vii 

 
Preface 

 
The present volume contains the papers selected for presentation at the EDOC 2004 Workshop 
on ODP for Enterprise Computing (WODPEC 2004), that aims to provide a venue where 
researchers and practitioners on the use of the RM-ODP in the realm of Enterprise Distributed 
Computing can meet, disseminate and exchange ideas and problems, identify some of the key 
issues related to these topics, and explore together possible solutions and future work. 
 
All papers submitted to WODPEC 2004 were formally peer reviewed by at least three referees, 
and 9 papers were finally accepted for presentation at the workshop. These contributions can be 
divided into two groups: “RM-ODP basics” and “Tools and Applications”. The first group 
contains the papers that deal with general issues of the RM-ODP. The papers in the second 
group deal with applications of the RM-ODP, tools to support it, and its relationship with MDA. 
 
We would like to thank the EDOC 2004 organization for giving us the opportunity to organize 
the workshop, especially to the General Chair, Barret Bryant, and the Workshop Chair, Jishnu 
Mukherji, for their assistance and support. Many thanks to all those that submitted papers, and 
particularly to the contributing authors. Our gratitude also goes to the paper reviewers and the 
members of the WODPEC 2004 Program Committee, who helped in choosing and improving 
the selected papers. Finally, we want to acknowledge the Department of Lenguajes y Ciencias 
de la Computación of the University of Málaga for supporting the production and distribution of 
this volume, and the Spanish CICYT research project TIC2002-04309-C02 for funding some of 
its costs. 
 
 
 

Monterey, California, September 2004 
 
 
 

Peter Linington, Bryan Wood and Antonio Vallecillo 
WODPEC 2004 Organizers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii 

 
 
 



Workshop on ODP for Enterprise Computing (WODPEC 2004) 

Antonio Vallecillo1, Peter F. Linington2 and Bryan Wood3

1 Universidad de Malaga, Spain; 2 University of Kent, UK; 3 Open IT, UK. 
1 av@lcc.uma.es; 2  pfl@kent.ac.uk; 3  bryan@open-It.co.uk. 

 
 

Abstract 
This Workshop aims at providing a discussion forum 

where researchers, practitioners and representatives of 
standardization bodies on these topics can meet and 
exchange experiences, problems and ideas related to the 
use of RM-ODP in the realm of Enterprise Distributed 
Computing, and explore together possible solutions and 
future work. 

1. Introduction 

As software technology becomes a core part of business 
enterprises in all market sectors, customers demand more 
flexible enterprise systems. This demand coincides with the 
increasing use of personal computers and digital assistants, 
the trend of IT organizations towards downsizing, and 
today's easy access to local and global communication 
networks, which together provide an excellent 
infrastructure for open distributed systems. 

In response to these market needs, there has been a 
significant development in International Standards in 
software and system engineering in the last decade. In 
particular, the rapid growth of distributed processing has 
led to the adoption of the Reference Model of Open 
Distributed Processing (RM-ODP, [1] [2] [3] [4]). This 
Reference Model provides a co-ordinating framework for 
the standardisation of open distributed processing (ODP) 
and creates an architecture within which support of 
distribution, interworking, and portability can be integrated, 
together with a framework for the specification of ODP 
systems.  

The RM-ODP is based on precise concepts derived from 
current distributed processing developments and, as far as 
possible, on the use of formal description techniques for 
specification of the architecture. RM-ODP has four 
fundamental elements: an object modelling approach to 
system specification; the specification of a system in terms 
of separate but interrelated viewpoint specifications; the 

definition of a system infrastructure providing distribution 
transparencies for system applications; and a framework for 
assessing system conformance. 

Five years after its final adoption as an ITU-T 
Recommendation and ISO/IEC International Standard, the 
RM-ODP is increasingly relevant, because the size and 
complexity of current IT systems is challenging most of the 
current software engineering methods and tools. These 
tools were not conceived for use with large, open and 
distributed systems, which are precisely the systems that the 
RM-ODP addresses 

The RM-ODP has already lead to some real experience 
and supporting systems, including both good and bad 
reports; a number of conformant products and 
implementations; some related developments through the 
Object Management Group and, of course, groups both of 
supporters and of detractors. The knowledge gained from 
these experiences, together with the fact that ISO has just 
launched a Study Group to consider the possible revision of 
the Reference Model (see [16]), provides an excellent 
opportunity for all parties involved in Enterprise 
Distributed Computing to meet and discuss the present state 
and future development of the RM-ODP and its related 
family of standards. 

In this context, this Workshop aims at providing a 
discussion forum where researchers, practitioners and 
representatives of standardization bodies on these topics 
can meet and exchange experiences, problems and ideas 
related to the use of RM-ODP in the realm of Enterprise 
Distributed Computing, and explore together possible 
solutions and future work.  

2. The Reference Model 

In slightly more detail, the current components of the 
RM-ODP are as follows: 

ITU-T Rec. X.901 | ISO/IEC 10746-1: Overview 
contains a motivational overview of ODP giving scoping, 
justification and explanation of key concepts, and an outline 

1



of the ODP architecture. It contains explanatory material on 
how this Reference Model is to be interpreted and applied 
by its users, who may include standards writers and 
architects of ODP systems. It also contains a categorization 
of required areas of standardization expressed in terms of 
the reference points for conformance identified in ITU-T 
Recommendation X.903 | ISO/IEC 10746-3. This part is 
not normative.  

ITU-T Rec. X.902 | ISO/IEC 10746-2: Foundations 
contains the definition of the concepts and analytical 
framework for normalized description of (arbitrary) 
distributed processing systems. This is only to a level of 
detail sufficient to support ITU-T Rec. X.903 | ISO/IEC 
10746-3 and to establish requirements for new specification 
techniques. This part is normative.  

ITU-T Rec. X.903 | ISO/IEC 10746-3: Architecture 
contains the specification of the required characteristics that 
qualify distributed processing as open. These are the 
constraints to which ODP standards must conform. It uses 
the descriptive techniques from ITU-T Rec. X.902 | 
ISO/IEC 10746-2. This part is normative.  

ITU-T Rec. X.904 | ISO 10746-4: Architectural 
semantics contains a normalization of the ODP modeling 
concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2 
Clauses 8 and 9. The normalization is achieved by 
interpreting each concept in terms of the constructs of the 
different standardized formal descriptions.  

3. The ISO review process 

The ISO Study Group is concerned with requirements 
for revision of the Reference Model of Open Distributed 
Processing (RM-ODP). Its objective is the elicitation and 
analysis of requirements for the revision of the RM-ODP, 
and the preparation of a set of recommendations to ISO/IEC 
JTC1/SC7 about the actions, if any, that are required.  

The RM-ODP is the mature result of a large amount of 
technical effort, consequently the Study Group is not 
expected to propose major restructuring or change, but to 
correct errors and take account of recent developments in 
the industry, so as to maintain the broad scope of the 
standard. However, if it becomes apparent during the study 
that there is merit in considering the standardization of 
alternative frameworks based on different structuring 
principles, the Study Group may recommend the 
establishment of new projects to that effect. In proposing 
any update to the RM-ODP, the group will take into 
account the need to remain consistent with existing 
standards based on it, such as the Enterprise Language [6], 
the ODP Trader [10] [11], the Naming Framework [5] and 
the standard for Interface References and Binding [8].  

The Study Group will prepare a report to present to the 
SC7 Plenary in May 2005. The report will document 
requirements submitted and the actions proposed on them. 
Recommendations on actions may include:  

a) Proposing technical corrigenda to the existing 
standard;  

b) Proposing one (or more) new projects for the 
revision of the current standard;  

c) Proposing one (or more) projects for the 
standardization, or mapping, of alternative 
frameworks.  

The approach of the Study Group can be summarized as 
follows:  

a) A dissemination activity, where the existence 
and mandate of this Study Group will be 
publicized to as wide an audience as possible;  

b) A contribution activity, where submissions 
clearly identifying the requirements, the 
rationale, and the proposed revisions are made;  

c) A collection activity, where requirements will 
be elicited, generated and collected.  

d) An analysis activity, where requirements will 
be analyzed, classified and prioritized  

e) A planning activity, where the rationale for 
action is established and concrete steps 
proposed.  

4. Workshop organisation 

The Workshop is expected to have four main sessions: 
• Session 1: Introduction.  

• Session 2: RM-ODP basics 

• Session 3: Tools and Applications 

• Session 4: Workshop conclusions 

The Introductory session will present the schedule, 
contents and objective of the Workshop, and will also serve 
to introduce the participants of the Workshop.  

"RM-ODP basics" will cover the (4) papers that address 
general issues of the RM-ODP: 

1. “Semantic interoperability: using RM-ODP to 
bridge communication gaps between 
stakeholders.”  H.Kilov. 

2. “What Foundations does the RM-ODP Need?” 
P. Linington. 

3.   “Action Templates and Causalities in the ODP 
Computational Viewpoint.”  R. Romero and A. 
Vallecillo. 

2



4.   “The role of the RM-ODP Computational 
Viewpoint Concepts in the MDA approach.”  
J.P. Almeida, M. van Sinderen and L. Ferreira 
Pires. 

"Tools and Applications" will cover the (5) papers that 
deal with applications of the RM-ODP, tool support for it, 
and its relationship with MDA: 

1.   “Applying Model-Driven Development to 
Business Systems using RM-ODP and EDOC” 
Y. Nagase, D. Hashimoto and M. Sato 

2.   “Architecting frameworks for specific 
applications with RM-ODP.”  A.P. Gonçalves 
Serra, S.A. Vicente, D. Karam Jr and M. 
Martucci Jr. 

3.   “A Model-Driven Approach for Information 
System Migration.”  R. Le Delliou, N. Ploquin, 
M. Belaunde, R. Bendraou and L. Féraud. 

4.   “Challenges for ODP-based infrastructure for 
managing dynamic B2B networks.”  Lea 
Kutvonen. 

5.   “Proposal for a Model Driven Approach to 
Creating a Tool to Support the RM-ODP.” D. 
Akehurst. 

These two main sessions will share a common structure, 
with each of the presentations followed directly by 
questions for clarification, and the session concluded by a 
general wrap-up discussion. The items to be identified 
during the presentations of the papers and the wrap-up 
discussion at the end of each session could include the 
following: 

• Issues, limitations, and current problems of RM-
ODP 

• Requirements for modifications, enhancements, and 
developments of RM-ODP 

• Issues for the Study Group 

• Identification of future work e.g., tools, etc. 

The last part ("Conclusions") will try to identify the 
results from the Workshop. The idea is that this part not 
only concludes the Workshop, but also is used to write 
down the final issues that the Study Group may undertake, 
and to outline future work, useful tools that may be 
developed, etc. The intention is that WODPEC participants 
should take something away with them after the Workshop, 
namely some agreed ideas, work to do, etc. 

References 

[1] ITU-T Recommendation X.901 | ISO/IEC IS 10746-1, 
Information technology - Open Distributed Processing – 
Reference Model: Overview, 1996. 

[2] ITU-T Recommendation X.902 | ISO/IEC IS 10746-2, 
Information technology - Open Distributed Processing – 
Reference Model: Foundations, 1996. 

[3] ITU-T Recommendation X.903 | ISO/IEC IS 10746-3, 
Information technology - Open Distributed Processing – 
Reference Model: Architecture, 1996. 

[4] ITU-T Recommendation X.904 | ISO/IEC IS 10746-4, 
Information technology - Open Distributed Processing – 
Reference Model: Architectural Semantics, 1996. 

[5] ITU-T Recommendation X.910 | ISO/IEC 14771, 
Information technology - Open Distributed Processing - 
Naming framework, 1998.  

[6] ITU-T Recommendation X.911 | ISO/IEC 15414, 
Information technology - Open Distributed Processing-
Enterprise Language, 2001. 

[7] ITU-T Recommendation X.920 | ISO/IEC 14750, 
Information technology - Open Distributed Processing - 
Interface Definition Language, 1997.  

[8] ITU-T Recommendation X.930 | ISO/IEC 14753, 
Information technology - Open Distributed Processing - 
Interface references and binding, 1998.  

[9] ITU-T Recommendation X.931 | ISO/IEC 14752, 
Information technology - Open Distributed Processing - 
Protocol support for computational interactions, 1999.  

[10] ITU-T Recommendation X.950 | ISO/IEC 13235-1, 
Information technology - Open Distributed Processing - 
Trading Function: Specification, 1997.  

[11] ITU-T Recommendation X.952 | ISO/IEC 13235-3, 
Information technology - Open Distributed Processing - 
Trading Function: Provision of trading function using OSI 
Directory service, 1997.  

[12] ITU-T Recommendation X.960 | ISO/IEC 14769. 
Information technology - Open Distributed Processing - 
Type repository function, 1999.  

[13] http://www.lcc.uma.es/~av/ODPStudyGroup/SGannouncem
ent.html 

3



Using RM-ODP to bridge communication gaps between stakeholders

Haim Kilov
Independent Consultant, and Stevens Institute of Technology

haimk@acm.org

Abstract

The proverbial communication gap between business and
IT experts has led to substantial problems in interoperability
between different stakeholders of different (business and
IT) systems, leading, in turn, to significant monetary
losses together with loss of customers’ trust and patience.
The paper demonstrates not only the problems but also
the solution — a clear separation between the business
and IT domains based on an explicit usage of a system of
concepts common to all domains and understood by all
stakeholders. These elegant concepts come from exact phi-
losophy, mathematics, programming and systems thinking
and have been described in an international standard, the
Reference Model of Open Distributed Processing The paper
shows how a system of exactified concepts and approaches
has been used to understand and specify the semantics of
non-trivial industrial business and IT systems, thus estab-
lishing a basis for successful communication between busi-
ness and IT experts, that is, for semantic (and sometimes
syntactic) interoperability.

1. Introduction

In thinking about and discussing interoperability, we
observe that the systems that have to interoperate need not
be computer-based. Specifically, we may — and probably
ought to — look at business-based and IT-based stakeholders
as components of several systems that often have serious
difficulties in communicating.

The proverbial communication gap between business
and IT experts has led to substantial problems in interoper-
ability (both syntactic and semantic) between different stake-
holders of different (business and IT) systems, leading, in
turn, to significant monetary losses together with loss of
customers’ trust and patience. The paper demonstrates not
only the problems but also the solution — a clear separation
between the business and IT domains based on an explicit
usage of a system of concepts common to all domains and
understood by all stakeholders. These elegant concepts

1Our interest in and usage of exact philosophy may be explained, for
example, by Bunge’s observation that concepts and hypotheses are philo-

come from exact philosophy1, mathematics, programming

and systems thinking. They have been successfully used
not only in theory but also in industrial practice, in inter-
national standards such as the Reference Model of Open
Distributed Processing — RM-ODP, and in teaching of
business and IT modeling. The paper shows how a system
of exactified concepts and approaches, especially such con-
cepts as system, type, relationship, composition, pattern,
name in context, etc., has been used to understand and
specify the semantics of non-trivial industrial business and
IT systems, thus establishing a basis for successful com-
munication between business and IT experts, that is, for
semantic (and sometimes syntactic) interoperability.

2. Conceptual requirements for interopera-
bility

Let us start with a description of two familiar kinds of
interoperability. “Syntactic interoperability is all about pars-
ing data correctly. Semantic interoperability requires map-
ping between terms, which in turn requires content analysis.
This requires formal and explicit specifications of domain
models, which define the terms used and their relationships.
Such formal domain models are sometimes called ontol-
ogies.” [32] This description may be used not only for
dealing with computer-based information systems but also
— and perhaps more importantly — for dealing with
human stakeholders communicating with other humans or
with computer-based systems.

This reference to domain models and relationships is
not new. Walter Bagehot, one of the founders of modern
money markets, suggested in 1873 the same approach in
order to understand and communicate about the objects in
the money world: “[t]he objects which you see in Lombard
Street, and in that money world which is grouped about
it, are the Bank of England, the Private Banks, the Joint
Stock Banks, and the bill brokers. But before describing
each of these separately we must look at what all have in
common, and at the relation of each to the others.” [2].

Recognition of importance of domain models has not

sophical because they occur in a large number of fields of inquiry [4].
This was recognized in the curricula of (at least) the early universities.
Business analysts as generalists who work on analyzing any systems,
and (information) system designers belong to the esteemed class of
people who use and sometimes develop such concepts and hypotheses.

been always forthcoming in the context of computer-based

4



information systems. However, in any engineering disci-
pline, domain understanding and specification is essential
before system requirements can be understood and formu-
lated, and of course, a system can be developed only on
the basis of well-understood requirements. This was em-
phasized, for example, by Dines Bjørner: “domain, require-
ments and software design are three main phases of software
development”. As we all know, sometimes IT system
requirements exist only “in the collective heads” of the
developers, leading to more or less serious failures described,
for example, in Peter G. Neumann’s “Risks to the Public”
column in Software Engineering Notes. Therefore interop-
erability between stakeholders during domain modeling,
as well as during requirements understanding and spec-
ification, is essential for success in development of any
systems, including software systems.

The communication gap between business and IT experts
can be exactified as the absence of interoperability. Firstly,
often there is no syntactic interoperability because business
stakeholders are often unable to parse data used by IT
stakeholders. Of course, business experts cannot (and should
not!) read code, but they also often cannot read specifications
written by IT experts using notations2 (or terminology)
which are overly complicated or alien to business. Here is
an example from the OOPSLA’99 keynote (on e-business)
by Stu Feldman: “We need to understand the domain
before addressing software. … Business models are the
basis of an organization’s entire activity. They are to be
understood by CEO and CFO, not just by CIO; and
therefore explained without ‘method calls will have an
XML representation’.”

Secondly, often there is no semantic interoperability
between business and IT experts and also between different
business experts, as well as between different IT experts.
This happens because the same data (such as “meaningful
names”) may be and often are interpreted differently by
different stakeholders, and in the absence of an explicit
domain model these differences may not be discovered
until it is too late. Grace Hopper observed in 1957 that
“[w]hile the computation of the square root of a floating
decimal number remained the same in Pittsburgh, Los
Angeles, and New York, the computation of gross-to-net
pay obviously did not remain the same even in two instal-
lations in the same city” [9]. The same kind of problems
still exists today, and we still often encounter statements
like “everyone knows what a ‘patient’ is”, or “everyone
knows what a ‘trade confirmation’ is”. Many tool vendors
avoid these issues, and for a good reason: understanding

2Business experts have no time or desire to study — for 5 days, 8
hours a day — the many facilities of a notation using toy examples, as
often happens when popular “powerful” notations are taught.

and solving semantic interoperability problems requires

human intervention that cannot be replaced with any tools.

3. Obstacles for interoperability

Interoperability problems are not specific to software
systems and have been acknowledged by many business
and IT experts. Solution attempts have existed for quite a
while, but often they resulted in not much more than
warm and fuzzy feelings during meetings. Many if not
most failed attempts were based on various more or less
fashionable information technology tools and methodol-
ogies instead of clear and explicit domain ontologies. On
the one hand, most specifications have relied on (a lot of)
tacit assumptions which are clearly different for different
specification readers. On the other hand, even explicit
fragments of specifications presented using box-and-line
diagrams (as all too often various architectures and even
business plans have been shown), or in natural language,
lead to serious problems because different people will
interpret the specification differently. Indeed, in order to
transmit a message from one person to another without
loss of meaning, the author and recipient(s) of the message
have to use the same ontology and the same notation.
Using the same natural (colloquial) language as a notation
is not sufficient since in order to preserve meaning we
need also the same context, the same language experience,
language norms, cultural tradition, and so on [21], and
these properties of different people are often implicit and
(very) different. At the same time, a restrictive artificial
language with precisely defined semantics  that does not
have contexts, cultural traditions, and so on, can guarantee
an adequate transmission of a message’s semantics, provid-
ed, of course, that it can be adequately represented in that
language. As a somewhat crude approximation of such a
restrictive language, we may consider “legalese” in which,
for example, laws (providing “the same context”) and con-
tracts are written.

More recently, the recognition of importance of ontol-
ogies (see, for example, an overview in [37]) could have
become a much-needed (social) innovation — not even a
radical one — used to solve the interoperability problems.

However, ontology development today is in a poor
state. Often, it has been replaced with an emphasis on (a
large number of) logic and ontology languages, in the
same manner as programming has been replaced with an
emphasis on various “baroque programming languages”
blurring our vision “by the wealth of their mutually con-
flicting ‘powerful features’ ” (Dijkstra), or in the same
manner as analysis has been replaced with an emphasis on
“Undefined modeling languages” (Parnas). As a (or the)
result, the complexity of the domain and problems has
been replaced with the complexity of the language (as

5



Dijkstra observed, such languages were used to express in
a funny way the usually given algorithms). Furthermore,
in the context of modeling and ontology languages, meth-
odologies are being created for the sake of understanding
how to use the usually complex tools. Because of the lack
of any generally accepted processes and methodologies,
the tools exist independently and have little support for or
concern with interoperability (Ken Baclawski). Also, most
conceptual modeling activities have proceeded without the
benefit of theory [37]. These often buzzword-compliant
approaches are tinkering (Bunge) rather than engineering
ones.

The primary goal of a programming language is accurate
communication among humans. Clearly, the same is true
about a modeling (or ontology) language. With many
currently popular languages, this goal has not been reached.

As a result, even in cases when a specification exists
and has been agreed upon by the relevant stakeholders, it
may not guarantee interoperability of compliant systems,
computer-based or otherwise. For example, if one vendor
of a supposedly compliant product interprets the spec-
ification one way and another vendor interprets it another
way, then both will claim compliance yet the products
won’t interoperate, and nobody can say for certain which
interpretation is “the right one”. For another example,
different business experts may agree on the apparent validity
of the business specification, but may interpret tacit under-
lying assumptions in different ways, and therefore their
understandings of the specification — composed of the
explicit parts and the tacit assumptions — will differ
leading to serious (IT and) business problems. As an
illustration, we may recall the “dot-com” epoch when people
“suddenly realized that they had invested a fortune based
on a few beautiful graphics that were laughably called a
business plan” [22].

4. A system of common concepts:
The way to address obstacles to interopera-
bility

4.1. The need for effective patterns of reason-
ing

Information management systems are becoming more
complex and non-trivial since they have to serve the needs
of complex, non-trivial and rapidly changing businesses.
In order to succeed in understanding, specifying, designing
and developing information systems we should do better
than use rigid methodologies combined with step-by-step

3Here is a fragment of the description of the event “Using formal

approaches, or, alternatively, specification-free approaches3.

This appears to be difficult (but is not) and perhaps
unusual. As E.W.Dijkstra observed a while ago, “many
students don’t want to be shown effective patterns of
reasoning, they want to be told what to do. ... They
expect a so-called ‘complete methodology’... and complain
when they don’t get what only the quack can provide. (We
just addressed a bunch of industrial computing scientists,
and the above phenomenon was alarmingly pronounced.)”
[5]. Instead of using “junk food” — the metaphor for
simplistic methodologies we owe to Paul Clermont — we
should better use effective patterns of reasoning that help
at all stages of information management, as well as in
business management, independently of any possible
computer-based realization of its fragments.

4.2. Where do we get these patterns of reason-
ing?

We certainly do not want to invent them for each and
every project or stage of a project. Fortunately, we do not
need to do that either: an excellent and well-structured
system of common concepts on which patterns of reasoning
may be based, already exists. It was defined in an abstract,
precise and concise — elegant! — manner as an international
standard: the Reference Model of Open Distributed Pro-
cessing (RM-ODP) standardized by the International Stan-
dards Organization (ISO) in 1995 [25, 26].

4.3. Semantics

RM-ODP specifies semantics in a manner that is syntax-,
methodology-, and tool-neutral. It provides precision with-
out programming4. The Foundations of RM-ODP are very
short — only 18 pages. Every concept there is precisely
defined in clearly structured English within the context of

methods to understand requirements better” at the Imperial College
London (November 6, 2002) [27]: “Anthony Hall : [...] by being precise,
early, you could discover problems and reduce trouble during develop-
ment.[...] Precise requirements could be defined in Z, a logic notation.
[...] Z found as many errors as unit testing, but was five times cheaper.
It found errors early too: many of the errors introduced by specification
were removed during architecture or detailed design, and in a recent
project only one specification error survived through to operations. Mod-
estly but with some pride he quoted an authentic customer statement:
“The system behaves impeccably as expected.” Axel van Lamsweerde
said that he agreed 1000%, but what of people who advocated agile
methods? Anthony Hall replied by quoting John Barnes: “Ada is not
meant to make programming quick. It’s meant to make programming
slow. Slow is good”. There was laughter.”

4This expression was used by Anthony Hall. Some IT experts claim
that “business people cannot understand precision” and that therefore
business experts should be provided only with various narratives and
pictures instead of precise specifications. These condescending claims
are obviously wrong since business experts have understood precision
and made precise decisions for millennia.

other precisely defined concepts. In other words, the reader

6



does not have to figure out what a particular term means,
and neither does the reader have to rely on tacit assumptions
left undefined since “everyone knows what this means”
(but do they know and mean the same things?).

RM-ODP eliminates much of the work that would
otherwise be required by each organization to develop its
own similar but proprietary guidelines — patterns of rea-
soning used to understand and to specify businesses as
well as to specify, design and develop information systems
for these businesses. RM-ODP (hopefully) will also provide
the incentive to many business and IT organizations to
follow similar approaches in developing specifications,
leading to industry standards. RM-ODP has already been
substantially used in creating other important standards,
such as ISO standards — General Relationship Model and
Trader, and OMG standards — UML Profile for Enterprise
Distributed Object Computing, Model-Driven Architecture,
and others, as well as industry-specific (vertical) business-
specification standards.

4.4. Is this a radical novelty?

There is nothing radically new here. The need to elucidate
the definitions of things, actions, and especially the structure
(relationships) of a system for understanding of that system
has been noted by many authors, both in modern-day
information management and systems thinking, and much
earlier (recall the quote from Bagehot, for example). More-
over, the concepts essential to understand and specify the
semantics of system components and structure have been
formulated and discussed in IT, mathematics, philosophy,
and system analysis for a while. RM-ODP and the interna-
tional standard used to describe relationships in more detail
— the General Relationship Model (GRM) [8] — define a
system of these concepts and are based on these ideas. This
system includes such concepts as system, abstraction, view-
point, level, object, action, state, behavior, type, subtype,
template, composition, refinement, contract, name, context,
invariant, pre- and post-condition, failure, error, and con-
formance. These semantics concepts are not associated with
a particular technology approach (such as object orientation)
and are neutral with respect to representational or tool-related
issues.

Many of these concepts are quite familiar to good
programmers and analysts. In particular, most have been
around in programming since the mid-1960s. Many have
also been successfully used in various modeling approaches
within the framework of the three-schema database architec-
ture. Some of them have been used in engineering and
other areas of human endeavor (such as business and law)
for centuries. The RM-ODP definitions are theoretically
sound (based on mathematics, as demonstrated, for example,
in the Architectural Semantics part of the standard) and

have been successfully used in practice. In the same manner
as businesses in the US rely on the standard Uniform
Commercial Code, system specifiers ought to rely on the
standard RM-ODP.

4.5. Is RM-ODP really useful?

Here is an assessment of using RM-ODP to specify
systems (from the European Air Traffic Management System
Architecture Workshop, held at EUROCONTROL head-
quarters in Brussels on June 11-13, 1996): “The application
of RM-ODP provided insight into a number of interopera-
bility issues... The RM-ODP... quickly showed the impor-
tance of correct focusing, scope, interpretation and represen-
tation within the descriptions. The RM-ODP approach
impels the analyst to state clearly the focus and scope at
the beginning of the process... The model provides a
common, consistent and incremental approach for describing
the goals, objectives and behaviour of systems in detail.
Hence, it offers support for life-cycle management and for
strategy studies. In a similar way, it also offers support for
COTS procurement – both for the procurement specification
and for the suppliers’ system specification and design
specification.”

Look at this evidence. Not only was RM-ODP useful
at the specification stages; it was valuable at all stages of
information management including procurement and eval-
uation of suppliers’ systems. This is especially important
in environments where “virtually all users are configuring
systems, not developing them from scratch” [28].

There exists a lot more evidence of this kind, not only
in air traffic control but also in less exotic areas of telecom-
munications, finance, insurance, document management,
medical, pharmaceutical and other industries, as well as in
management and strategic consulting. For example, RM-
ODP (together with GRM) was used:

• to elucidate and describe various architectures in a
large international financial institution,

• to provide a successful communication mechanism
for stakeholders in business process reengineering projects
(and to describe these projects from specification to
realization),

• to specify COTS software components in a simple
and understandable manner so that the semantics of
these components became clear to their users,

• to create and use simple and elegant (and complete)
business specifications of various financial domains (such
as accounting, trading, exotic options, etc.) used by
large financial firms in their work, both for information
system creation and for business process change,

• to specify products by healthcare software vendors

7



transforming creation of these specifications “from craft
to a formal science”,

• to develop a complete human resources model for
DoD,

• to formulate a clear model of document manage-
ment separating the concerns of content, logical design,
and physical presentation,

• to provide a foundation for business decisions
related to mergers and acquisitions,

• to elucidate and formulate fragments of the UML
metamodel,

• to describe business strategies,
• to describe various business patterns,
• to develop ontologies of various business domains,
• to build the industry library in the pharmaceutical

industry,

and so on. Some of these applications were described by
satisfied clients in literature [16 (several papers), 6, 18,
13, 10, 15, 7, 31, 23, 34, 24].

4.6. Separation of concerns based on a common
foundation

RM-ODP makes it possible (although not trivial!) to
formulate understandable specifications in a disciplined
manner. Specifications will be read by people who are
non-experts in specifications. This especially applies to
business specifications [11, 12, 14] all too often reduced
to the elusive “business rules” (which are “in the code”).

Discipline means precision and abstraction. Precision
means (among other things) that a developer will not have
to invent business rules that have not been described at all
or have been described in an ambiguous or incomplete
manner. Abstraction means (among other things) that a
subject matter expert will not waste time and effort trying
to understand business rules in terms of a particular comput-
er-based implementation. Business rules (and a business
enterprise in general) should be specified using abstract
and precise concepts understandable to any good subject
matter expert, analyst, developer, or (even) a non-IT manager.
(Recall the quote from Stu Feldman, above.) A system of
these concepts is the same for all kinds of specifications
— thus providing an excellent foundation for interopera-
bility — and has been formulated and described in RM-ODP
and standards based on it, such as GRM.

The basic concepts defined in RM-ODP and GRM can
be — and have been — used not only to describe any
kinds of traditional businesses, but also to describe the
essentials of any existing or to-be-created information sys-
tems (computer-based or not). In this manner, the business
and IT stakeholders are able to use a common system of

concepts and therefore to communicate in a meaningful
manner. Of course, the syntactic representations used by
different stakeholders to represent the same semantics may
and often does differ, and also of course, different stake-
holders may be interested in different levels and viewpoints
when describing the same system, but the underlying se-
mantic framework still remains the same.

While using the same system of concepts for all kinds
of specifications, we should explicitly separate business
from IT system specifications because traditional business
and IT ontologies are different. (As a well-known example,
a patient is not the same as one of patient’s records.)
Within each specification we should separate concerns as
soon as we see that the specification (including a program
— a specification for a computer system) becomes too
complex for human understanding and is in danger of
having “too much stuff”. (“Precise” is not the same as
“detailed”, and therefore being abstract does not mean
being imprecise. Good specifiers, in the same manner as
good engineers, postpone decisions and do not get drowned
in details. The higher the level of abstraction the more
important it is to be precise!)

5. Well-structured specifications

5.1. Relationship semantics

A specification should be well-structured since only in
this manner it can be carefully considered, read and under-
stood. The structure of a system is “the collection of
relations among its components or among these and items
in its environments” [4]. Therefore precisely defined rela-
tionship semantics is essential for reading, understanding,
and creating any specification. The semantics of a relation-
ship is defined by means of its invariant referring to
(collective) properties of relationship participants. Fortu-
nately, it has been possible to specify the structure of a
large number of diverse business and IT systems — such
as financial derivatives, insurance underwriting, telecom-
munications systems, document management, UML meta-
models, messaging, and IT system architectures — using
only three kinds of generic relationships: composition,
subtyping and reference. Semantic definitions of these
relationships have been around for some time (see, for
example, the exactifications in RM-ODP and GRM, as
well as the modeling texts [19, 11, 14]), and it is important
and instructive to observe that these definitions are based
on property determination. In particular, the existence of
emergent properties of a composite is the defining charac-

5A composition is a relationship between a “whole” (composite) and
its “parts” (components). The type of the whole corresponds to the

teristic of the composition relationship5 (see [11, 14, 4]

8



for many examples). Thus, it also becomes blindingly
obvious why an often encountered statement “this [named]
line between these two boxes formally represents the rela-
tionship between these two things” does not convey anything
at all about the relationship semantics, and therefore why
box-and-line diagrams are inadequate for understanding
and decision making.

5.2. Abstraction levels and viewpoints

Precision (exactification) is not sufficient for human
understanding. Indeed, hundreds or thousands of pages of
precise material are (almost) useless if the material is not
well-structured. In other words, understanding requires ab-
straction — “suppression of irrelevant detail” [25], so that
essential (for a specific level or for a specific viewpoint)
aspects of a specification are clearly separated from accidental
ones. Clearly, this is not a new approach, but it has not
been stressed in most syntax- , methodology- or tool-oriented
texts. And it is instructive that the concepts of abstraction,
levels and viewpoints are among the first ones to be
described in RM-ODP.

RM-ODP uses abstraction within the context of levels.
In particular, it notes that “fixing a given level of abstraction
may involve identifying which elements are atomic”. For
a more specific example, the concept of composition is
defined using abstraction levels: “[a] combination of two
or more [items] yielding a new [item], at a different level
of abstraction. The characteristics of the new [item] are
determined by the [items] being combined and by the way
they are combined.”

RM-ODP also uses abstraction within the context of
viewpoints — “form[s] of abstraction achieved using a
selected set of architectural concepts and structuring rules,
in order to focus on particular concerns within a system”.
All viewpoints are based on the same system of basic
concepts. RM-ODP specifies five basic viewpoints — en-
terprise, information, computational, engineering, and tech-
nology. It is possible to define correspondences between
viewpoints (RM-ODP shows how to do that and provides
some examples), but often, one viewpoint cannot be defined
in terms of another. Of course, the five basic viewpoints
are not the only ones that may be used to describe a

types of the parts, and an instance of the whole corresponds to zero or
more instances of each type of the part. There are two kinds of the
properties of the whole those that are determined by the properties of
the parts and the way these parts are combined; and those that are
independent of the properties of any parts. A composition also satisfies
the general relationship invariant that implies, in particular, that an instance
of the whole cannot have itself as a part. This definition is based on the
definition of composition in RM-ODP, GRM, on the definition of compo-
sition used in systems thinking (e.g., by F.A.Hayek) and in exact philosophy
e.g., by Mario Bunge), and on usage of composition by such classics as
Adam Smith in his Wealth of Nations (see [14]).

system. In accordance with the definition of a viewpoint,

any reasonable set of architectural concepts and structuring
rules may be chosen to focus our attention on particular
concerns within a system; and therefore we often use a
business viewpoint and an information system viewpoint6.
In this manner, for example, we can exactify the slogan
“no requirements in terms of solutions” since requirements
and solutions belong to different viewpoints.

6. Business patterns and modeling

6.1. Only primitives?

RM-ODP provides a small but powerful system of
interrelated definitional primitives that you can use to
build your own specification. These primitives drastically
reduce the number of base things and relationships and,
hence, the complexity and size of a specification. More
importantly, they reduce the number of concepts that the
readers of a specification have to master in order to understand
it.

The primitives need to be expanded in actual spec-
ifications. RM-ODP helps here in the form of “structuring
rules” specifically designed to allow RM-ODP primitives
to be used to develop more complex and/or specific def-
initions of various business patterns . These specialized
definitions can be successfully mixed with the original
primitives to create increasingly rich systems of definitions.
This is similar to the way in which mathematicians create
arbitrarily rich theorems from other theorems and well-
understood basic axioms, or similar to how engineers
create arbitrarily large and complex structures from common
subassemblies.

The business patterns, of course, have to be discovered
and explicitly formulated — and this is what business
domain modeling is for. It discovers and specifies deep
analogies between seemingly different things, relationships,
and processes. In this manner, organizations can understand
and deal with “always-changing” requirements as variations
of a small number of conceptually simple patterns, leading
to substantial savings in intellectual effort, time, and money.
Among other things, it becomes possible to be demonstrably
proactive rather than reactive in solving business problems
because a clear and crisp business model may by itself
provide a substantial competitive advantage for the modeled
enterprise. To quote a satisfied client from a large financial
firm, “[i]t has changed the way the client views software
development and this single effort will serve as the founda-

6This distinction between business and system viewpoints was made
explicit, among others, in the distinction between computation-
independent and the other two (platform-independent and platform-
specific) viewpoints of the OMG’s Model-Driven Architecture.

tion for other planned software development initiatives.

9



This business specification, written for software develop-
ment, has potential application in other areas. Portions of
the specification can be incorporated in corporate policy
manuals; regulatory compliance documents, and serves as
a basis for business process review.” [7] In other words,
various business and IT decisions could be based on a
solid and explicit foundation rather than on handwaving,
eloquence of gurus, or lemming-like considerations.

6.2. Patterns published

The reference list includes books and papers with frag-
ments of business and IT system specifications based on
RM-ODP and GRM. None of these are toy examples.
Some of them are illustrative and fun but not trivial —
like those modeling fragments of domains described by
Lewis Carroll — while others are fragments from the
generic parts of industrial specifications created for (and
with active participation of) business and IT customers.
These generic business and IT specifications may be, and
have been, reused as business patterns in various customer
engagements: after all, pattern matching in context  is an
essential part of successful analysis (and design). Since
generic business patterns — such as, at different levels of
genericity, invariant, composition, or contract— can be
used in any application area, a good analyst can become a
contributor in an entirely new area (and successfully inter-
operate with its stakeholders) within a very short timeframe.
The conceptual foundation together with the generic business
patterns let the good analyst to ask proper questions and
“begin speaking the language [of the entirely new area]
competently within a week or so” [35]. Thus, we may
contrast Bunge’s use of Claparede’s criterion of intelligence
as the ability to solve new problems [4] with an unfortunately
typical help wanted advertisement for a business analyst
stating that “knowledge of XXX is a must”

Business-specific business patterns can be discovered
and formulated by reusing and exactifying their existing
definitions, especially since some of them have been around
for centuries, see, for example, Adam Smith’s Wealth of
Nations, rather than by rewriting and redefining them as
“requirements” for each project. In other words, ontology
reuse — and concept reuse in general — is much more
valuable than code reuse.

Let us recall that Peter Naur proposed in 1968 [29] to
use the work of Christopher Alexander long before it
became fashionable to refer to it as a source of ideas about
attacking the software design problem. Naur justified his
choice by the fact that Alexander was concerned with the
design of large heterogeneous constructions. Indeed, Alex-
ander emphasized in The Timeless Way of Building that
“...a pattern defines an invariant field which captures all

the possible solutions to the problem given, in the stated
range of contexts... the task of finding, or discovering,
such an invariant field is immensely hard... anyone who
takes the trouble to consider it carefully can understand
it... these statements can be challenged because they are
precise” [1].

Creating and elucidating a domain model cannot be
automated. There is no algorithm (or tool) to do that.
Such models are created and elucidated by teams consisting
of domain SMEs (subject matter experts) and analysts.
Even when the SMEs are experienced in formulating ontol-
ogies of their domain in an abstract (that is, understandable)
and precise manner, analysts are still essential to discover,
elucidate and exactify tacit assumptions common to all, or
some, SMEs. Ignorance — real or perceived — of the
subject matter is needed to make the tacit assumptions
explicit. As early as 1969, P. Burkinshaw urged: “Get
some intelligent ignoramus to read through your doc-
umentation; [...] he will find many ‘holes’ where essential
information has been omitted. Unfortunately intelligent
people don’t stay ignorant too long, so ignorance becomes
a rather precious resource.” [30].

It is not sufficient to discover, formulate and use (fun-
damental, basic, and more specific) concepts and structures
essential for a good model. We ought to communicate
these discoveries, both for understanding of that model
and for their usage in other, often apparently very different,
models. In the modeling context, a concise and elegant
system of basic concepts described in RM-ODP provides a
foundation for such a language. Sometimes the specifics
of this language or, more often, its fragments ought to be
created (collectively, by the modelers together with the
subject matter experts) for successful communication of a
model’s semantics. Models formulated in such a manner
(of course, based on concepts and structures common to
most systems) establish a common background used by
all stakeholders of an organization and its relevant environ-
ments (e.g., clients and subcontractors) in understanding
and business decision making.

7. Ontologies and invariants

7.1. Domain semantics

When we want to use an existing system (component)
or plan to use a new one, we need to specify (for existing
IT systems it often means “reverse engineer”) the semantics
of its interfaces, since only precise and explicit semantics
make interoperability possible. This applies to any kind of
system, independently of whether it is (or will be) computer-
based. Clearly, in order to understand and define (the
requirements for) interface semantics, we need to be explicit

10



and precise about the business domain in which the system
works or will work. This is true for all kinds of businesses
— be they traditional ones such as trading, or the business
of creating an information management system, or of creating
and using a relational database, or of asynchronous messag-
ing, or of a particular general ledger legacy program. In
other words, understanding and documenting of “what is
there in the business domain” (also known as ontology)
comes first. Within this explicitly specified framework,
we can discuss the systems (and their interfaces) that work
or are planned to work in this domain (after all, the
descriptions of these systems refer to the things, relationships
and actions of the domain!). And a data dictionary is not
such a framework: as noted by many and as we know from
practice, the same name may mean substantially or somewhat
different things in different contexts, and the structure of
these contexts — expressed in the relationships — is
essential for understanding of the things we deal with.

Although ontologies have become fashionable rather
recently, the underlying concepts for ontology understand-
ing, development and use in business and IT system analysis
are not new. They have been known from exact philosophy
(notably, Bunge’s work [3, 4]), database, object and infor-
mation modeling work (for example, [37, 19]), systems
thinking (F.A.Hayek7, von Mises and others), and, of
course, such international standards as RM-ODP and GRM.
In addition to various kinds of subtyping, the concept of
composition is among the most important in domain mod-
eling, and its definition — based on levels of abstraction
and on emergent property determination — is essentially
the same in RM-ODP, GRM, and in Bunge’s work.

7.2. The importance of elegance

With the introduction of standards like RM-ODP and
GRM, today the analysis situation resembles the one that
existed in programming in the second half of the 1970s.
At that time, in E.W. Dijkstra’s words, programming was
in the process of moving from a craft to a scientific
discipline. Most observations made by Dijkstra then for
programming are reinvented now for analysis. We also see
that in analysis, as in programming (an observation made
by Dijkstra as early as 1962), elegance is of utmost impor-
tance; elegant specifications are liked by all and, thus,
successfully used and reused. As Dijkstra said, “in the
design of sophisticated digital systems, elegance is not a
dispensable luxury but a matter of life and death, being a

7For example, in accordance with Hayek’s observations, prices consti-
tute an essential emergent property that makes possible the functioning
of a market economy and that embodies more information than each
participant of a market economy directly has.

major factor that decides between success and failure”, and

a good specification ought to be convincing in the same
manner as a good program is. For a specification to be of
use (and to be produced in a reasonable manner, as any
artefact produced by professional engineers), it needs to
emphasize semantics rather than syntax, and to do that in
an abstract and precise manner. This is precisely what
RM-ODP and GRM have been designed to do.

7.3. “Learn to abstract: try not to think like a
programmer” (J.Wing)

Both in programming and in analysis, the fashionable
approaches have often encouraged practitioners to start their
work in the middle using an operational approach. Jeannette
Wing provided an excellent example of an approach to be
avoided: “‘If you do this and then that and then this and
then that, you end up in a good state...’ This [...] process
quickly gets out of control. The problem is related to
understanding invariants.” [36]. Invariants are essential for
defining the ontology of the domain of interest, be it a
business or an information system one. In particular, they
define the types of things, actions and relationships. They
also determine what actions (and under what circumstances)
can and cannot be executed in the context of the domain
ontology. To quote a recent eloquent paper by Turski, one
of the founders of computing science, a fundamental break-
through in programming happened when “[i]nstead of pre-
occupation with a dynamic process (‘what happens next’),
we concentrated on a piece of text (‘what does it say’)”
[33]. Indeed, the same kind of difference exists between
various buzzword-compliant operational approaches to anal-
ysis that quickly get out of control, and elegant approaches
that lead to understanding of businesses and information
systems.

These elegant approaches start with and are based on
ontologies. We do not want to start in the middle (that is,
with a possible solution, as it too often happens) or even
with a specific problem (that is, with requirements). Rather,
we start with the stable (that is, invariant) basics and
proceed from there. (The Information viewpoint of RM-ODP
explicitly states that static and dynamic schemata are “subject
to the constraints of any invariant schemata” [26].) Clearly,
a problem and its solution cannot be understood and specified
without the basics because the interrelated concepts used
in describing the problem and the solution are defined by
(and in) the basics.

7.4. Discover different ontologies

Substantial and especially somewhat different ontologies
of different stakeholders (especially tacit ontologies) may
make semantic interoperability difficult to achieve. In order
to solve this problem, the existence of different ontologies

11



has to be made explicit. Ontologies — business domain
models — are the framework for interrelating the existing
vocabularies of different stakeholder communities instead
of throwing these vocabularies away, thus providing in-
teroperability solutions that really work, because they in-
volve business meanings, while purely technical (or syntac-
tical) solutions fail. Explicit ontologies make it possible
to discover and specify mappings between concepts and
relationships used in different ontologies (and often to
enrich some of them). As a result, different stakeholders
can communicate and interoperate: it will become clear
which different context-specific terms have the same meaning
and which identical context-specific terms have different
meanings.

7.5. “Requirements always change”?

In this context, it is instructive to elucidate the (all too
familiar) statement “requirements always change, and there-
fore it is useless to formulate them”. Indeed, business
processes often change. Such changes may lead to a com-
petitive advantage for a business or they may even be
perceived as necessary for the business to survive. Similarly,
decisions about using IT systems to automate certain busi-
ness processes may also change (for example, due to per-
ceived opportunities). At the same time, the basics of a
business — its ontology — have usually remained the
same for centuries, if not for millennia: for example, banking
and financial texts published in the early 20th century (or
earlier, such as fragments from Adam Smith’s Wealth of
Nations) have been successfully used to understand and
specify the corresponding business domains. The changes
due to modernity are minimal and are mostly additions to
or refinements of the existing classical models.

These considerations apply to any kind of business
modeling as well as to requirements discovery and spec-
ification, independently of whether a computer-based IT
system will be created or bought to automate some business
processes or steps. As noted earlier, a crisp business model
is used to make demonstrably effective business decisions
only some of which are IT-related. And the concepts,
constructs and standards used in creating such models are
based on mathematics, “the art and science of effective
reasoning” (Dijkstra).

8. Notations

Both in traditional programming and in modeling, we
know from the works of Dijkstra and other founders — as
well as from the experience of the best practitioners —
that the inherent complexities of the problems and their
solutions should not be exaggerated by imposing on the

readers of programs or specifications a complex notation
“with a plethora of ad hoc  facilities of dubious value and
unquestionable ugliness” [33]. In traditional programming,
program readers and writers are usually humans with roughly
the same background in the notation used. Contrariwise,
in modeling (and specifications — the result of modeling),
readers and writers often have drastically different back-
grounds in the notations used. Therefore in order for business
experts to use a precise notation to communicate about
business models, it is absolutely essential to explain the
basics of the notation on the ‘back of an envelope’. This is
important to get and retain the attention of the business
people. Imposing a complex notation will move the reader’s
(and modeler’s) attention from the complexity of the prob-
lems to the complexity of their representation. In other
words, the attention will be moved from the essential
semantics to the accidental syntax. As a result of such
semiotic pollution, communication about problems suffers.
This explains why many business system specifications
are write-only, at least from the viewpoint of their main
customers — the business decision makers.

Business (and any system) modeling notations should
not be restricted by the artefacts existing or easily im-
plementable in currently used IT systems. Thus, a modeling
notation ought to be able to express multiple and dynamic
subtyping, multiple decompositions of the same individual
(thing or action), non-binary relationships with well-defined
semantics, and other concepts defined in RM-ODP and
GRM. For example, it should be possible to specify that a
banking industry is a composite in a composition of banks,
a federal regulator, customers, and a lot of something else
(like clearing houses), and to say that in this composition
both the composite and its components ought to exist
together.

Turski stresses the need to limit ourselves in the process
of understandable program construction to the systematic
use — known as “structured programming” (invented by
Dijkstra) — of a small collection of programming language
instructions having “a clean and well-defined meaning”.
Further, he emphasizes that a high quality specification
has to have a model not only in the programming language
domain, but also in the language “used for the description
of (a part) of the reality of interest”, that is, understandable
to the business subject matter experts. Following the ideas
of structured programming, we may want to limit ourselves
in the process of understandable specification construction
to the systematic use of a small collection of modeling
constructs having a well-defined meaning. And this collec-
tion, in fact, this system, already exists and was described
in RM-ODP.

When we have to choose or use a specific notation or
tool in our programming or modeling activities, we should,
first and foremost, look at whether and how the semantics

12



of concepts we use in programming or modeling is supported
by the tool. If the notation or tool is overwhelming then
everything need not be lost: it may be possible to choose
a (very) small subset of that notation in order to represent
concept semantics. This approach is not new at all: it is
well-known, for example, that various small subsets of
PL/I have been created and used exactly for this purpose.
Similarly, a very small subset of UML for business modeling
[14] has been created and used in various engagements
such as those described in [7, 12] and in several papers in
[16], as well as for specifying relationships in [6]. This
subset has been represented on one page.

At the same time, an important caveat is in order.
When a subset of a notation is being chosen to represent
concept semantics, it is essential for the semantics to have
an exact representation in the notation. Since many important
aspects of UML semantics have not been well-defined, it
became necessary to provide for precise definitions of UML
constructs used to represent the semantics of such concepts
as composition, subtyping and reference relationships. This
approach was accepted by OMG in the UML profile for
EDOC [6].

9. Conclusions

It is now well understood that attempts to comply with
a specification of any system having incomplete or unclear
semantics will not guarantee interoperability because im-
portant information will be lost. The system of concepts
defined in RM-ODP makes it possible to completely and
precisely define the essential aspects of the universe of
discourse, be it to describe a business or an information
management system. These specifications are based on the
semantics of the appropriate domain rather than on existing
products or solutions. Since the system of concepts and
constructs used for these specifications has been itself
defined in a clear and crisp manner, the specifications can
be read, understood, and thus agreed or disagreed upon by
all stakeholders. Moreover, specifications of existing prod-
ucts or systems, including legacy systems, can and should
be based on the same approach thus leading to demonstrably
justified user decisions about acquiring such systems.

An RM-ODP-based specification provides a top-level
precise (not semi-precise!) road-map of the appropriate frag-
ment of a business or IT system, or of a product, and with
its refinements down to the level(s) we are interested in.
These specifications define what should always be true
about the things and relationships of the business or IT
domain as well as what should be true about each process
(step, operation). All defaults are made explicit: in particular,
the business expertise does not disappear when the business
expert leaves the meeting room, and everything the devel-

opers need to know about the business domain and “were
afraid to ask” is in the specification. Such specifications
may be, and have been, used for making demonstrably
justified strategic, tactical, and operational decisions in all
kinds of business and IT system environments.

10. Acknowledgments

Many thanks go to the colleagues and customers the
interactions with whom helped to distill the concepts and
approaches described here. Some of their names are in the
reference list below, and many names are in books and
papers from this list. Also, specific thanks go to anonymous
reviewers for very useful comments and to Rashid Bashshur
for useful discussions about the structure of the paper. A
draft of this paper was presented at the Telemedicine sym-
posium in Ann Arbor, Michigan, in May 2004.

11. References

[1] Christopher Alexander. The Timeless Way of Building. Ox-
ford University Press, 1979.

[2] W. Bagehot. Lombard Street: A Description of the Money
Market. Scribner, Armstrong & Co., New York, 1873.

[3] Mario Bunge. Philosophical dictionary. Prometheus
Books, 2003.

[4] Mario Bunge. Emergence and convergence. Toronto Uni-
versity Press, 2004.

[5] E.W. Dijkstra. Management and Mathematics. EWD966,
The University of Texas at Austin, 14 June 1986.

[6] A UML Profile for Enterprise Distributed Object Computing
Joint Final Submission Part I. 18 June 2001. OMG Doc-
ument Number: ad/2001-06-09. 3.6. The Relationship Pro-
file.

[7] James S. Garrison. Business specifications: Using UML to
specify the trading of foreign exchange options. Proceed-
ings of the 10th OOPSLA workshop on behavioral seman-
tics (Back to Basics) (Eds. K. Baclawski and H. Kilov).
Northeastern University, Boston, 2001, pp. 79-84.

[8] GRM. ISO/IEC JTC1/SC21, Information Technology. Open
Systems Interconnection - Management Information Ser-
vices - Structure of Management Information - Part 7:
General Relationship Model, 1995. ISO/IEC 10165- 7.2.

[9] Grace Hopper. Automatic Programming for Business Ap-
plications. In Proceedings of the 4th annual computer
applications symposium, October 24-25, 1957, Armour
Research Foundation, Chicago.

[10] J.Hassall, J.Eaton. Applying ISO RM-ODP in the spec-
ification of CORBA interfaces and semantics to general
ledger systems. Behavioral specifications of businesses
and systems (Ed. by H.Kilov, B.Rumpe, I.Simmonds), Klu-
wer Academic Publishers, 1999, pp. 91-104.

13



[11] H. Kilov. Business Specifications. Prentice-Hall, 1999.
[12] H.Kilov. Anticipating the market: The value of business

models. Distributed Enterprise Architecture Advisory Ser-
vice Executive Report. Cutter Consortium, 2001.

[13] Thomas Kudrass. Coping with semantics in XML document
management. In Proceedings of the 10th OOPSLA work-
shop on Behavioral Semantics — Back to basics. (Tampa,
Florida, 15 October 2001), pp. 150-161.

[14] H.Kilov. Business models. Prentice-Hall, 2002.
[15] H.Kilov, A.Ash. How to ask questions: Handling com-

plexity in a business specification. Proceedings of the
OOPSLA’97 Workshop on object-oriented behavioral se-
mantics (Atlanta, October 6th, 1997), ed. by H.Kilov,
B.Rumpe, I.Simmonds, Munich University of Technology,
TUM-I9737, pp. 99-114.

[16] H.Kilov and K.Baclawski (Eds.) Practical foundations of
business system specifications. Kluwer Academic Publish-
ers, 2003.

[17] H.Kilov, M.Guttman. ISO Reference Model for Open Dis-
tributed Processing: an informal introduction. Cutter
Consortium (Distributed Computing Architecture Advi-
sory Service) Executive Report, Vol. 2, No. 4 (April 1999).
ISSN 1523-5912.

[18] H.Kilov, H. Mogill, I. Simmonds. Invariants in the Trench-
es. Object-Oriented Behavioral Specifications (Ed. by H.
Kilov and W. Harvey). Kluwer Academic Publishers, 1996,
pp. 77-100.

[19] H.Kilov, J.Ross. Information modeling. Prentice-Hall,
1994.

[20] H.Kilov, K.P.Tyson. Semantics Working Group Green Pa-
per One. OMG Semantics Working Group. OMG Document
Number ormsc/97-06-10r.

[21] Yuri M. Lotman. Universe of the mind: a semiotic theory
of culture. Translated by Ann Shukman. Introduction by
Umberto Eco. London and New York: I.B.Tauris & Co.
1990.

[22] Herbert W. Lovelace. The medium is more than the message.
Information Week, July 15, 2001.

[23] http://informatics.mayo.edu/index.php?page=11
[24] K.Riemer. An analysis of RM-ODP viewpoints and system

life cycles. In: Proceedings of the 8th OOPSLA workshop
on behavioral semantics (Ed. by K.Baclawski, H.Kilov,
A.Thalassinidis, K.Tyson). Northeastern University, 1999.

[25] RM-ODP-2. ISO/IEC JTC1/SC21. Open Distributed Pro-
cessing - Reference Model: Part 2: Foundations (ITU-T
Recommendation X.902 | ISO/IEC 10746-2).

[26] RM-ODP 3. ISO/IEC JTC1/SC21. Open Distributed Pro-
cessing - Reference Model: Part 3: Architecture (ITU-T
Recommendation X.903 | ISO/IEC 10746-3).

[27] Requirenautics Quarte rly (The Newsletter of the Require-
ments Engineering Specialist Group of the British Com-
puter Society), Issue 28 (February 2003). .Ian F.Alexander.
Using formal methods to understand requirements better.,

4-6.
[28] Ian Sommervile. MDA revisited (Letter to the Editor).

IEEE Software, July/August 2004, pp. 9-10.
[29] Software Engineering. Report on a Conference sponsored

by the NATO Science Committee, Garmisch, Germany, 7th
to 11th October 1968. (Chairman: Professor Dr. F.L. Bauer,
Co-chairmen: Professor L. Bolliet, Dr. H.J. Helms; Editors:
Peter Naur and Brian Randell). January 1969.

[30] Software Engineering Techniques. Report on a Conference
sponsored by the NATO Science Committee, Rome, Italy,
27th to 31st October 1969. (Chairman: Professor P. Ercoli,
Co-Chairman: Professor Dr. F.L. Bauer, Editors: J.N. Bux-
ton and B. Randell) April 1970.

[31] Lawrence E. Sweeney, Enrique V. Kortright and Robert J.
Buckley. Developing an RM-ODP-based architecture for
the Defense Integrated Military Human Resource System.
Proceedings of the WOODPECKER-2001 (Open Distribut-
ed Processing: Enterprise, Computation, Knowledge, En-
gineering and Realisation) in conjunction with
ICEIS’2001, Setubal, Portugal, July 2001, pp. 110-123.

[32] [Semantic web] Hewlett-Packard. Introduction to Semantic
Web technologies. http://www.hpl.hp.com/semweb/sw-
technology.htm

[33] W.Turski. It was fun. Information Processing Letters,
88(2003), 7-12.

[34] A.Thalassinidis and I.Sack. Building the Industry Library
— Pharmaceutical. In: Second ECOOP Workshop on Pre-
cise Behavioral Semantics (with an Emphasis on OO Busi-
ness Specifications). (Eds. H. Kilov and B. Rumpe), Tech-
nische Universität München, TUM-I19813, June 1998, pp.
245-253.

[35] Gerald Weinberg. Rethinking systems analysis and design.
Little, Brown, and Company, 1982.

[36] Jeannette M. Wing. Hints to specifiers. In: Teaching and
learning formal methods. (Eds. C. Neville Dean and Micha-
el G. Hinchey). Academic Press, 1996, pp.57-77.

[37] Yair Wand, Ron Weber. Reflection: Ontology in informa-
tion systems. Journal of Database Management, 15, 2
(April-June 2004), iii-vi.

14



What Foundations does the RM-ODP Need? 

Peter F. Linington.

University of Kent, 
Canterbury, Kent, CT2 7NF, UK. 

 pfl@kent.ac.uk 
 

 
Abstract 

This position paper revisits the requirements for the set 
of Foundation Concepts for the ODP Reference Model and 
the approach originally taken to satisfying them. It then 
examines, in the light of experience, the areas where the 
Foundations have subsided, and areas where extensions 
need to be built. The aim is to provide a starting point for 
discussion on requirements to change the Foundations 
document. 

1. Introduction 

Even before the first draft of the Reference Model for 
ODP was produced, the group of experts working on it had 
found the need for a separate definition of a clear 
conceptual framework on which to base their work; almost 
ten years later, this became Part 2 of the published standard 
[1], and established the conceptual framework for the ODP 
Architecture [2] [3]. The need for the RM-ODP 
Foundations document was clear; experts from a number of 
different backgrounds had come together to work on ODP, 
and they brought with them a wide range of different 
vocabulary and usage, reflecting different assumptions 
about how systems should be structured and specified. 
Progress with a common reference model depended on the 
creation of a common conceptual framework. 

At the same time, no single notation or descriptive 
technique could be expected to dominate. The broad scope 
of the work was such that different techniques would be 
needed to express different areas of concern. It was 
therefore necessary to express the Foundations in abstract 
terms, bringing together the common features of existing 
styles of usage, so that each concrete notation is seen as a 
refinement of the foundation concepts. This is particularly 
the case in the areas of interaction and behaviour, which are 
discussed below. 

 In reviewing how well the RM-ODP has stood the test 
of time, we must be aware of the constraints on modifying 
it. Not only must the Parts of the reference model maintain 
their internal consistency, but the documents that reference 
it must not be undermined. This applies both to the ISO 
standards within the framework the reference model has 
created, and to the work within bodies such as the ITU-T 
and the OMG, and also the usage within the wider 
community. We do not have a green field; we have a 
responsibility to perform restoration, not demolition and 
replacement. The Foundations may need to be strengthened, 
but not relaid. 

2. Objects and Interactions 

At the time that the Foundations was being debated, two 
formal description techniques were also being developed 
within the same parent standards committee. These were 
LOTOS [4] and ESTELLE [5]; they differ significantly in 
their representation of interaction and this coloured the 
discussions in ODP. In LOTOS, the processes interact at 
gates in a synchronous way, in that all the parties to an 
interaction would agree on when the interaction occurs 
(although basic LOTOS deals with action sequence, not 
timing). In ESTELLE, on the other hand, modules are 
linked by communication links, which contain umbounded 
queues, so that interaction is represented by distinct sending 
and receiving actions that are sequenced but not 
simultaneous. 

This led to a need for a common modelling basis that 
was capable of unifying both approaches.  Interactions in 
ODP are synchronous, but are defined between an object 
and its environment. If we then constrain the way objects 
are composed so that each object binds directly to another 
object in its environment, the resulting communication is 
synchronous, but if objects bind to link ends in their 
environment, the resulting communication is asynchronous. 

15



One might feel that the asynchronous representation was 
slightly cumbersome, but the Foundations also provide the 
less closely coupled concept of communication, which 
represents a sequence of causally related interactions, so 
that channels between communicating objects can (but need 
not) be completely hidden in this style of notation. 

Currently, the Foundations do not distinguish between 
different kinds of interaction, but leave it to the 
specification using them to refine the basic concept. This, 
together with the connotations in English of the work 
“interaction”, may have given the impression that the 
intension is something like a method call. This could be 
avoided and the full generality demonstrated by including 
in the standard non-exclusive definitions for some common 
refinements of interaction, such as invocation, message 
transfer and event notification.1 For brevity, these examples 
are taken from a computational domain, but the definitions 
added should be viewpoint-independent, with notes to 
clarify their application, including examples in at least the 
engineering and enterprise domains. 

3. Interface 

The Foundations define an interface in terms of a view 
of the behaviour of an object, resulting from taking a subset 
of the interactions of the object and hiding all the other 
interactions and behavioural constraints that involve them. 
This definition is basically sound, but there are some 
subtleties that need to be taken into account in order to 
understand it fully. 

Let us consider a computational application of the 
definition to see some of the problems; assume a style of 
interaction in which there is a clear causal initiative, so that 
an object is invoked by its clients and may, as a result, 
invoke other objects providing services (see figure 1). 

The object, Obj, has four interfaces and its complete 
behaviour places constraints within and between them. Its 
environment contains four objects, A to D. The figure 
shows that: 

a) object A can initiate interaction P at interface 
If1 at any time; 

b) object B can initiate interaction Q at interface 
If2 at any time; 

c) object B can initiate interaction R at interface 
If2 but constraint C1 requires Q to happen first; 
when R does occur, it is followed by Obj 
initiating interaction T with object D at If4; 

                                                           
1 The foundations originally avoided the use of the term event 
because of the connotations arising from the world of discrete 
event simulation; however, the use of the term event notification 
seems to avoid this. 

d) object B can initiate interaction S at interface 
If2 at any time; when S does occur, it is 
followed by Obj initiating interaction U with 
object C at If3; the behaviour of C results in an 
interaction V with Obj at interface If2. 

 
Now let us see how the definition of the interface 

concept works. The first thing to note is that all the 
interactions of Obj are considered, and not just those in 
which it acts as a responder. Thus we are dealing with four 
interfaces, whereas a computational middleware might only 
consider interfaces 1 and 2 at which services are offered. 
Secondly, the interactions here are action occurrences, and 
not action types; actions P and Q could be of the same type, 
but the occurrences in the two interfaces are distinct. In 
fact, as a result of this, the sets of interactions are normally 
infinite, because most objects will have a behaviour that 
allows arbitrary repetition of smaller fragments of 
behaviour associated with some sort of thread or session; 
almost all notations simplify this by considering as a unit 
the sets of interactions with similar types and names (where 
the naming domain is associated with the interface). Note 
that this idea of equivalence sets implies that the 
identification of interfaces is a design activity – the 
interfaces cannot be deduced by examination of the overall 
computational behaviour (although, once the decision has 
been made, it is generally reflected by the naming structure 
used for interactions in the engineering viewpoint). 

Figure 1 – Interfaces and Object Behaviour 

16



Now let us consider the individual interfaces in the 
example. Interface 1 consists of occurrence of members of 
the set P without further constraint.  

Interface 2 consists of the interaction sets Q, R, S and V, 
but subject to the constraint that an R must be preceded by 
an occurrence of Q. The constraints 2 and 3 are hidden in 
interface 2 because they involve interactions T and U, 
which are themselves hidden. The multi-step constraint 
between S and V is hidden for the same reason – it depends 
on U and also on the behaviour of C, which are themselves 
both hidden. These constraints only become apparent when 
the full behaviour of the object is considered; the link from 
S to V depends on specific behaviour in the environment, 
and so cannot be deduced from constraint 3 alone. 
However, a constraint between S and V could have been 
stated in interface 3 in terms of locally available properties, 
such as the presence of a correlation identifier as a data 
item in both the interactions.2 

Interfaces 3 and 4 are again straightforward; apart from 
the placement of the initiative for interaction, they are 
structurally similar to interface 1. 

What we have not yet considered is the dynamic 
lifecycle of an interface. Before interaction can take place, 
there are normally two steps to be taken. First, the object 
must be in a state where it is willing to interact 
(corresponding to the creation of the interface and its 
associated naming domain for interactions and initialisation 
of related internal state of the object) and second any 
interactions with the environment needed to establish 
preconditions for interactions at the interface must have 
been performed (corresponding to the establishment of a 
binding and associated communication and resultant state 
shared between the objects involved). After the first step, 
there is potential for interaction, but no specific partner for 
interaction has been selected, whilst after the second step 
interaction with specific partners can take place. Different 
kinds of object behaviour allow the description of one-to-
one bindings or many-to-one client-server bindings. Similar 
considerations apply to the deletion of a binding and an 
interface. 

When the Foundations were being drafted, a number of 
ways of modelling this process were considered, mostly 
based on including an intermediate concept for the unbound 
state, such as semi-interfaces or unbound interfaces, but 
none of them were successful. It would be worth revisiting 
this issue, but a better solution might be to consider a more 
general way of describing the potential behaviour of an 
object that is currently in a particular state (see section 8 
below). 

                                                           
2 This has different semantics, particularly with respect to the trust 
implications for C, but it may be equivalent for practical purposes. 

4. Components 

One of the significant changed in the last ten years has 
been the growth of interest in component-oriented 
architectures, so a natural question to ask is whether the 
Foundations should include a general definition of what a 
component is. If we consider, for example the CORBA 
Components 3.0 Specification (figure 2), and ask what the 
key properties of a component are, we find 

a) encapsulation; 
b) interactions at ports; the ports can be specialised as 

facets, receptacles, event sources, event sinks or 
attributes; 

c) a component equivalent interface that provides 
metadata, navigation and control for the 
component; 

d) an associated component home interface, 
representing a container in which components of 
the given type can be instantiated. 

 
In fact, all of these can be modelled using the existing 

Foundations. The general concept of interaction is rich 
enough to be refined into any of the defined port types, and 
the equivalent and home interfaces are just conventional 
computational interfaces. The container property requires a 
specialisation of the object concept to make explicit the 
relation to the instantiation of templates involved when it 
acts as a factory. 

The ability to support both facets (server interfaces) and 
receptacles (client interfaces) as specialisations of the ODP 
concept of interface has already been mentioned above; it is 
primarily this generality, and the equivalent capabilities for 
interaction support, that make the foundation concept of 
object so flexible. 

 Perhaps a little more needs to be said about 
encapsulation. The Foundations explain encapsulation as 
the property of an object such that it can only have its state 
changed by interactions or internal actions expressed in the 
model. As such, the definition is more related to 

Figure 2 – A component model 

17



completeness of description than to level of abstraction. 
Indeed, the inability to guarantee encapsulation on 
structural refinement is one of the problems in security 
analysis (see figure 3), for example, since structural 
refinements may introduce backdoors, and it is difficult to 
apply constraints to the refinement process that prevent this.  

 
However, there would be nothing to choose between an 

object model and a component model built on the 
Foundations in this respect, even if our common intuition is 
that encapsulation of a component is a less abstract claim 
than encapsulation of an object. 

As a result there is no need for extension of the 
Foundations if it was felt that there was a need to 
incorporate a computational or engineering component 
model into the architecture. However, there could be merit 
in adding derived definitions for component and factory, 
making it clear how the existing definitions can be used to 
model them. 

5. Roles 

The Foundations define a role as “an identifier for a 
behaviour, which may appear as a parameter in a template 
for a composite object, and which is associated with one of 
the component objects of the composite object”. This 
definition has been much misunderstood, and some authors 
have tried to rework the definition in terms of static class 
structures, without much success. To attempt to do so is to 
miss the point of the definition, but clearly it does not, in its 
present form, convey the intent, which is indicated by the 
reference to templates and to the actualisation of parameters 
in its second paragraph (which is not quoted here). 

The discussion here is based on the explanation in [6]. 
The metaphor on which the role concept is based is 
theatrical. The text of a play is expressed in terms of lines 
and actions associated with various roles, which are 
declared initially in a cast-list. Putting the play on involves 
assigning actors to the various roles, although one actor 
may play several minor roles, and the actor playing a role 
may change during the run of the production. Identifying 

the roles rather than the actors obviously makes the script 
more reusable. 

The key idea is that some constraints on system 
behaviour are associated with objects dynamically as a 
consequence of an earlier part of the behaviour, such as 
performance of a piece of negotiation. However, although 
the potential behaviour can be referenced (and hence the 
talk of an identifier in the definition) it is not associable 
with an actual object until the template is instantiated and 
the role bound to a specific object3. It is thus impossible to 
represent what is going on within a static class hierarchy.  

The solution to the misunderstandings is to remove the 
idea of there being a parameter identifier in the template’s 
behaviour to the explanatory note, and to focus the first 
paragraph of the definition on the idea of parameter 
substitution. Perhaps more importantly, though, we need to 
clarify the way the potential behaviour of an object is 
restricted when it is bound to a role, and this needs a proper 
framework for the discussion of potential behaviour of the 
kind described in section 8 below. 

The second problem with the role concept at present is 
with usage rather than definition. There has been 
widespread discussion in ODP circles of community-roles 
in the Enterprise Language, but unfortunately this has been 
expressed the term using role without qualification, leading 
to an implicit assumption that saying role implies 
community-role. As shown above, role is defined as a 
parameterization mechanism for templates, and so can 
potentially be applied to anything for which a template can 
be defined. Indeed, there are other places where the role 
concept is not just useful but is vital to making necessary 
distinctions in the template definition. 

Perhaps the clearest present need is in the definition of 
action templates, particularly interaction templates. In an 
interaction between, say, a client and a server object, it is 
essential to know which is which.  We can do this by saying 
that the two objects in this example fill client and server 
roles in the interaction, and by associating necessary 
properties and constraints with these roles. At one point in a 
system’s behaviour, an object A can fill the buyer role in a 
purchase interaction, while object B fills the seller role, and 
later the roles can be reversed, so that B is the buyer and A 
is the seller. The richer the interaction, the more useful this 

                                                           
3 Depending on the nature of the template involved, some roles 
may be bound after the instantiation of the object defining them. 
This is particularly true of objects representing potentially long-
lived structures like communities, where the behaviour will 
commonly include the dynamics of community-role bindings (e.g. 
changes of committee membership). However, the lifetime of the 
role binding is always within the lifetime of the defining object, so 
that the objects created by a factory are not simply filling roles in 
it. 

Figure 3 – Refinement breaks a security 
boundary 

18



approach is likely to be; it is particularly effective, for 
example, for expressing the capabilities and obligations 
associated with secure multi-way interactions, where 
capabilities or access permissions are clearly associated 
with a specific role. Another example is for distinguishing 
between actor and artifact roles in enterprise interactions. 
Users of the role concept should be encouraged always to 
qualify their use of role with the template type name, as in 
action-role and community-role. 

6. Obligations 

The Foundations define a number of deontic concepts, 
particularly obligations, permissions and prohibitions, but 
this part of the framework was produced before there had 
been much experience with their application in ODP. The 
result is that the definitions were taken directly from the 
Standard Deontic Logic (SDL), including a simple set of 
relations between the concepts, such as the assertion that a 
permission for something is an indication that there is not 
an obligation not to do it. 

There is nothing wrong with these as statements from 
the SDL, but experience has shown that the SDL approach 
is somewhat brittle for enterprise modelling, and it would 
be better to take a less prescriptive approach in the 
Foundations, allowing, for example, a style of modelling 
based on Utilitarianism to be exploited if it proves 
effective. See [8] for a discussion of how obligations might 
be represented in this way. 

7. The lifecycle of ODP specifications 

It has always been a principle in the development of 
ODP that the reference model is neutral with regard to the 
methodologies to be applied, and maintaining this position 
gives the most broadly applicable framework. 

However, It is clear that most systems will evolve over 
time, and the reference model needs to take this into 
account. The Foundations includes the concept of an epoch 
to describe the way in which objects or configurations of 
objects evolve through a series of stages. This concept can 
also be used to describe the evolution of the specification 
itself. This allows a new version of a specification to 
describe, for example, how it might be introduced as a 
staged transition from the previous version. 

One area where there must be an expectation of 
evolution and statements of constraints on it is in the 
definition of policies. The current Foundations definition of 
a policy is very weak. It is just defined as “a set of rules 
related to a particular purpose”, with an indication that the 
rules are expected to be expressed in deontic terms. There 
has been a great deal of work on the use of policies, 

particularly in various styles of policy-based management, 
since the creation of the reference model, and the 
requirements are now much better understood. We can now 
identify at least two stronger requirements for a rule to be 
considered a policy. 

The first of these is that there must be some element of 
choice associated with any policy. Policies are identified in 
a specification wherever it is recognised that a rule may 
need to be changed during the lifetime of the specification; 
selecting a structure for the specification that emphasises 
the scope of the policy makes it easier to modify it without 
wholesale revision, and allows the likelihood of change to 
be reflected in the implementation. This is generally done 
by encapsulating associated decisions as the behaviour of a 
distinct computational or engineering object that can be 
replaced whenever the policy is changed. 

Thus a rule that is universally true, and cannot be 
changed without wholesale replacement of the 
specification, is not a policy. The speed of light is not a 
policy, but the setting of interest on credit at a certain 
percentage above base rate is. Whether an organization 
operates with the status of a charity either might or might 
not be a policy, depending on whether the specifiers 
foresaw the possibility that the status might change and 
planned for it. 

The second thing to be said about policy is that the 
specifiers who identify it will generally wish to limit the 
range of behaviour that would be acceptable; this gives rise 
to the idea of a policy envelope [7], which limits the range 
of behaviour any particular policy is allowed to specify. 
Knowledge of the policy envelope allows the verification of 
invariants on the specification that are independent of the 
particular policy in use at any particular instant. 

Another aspect of the lifecycle of an ODP specification 
is the relationship between specification and instantiation, 
which is discussed in [6]. This paper identifies the need to 
enhance the ODP conformance model slightly so that it is 
able to distinguish between classes of use to which the 
specification is being put. The current ODP conformance 
model describes the relations between system the specifier, 
the implementor and the tester, and describes how 
conformance is deduced from observation during testing, 
confirming that the implementation is consistent with the 
original specification. A proposal made in [6] is to 
introduce the role of system owner, so that statements of 
rights to implement and use the design embodied in the 
specification can be made and then interpreted during the 
testing process to guide the interpretations made by the 
tester. 

Making this comparatively minor extension opens the 
way to a more formal model of licensing and rights to use 
the design, and could help clarify the constraints on system 

19



evolution involving reuse of design libraries or 
components. 

8. Frames and unified semantics 

Several of the areas examined so far have involved the 
need to describe the possibility of change or of the system 
responding to reaching a certain state of affairs or set of 
objectives. Constraints of the same basic kind are involved 
in basic behaviour like the interface and binding lifecycle, 
the definition of policies and the use or reuse of 
specifications. It would be a great aid to consistency of 
modelling if all these were based on a similar underlying 
model structure. 

Most of the notations of practical interest here have their 
semantics defined denotationally, in terms of a mapping 
from notational elements to some mathematical target 
domain. For example, LOTOS is defined in terms of a 
labelled transition system. Other notations, such as UML, 
still lack a uniform and consistent semantic mapping. What 
is needed is a common target domain that is a natural 
extension of those in common use but with the power to be 
a target all the ODP-related notations, including the deontic 
aspects of enterprise languages. 

 
One possible direction would be to introduce a frame-

based model such as one based on Kripke Frames (see [9] 
for an accessible review of these and other related systems 
able to support modal logics). The idea (see figure 4) is that 
the development or evolution of the system is represented 
by a model consisting of: 

a) a set, W, of possible worlds of interest; the form of 
description of the world is not of interest here, 
except that it is decomposable into a set of 
attributes that carry Boolean values; 

b) a dyadic relation, R, representing the reachability 
between members of W; R is true if w2 is 
accessible from w1, and false otherwise; 

c) a value assignments, V, that assigns truth values to 
the attributes of each world in W. 

This model captures in a mathematical way the intuition 
that we can describe any situation of interest for ODP as a 
set of worlds with local states of affairs and a set of 
statements as to whether any world can evolve into any 
other. Something is possible in a world if there exist worlds 
reachable from it in which that thing would be true, and 
something is necessary in a world if that thing would be 
true in all worlds reachable from it. Clearly, this kind of 
structure is capably of defining concepts like obligation, 
which is the deontic version of necessity. 

From such a model we can go a step further by dividing 
the model into a set of related frames <W, R> and a 
separate set of value assignments, or markings, V. This is 
not quite as flexible as the general related worlds model, 
but does separate the structural aspects of evolution from 
the constraints on variables, making it easier to reason 
about. Frames of this kind are called Kripke Frames. 

It would be possible to add such a frame definition to the 
clauses of the Foundations on basic interpretation concepts 
(putting mathematical detail in an annex, if necessary, to 
avoid possible intimidation of some readers) and thereby 
establish a common framework for supporting the basic 
behavioural and deontic aspects, and possibly the broader 
conformance and evolutionary issues as well. 

Let us consider some of the problems discussed earlier 
in this light. First, consider the lifecycle of interfaces and 
bindings. The ability of an object to be involved in a 
particular kind of action or interaction can be represented as 
a marking in any particular world, and the ability to create 
an interface or perform a binding interaction is a special 
case of this; the actual performance of the interaction would 
result in changes to the markings between a world and any 
of its successors that are reached by performing the 
interaction. 

Now, the existence of an interface can be deduced in a 
particular world from the existence of paths of succession 
between that world and worlds that are marked as allowing 
the associated interactions without, in so doing, traversing 
any successor step corresponding to interface creation – 
that is, if there is no creation between the point considered 
and some point of use. Essentially, what this is saying is 
that the property describing the existence of an interface is 
shared by all the worlds that can reach a world in which an 
interaction at that interface takes place (interaction is 
possible) without passing between a pair of worlds whose 
linking relationship corresponds to the creation of the 
interface. Although this may sound trivial, it gives a basis 

Figure 4 – A frame-based model 

20



for determining precisely the circumstances under which an 
interface exists, and so interactions at it can happen. It also 
implies some consistency conditions, in that, if two worlds 
are reachable by multiple paths, either all of the paths must 
include a step representing interface creation or none of 
them can. 

Similar conditions can be applied to the existence of 
bindings. In this way we can describe the way in which 
objects are characterised by their potential to engage in 
bindings or specific interactions with an unbounded set of 
candidate peer objects, without requiring detail of the 
behaviour involved in their doing so. Clearly, the set of 
worlds that are equivalent in having the property that a 
binding exists must be a subset of the possible worlds that 
are equivalent in having the property that all the interfaces 
to be bound exist. However there is not a subset 
relationship between the sets in which each of the 
individual interfaces exist. 

In a similar approach, we can capture the way in which 
the potential behaviour of an object is modified by creation 
of a community and by the object filling a community-role; 
filling the role results in a modification of the set of 
accessible worlds.  The performance of an action commits 
the objects involved to playing their action-roles, and the 
preconditions for so doing can be derived from the 
accessibility relations. 

Before leaving this issue, it should be stressed that what 
is being discussed here is a sketch of the definition of 
semantics for the basic modelling and specification 
concepts. There is no intention that the average user of 
these concepts would be involved in such considerations, 
but the unified underpinnings would give the basis for 
reasoning about the consistency of the framework and the 
correctness of interpretations by tools in difficult or 
potentially ambiguous cases. 

9. Gaps and omissions 

Finally, there are a number of areas in which the current 
Foundations standard omits material on the grounds that it 
is self evident or sufficiently obvious to be taken as read. 
Experience has shown that it is worth making even 
apparently well-understood concepts explicit if they are to 
be used in a formal way. 

One example is the omission of terms in common 
technical usage, such as relationship or association, 
definitions of which should be included on the basis of 
significant usage in ODP specification, even if they seem 
obvious. The Foundations should include generic 
definitions consistent with, but less detailed and restrictive 
than those in the ISO General Relationship Model [10]. 
These generic definitions would then need to be related to 

the specific relationships that are already defined in the 
Foundations, such as the subtype and subclass relationships. 

Another example is the omission of ODP specific detail 
or logical consequences of the existing definitions. Here 
one might consider the explicit definition of the concept of 
an inter-viewpoint correspondence, which is not discussed 
when viewpoint is defined. It should, indeed, be obvious to 
everyone that a system is only defined if both the 
viewpoints and the correspondences between them are 
detailed to a sufficient level to unify the overall 
specification, but sets of viewpoint specifications are often 
published without clear statements of correspondences, and 
a more balanced set of definitions would help just a little to 
get this message across. 

Finally, the clause on specification concepts should be 
reviewed to check whether residual restrictions on usage 
are necessary. Many of the concepts, such as type and class, 
can be applied to a wide range of basic concepts. Thus, for 
example, the concept type (of an <X>) can be applied to 
any <X>. An individual specification can then declare 
which kinds of terms in it can have types. At present, 
however, composition only applies to objects, and 
refinement only applies to specifications. Discussion will 
be needed to determine whether these two concepts should 
be of an <X> or applied indirectly as relating specification 
fragments; either way, there would be a minor incompatible 
change to one or other of the concepts. 

10. Conclusions 

It seems that, in general terms, the ODP Foundations 
document has stood the test of time quite well. There is a 
need for some clarification of the definitions of roles and 
policies, and for addition of clear definitions of a number of 
concepts originally assumed to be well known, such as 
relation. 

The most pressing need is for more explicit definitions 
relating to evolution in time, relating both to system 
behaviour (for example the lifecycle of interfaces) and, 
more generally, of a set of ODP specifications to reflect 
changes of requirement and policy. This can best be done 
by having an explicit representation of the possible worlds a 
specification applies to; this would need to be referenced as 
part of the most fundamental support for modelling used to 
define the basic and specification concepts. 

Although the concept definitions are quite stable, they 
are not always used to best advantage in related standards. 
In particular, because the ODP Architecture was developed 
in parallel with the Foundations, there are places where 
usage in Part 3 is incorrect or where rules could be 
expressed more precisely by making best use of the 
foundation concepts. Part 1 could be improved by making 

21



the usage of the concepts from the Foundations more 
consistent and complete. It would also be possible to 
improve Part 4 by interpreting some of the concepts directly 
in terms of the semantic domain for the formal description 
techniques rather than writing them in the techniques 
directly. However, it seems unlikely that there is enough 
expert effort available to attempt so major a task on Part 4, 
and the refinement of Parts 2 and 3 of the reference model 
should be the primary target at present. 

References 

[1] ISO\IEC IS 10746-2, Open Distributed Processing – 
Reference Model: Foundations, 1996. 

[2] ISO\IEC IS 10746-3, Open Distributed Processing – 
Reference Model: Architecture, 1996. 

[3] P. F. Linington, RM-ODP: The Architecture, In K. 
Raymond and E. Armstrong, editors, Open Distributed 
Processing: Experience with Distributed Environments, 
pages 15-33. IFIP, Chapman and Hall, February 1995. 

[4] ISO\IEC IS 8807, Information processing systems -- Open 
Systems Interconnection – LOTOS: A formal description 
technique based on the temporal ordering of observational 
behaviour, 1989. 

[5] ISO/IEC IS 9074, Information technology -- Open Systems 
Interconnection -- Estelle: A formal description technique 
based on an extended state transition model, 1997. 

[6] P. F. Linington and W. F. Frank, Specification and 
implementation in ODP, In J. Cordeiro and H. Kilov, 
editors, Proceedings of the 1st Workshop on Open 
Distributed Processing: Enterprise, Computation, 
Knowledge, Engineering and Realisation, pages 69-80, 
Setubal, Portugal, July 2001. ICEIS Press. 

[7] P. F. Linington and S. Neal, Using policies in the checking 
of business to business contracts, In H. Lutfiyya, J. Moffat, 
and F. Garcia, editors, Fourth IEEE International Workshop 
on Policies for Distributed Systems and Networks, pages 
207-218, Lake Como, Italy, June 2003. IEEE Computer 
Society. 

[8] P. F. Linington, Z.  Milosevic and K. Raymond, Policies in 
Communities: Extending the ODP Enterprise Viewpoint, In  
Proceedings of 2nd International Workshop on Enterprise               
Distributed Object Computing (EDOC98), San Diego, USA, 
November 1998. 

[9] G.E.Hughes and M. J. Cresswell, A Companion to Modal 
Logic, Methuen, London, 1984 

[10] ISO/IEC IS 10165-7, Information Technology – Open 
Systems Interconnection – Structure of management 
information: General relationship model, 1996. 

22



Action Templates and Causalities in the ODP Computational Viewpoint 
 

Raúl Romero and Antonio Vallecillo 
Dpto. de Lenguajes y Ciencias de la Computación 

University of Málaga, Spain 
{jrromero,av}@lcc.uma.es 

Abstract 
 

The RM-ODP is a reference model that provides a 
coordinating framework for Open Distributed Processing 
standards, and offers a well-defined and comprehensive 
set of concepts and functions for the specification of ODP 
systems. Some years after its release as International 
Standard, an ISO Study Group will evaluate the need for 
a revision of RM-ODP, a customary process for ISO 
standards. The goal is to make use of the experiences 
gained from the use of the RM-ODP framework during 
that period, in order to propose improvements or changes 
if required. In order to serve as an input to that Group, 
this paper raises two small issues that we have discovered 
when trying to formalize the ODP Computational 
Viewpoint: the need of an independent term for referring 
to the signature of an Action Template, and the way in 
which Causalities are currently defined and handled. A 
proposal for addressing these issues is presented for 
discussion. 

 
1. Introduction 
 

The ISO and the ITU-T jointly developed a Reference 
Model for Open Distributed Processing (RM-ODP) [8, 
11-14], which provides the coordination framework for 
ODP standards, and creates an infrastructure within which 
support of distribution, interworking and portability can 
be integrated. The goal of this joint standardization effort 
is to define a reference model to integrate a wide range of 
future ODP standards for distributed systems and maintain 
consistency among them.  

RM-ODP provides five generic and complementary 
viewpoints of the system and its environment: enterprise,
information, computational, engineering and technology.
Each of them has its own specific viewpoint language, 
defining concepts and rules for specifying ODP systems 
from the corresponding viewpoint. 

The enterprise viewpoint focuses on the purpose, scope 
and policies of an ODP system. The information 
viewpoint describes the semantics of information and of 
information processing. The ODP computational 

viewpoint describes the functionality of a system and its 
environment, in terms of a configuration of objects that 
interact at interfaces. The engineering viewpoint focuses 
on the mechanisms and functions required to support 
distributed interactions between objects in the system. 
Finally, the technology viewpoint focuses on the choice of 
technology for that ODP system. 

After formalizing the enterprise and the information 
viewpoints concepts [3, 4] using the Maude language and 
system [5, 6, 7], we recently started working on the 
formalization of the computational viewpoint 
specifications [2], for which other formalization efforts 
also exist [1, 9, 10, 15]. Our work has allowed us to 
explore the basic concepts defined in ODP, in addition to 
those specific to the computational viewpoint. 
Furthermore, some case studies have been developed, and 
a metamodel for the Computational Viewpoint has been 
proposed in [2]. The metamodel describes the concepts 
used in a computational viewpoint specification and the 
relationships between them. 

In general, we find that Parts 2 [12] and Part 3 [13] of 
the ODP Reference Model are two excellent standards, 
fully consistent, and solidly conceived and architected. 
However, the inherent complexity of some of the concepts 
and functions defined in these two standards, their 
(sometimes) cryptic definition, and the lack of examples 
and real applications for most of the concepts, may hinder 
their understandability for readers which are not familiar 
with such terms. Having said that, we also discovered that, 
once understood, the concepts provided by RM-ODP are 
really valuable for the specification of open and 
distributed systems, and that everything fits in the 
conceptual framework with a clock-maker precision.  

However, we also discovered that the use of these 
standards might help uncovering some small details that 
cannot be easily detected otherwise. Thus, based on our 
experiences with the case studies and the definition of the 
metamodel, we observed two issues in the ODP 
computational viewpoint. First, the term Action Template 
seems to cover both the syntactic (i.e., signature) and 
semantic (i.e., behavioral) aspects of an action template. 
The problem is that there is no specific concept for 

23



referring just to the signature of an action template, which 
may seem to be required in some situations, as we shall 
later see. To solve this issue we propose, roughly, to 
include the concept Interaction Signature, which will 
specify just the syntactic part of an Action Template.  

The second issue has to do with the way in which the 
concept of Causality is used. The Standard allows 
specifying causalities at different granularity levels 
(object, interface signature, and action template), but in an 
asymmetric manner. We propose a homogeneous 
treatment of causalities for both interface signatures and 
action templates.  

In this paper we will discuss these two issues in more 
detail, together with the corresponding proposals for 
addressing them. Our proposals try to serve as an input for 
the current ODP revision work, and for discussion 
purposes. 

The structure of this document is as follows. First, 
Section 2 describes inconsistencies found when dealing 
with the concept of Action Template. Section 3 deals with 
the distinction between causalities contained at the object, 
interface, and action template levels. Finally, Section 5 
draws some conclusions. 
 
2. Action Templates 
 

The problem we found with action templates is about 
the way in which this concept is used for defining 
operation, signal, and stream signatures. In particular, the 
problem appeared in the metamodel when trying to model 
the existing relation between interface signatures, 
interaction signatures, and action templates. 

First, according to Part 2 [12–9.11], a Template is “the 
specification of the common features of a collection of 
<X>s in sufficient detail that an <X> can be instantiated 
using it”. From this definition, we directly obtain that an 
Action Template can be defined as “the specification of 
the common features of a collection of actions in 
sufficient detail that an action can be instantiated using 
it.” 

Then, we looked at how Action Templates are used in 
Part 3 in the Computational Viewpoint, in which they play 
a very relevant role.  

First, we see that Part 3 indicates [13 – 7.1.12] that “an 
announcement signature is an action template” (the 
underlined text is ours). Another reference appears when 
referring to interrogation signatures. Although we 
expected a similar definition, what we find in Part 3 is that 
“an interrogation signature comprises an action 
template” [13 – 7.1.12].  

The concept action template appears again when 
defining stream interface signatures, which comprise a
finite set of action templates. 

So the first issue is whether signatures “are” action 
templates, or “comprise” action templates. 

Furthermore, there is the issue of the way in which 
action templates are used in Part 3 for defining signatures. 
Commonly, signatures (of both interactions and 
interfaces) are considered to remain at the syntactic level, 
i.e., they are supposed to describe just the names and 
types of the actions and their parameters. Semantic 
information (e.g., behavior) is not usually covered by 
signatures. However, this does not seem to be consistent 
with the use of action templates for defining signatures, 
since action templates might also include behavioral 
specifications (cf. Part 2).  

Certainly, this is also corroborated by Part 4 [14 – 
4.4.2.12], which states that: “It should be noted that the 
text in ITU-T Rec. X.902 | ISO/IEC 10746-2 treats an 
interface signature as a set of action templates associated 
with the interactions of an interface. Given that an action 
template is likely to include semantic information as well 
as syntactic. Common interpretations of interface 
signature deal primarily at the syntactic level, however. 
[…]”. 

We propose to solve these two issues by introducing a 
term that refers to the syntactic information specified by 
an action template, and that we have called Interaction 
Signature. This term can be used to define the signatures 
of announcements, interrogations, terminations, signals 
and flows (see ������� �	, that now are Interaction 
Signatures. This does not contradict the current standard 
text and, in fact, allows the separation of the syntactic and 
the semantic information specified by an action template.  

Moreover, interface signatures (an abstract class that 
simply generalizes operation, signal and stream interface 
signatures) now comprise sets of interaction signatures, 
which seems to be more in line with the intent of the RM-
ODP standard.  

Finally, and as shown in the figure, the parameters of 
the action template are now associated to the syntactic 
part of such action template, that is, to its Interaction 
Signature, which also seems to be more natural than 
attaching them directly to the Action Template.

3. Causalities 
 

Clause 13.3 of Part 2 states that “the identification of 
causality allows the categorization of roles of interacting 
objects”. Furthermore, that clause provides “a basic set of 
roles” and specifies that a “causality implies a constraint 
on each behaviour of the participating objects while they 
are interacting”. 

Meanwhile, Clause 7.1 of Part 3 defines where the 
indication of the causality must be defined in each case, 
and for each element. For signal interfaces, their interface 
signatures “comprise a set of finite action templates, one  

24



��������	�
����
����������
����������������������
�����������
��������������������
����

 
for each type of signal in the interface. Each action 
template  comprises  the  name of that signal, the number, 
name and types of its parameters and an indication of 
causality with respect to the object which instantiates the 
template”. Same for stream interfaces. However, for 
operation interfaces we noticed that causalities are not 
treated in the same way. In that case, the operation 
interface signature comprises, apart from a set of 
announcement and interrogation signatures, as 
appropriate, the indication of causality for the interface as 
a whole with respect to the object that instantiates the 
template. 

Clause 7.2.2 of Part 3 (Interaction Rules) clearly refers 
to the causality “in the interface’s signature”, that seems 
to support the specification of causalities at the interface 
signature level. More precisely, sub-clauses 7.2.2.1 and 
7.2.2.2 are clear and explicit when referring to this issue. 

According to signal interaction rules [13 – 7.2.2.1], “a
computational object offering a signal interface of a given 
signal interface type 

• initiates signals that have initiating causality in 
the interface’s signature; 

• responds to signal that have responding causality 
in the interface’s signature.”

Similarly, according to stream interaction rules [13 – 
7.2.2.2], “a computational object offering a stream 
interface 

• generates flows that have producer causality in 
the interface’s signature; 

• receives flows that have consumer causality in the 
interface’s signature.” 

Thus, we find that, whereas the indication of causality 
for signal and stream interfaces is defined at the action 
template level, for operations it is defined at the object’s 
interface signature level. 

One of the reasons behind these decisions seems to be 
the fact that, for operations, the causality indication 
provided by the interface signature determines the 
causality for each action template in the interface, 
depending on what we are really using: invocations or 
terminations. However, when dealing with signal or 
stream interface signatures, which comprise signals or 
flows that may go in different directions (i.e., incoming 
and outgoing actions), there is no clear relationship 
between the causality of the interface signature, and the 
causalities of the individual interactions that comprise the 
interface signature. Thus, causalities should be defined 

25



both for the interface with respect to the object that 
interacts and for each individual action template.  

For example, let us consider a simple stream. Its 
signature could have both incoming and outgoing action 
templates defined for it. However, as mentioned in the 
interaction rules, we need to consider an indication of 
causality with respect to the role that the computational 
object plays in the communication process. This requires 
indicating that causality in the interface signature, which 
would indicate the object that produces the flow and the 
object that consumes it. 

To address this issue, we propose to include causality 
definitions at both levels. However, calling it “causality” 
at both levels might be confusing too. Actually, the 
definition of causality in Part 2 refers to objects only, i.e., 
the granularity of causality is defined at the object level – 
more precisely at the object’s interface signature level. 
But in Part 3, causality indications seem to be used at two 
different levels: object interface signature and action 
template. There is a clear need to align the granularities 
for these different definitions. 

Thus, we propose defining causalities in every level at 
which this term is involved. This means incorporating 
causalities in individual action templates and in interface 
signatures. In operations, in which the causality defined at 
the interface signature level determines the causality of the 
individual interactions, a constraint should enforce such a 
relationship. 

Figure 2 shows our proposal, where the indication of 
causality appears not only at the interface signature 
level—to specify the roles played by computational 
objects in the communication process as a whole—but 
also at the interaction signature level. 

 

��������	�
����
���������
��
�����
�������������

 

4. Conclusions 
 

RM-ODP was created at the beginning of last decade, 
but it is becoming now probably the best framework for 
specifying and developing large open and distributed 
applications. In the first place, the complexity of the 
applications is reaching the level where many traditional 
software engineering methods do not seem to be able to 
cope with. However, RM-ODP was specifically conceived 
to specify those large and complex open systems, and 
therefore is perfectly fit to address their specification and 
design. Furthermore, the level of maturity reached by the 
RM-ODP seems to be the adequate to fulfill the 
requirements of current businesses and organizations. 

Some years after its release as International Standard, 
an ISO Study Group will evaluate the need for a revision 
of RM-ODP, a customary process for ISO standards. The 
goal is to make use of the experiences gained from the use 
of the RM-ODP during that period, in order to “tune” it 
according to the findings, and to propose improvements or 
changes if required.  

In order to serve as an input to that Group, this paper 
has raised two issues that we discovered when trying to 
formalize the ODP Computational Viewpoint: the need of 
an independent term for referring to the signature of an 
Action Template (without taking into consideration the 
semantic information that an action template also 
contains), and the way in which Causalities are currently 
defined and handled. Proposals for addressing these issues 
have been presented. First, the term Interaction Signature 
has been proposed for capturing the syntactic aspects of 
an action template. This allows a consistent definition of 
all interaction signatures (announcements, interrogations, 
terminations, signals and flows), as shown in Figure 1. 
Second, we propose the definition of causalities at two 
levels: interface signature and interaction signature. This 
seems to resolve the apparent mismatch in Part 3 of the 
RM-ODP standard. 

Finally, just to mention the need for more examples, 
case studies and documents describing experiences in the 
use of RM-ODP, in order to help software engineers fully 
understand the concepts in the Reference Model, whose 
complexity (and sometimes cryptic definitions) make 
them difficult to learn, understand, and properly use to 
specify and design large open distributed applications. 

 
Acknowledgements The authors would like to 

acknowledge the work of many ODP experts who have 
been involved in investigating and addressing the 
problems of the computational specification of ODP 
systems. Although the views in this paper are the authors’ 
solely responsibility, they could not have been formulated 
without the detailed discussions with ISO experts on 
ODP, in particular with Akira Tanaka and Dave Akehurst. 

26



This work has been partially supported by Spanish 
Project TIC2002-04309-C02-02. 

 
5. References 
 

[1] D. H. Akehurst, J. Derrick and A.G. Waters. “Addressing 
Computational Viewpoint Design.” In Proceedings of the 
7th IEEE International Enterprise Distributed Object 
Computing Conference (EDOC 2003), pages 147-159, 
Brisbane, Australia, Sept. 2003. IEEE CS Press.  

[2] R. Romero and A. Vallecillo. “Formalizing ODP 
Computational Specifications in Maude”. In Proceedings 
of the 8th IEEE International Enterprise Distributed 
Object Computing Conference (EDOC 2004), Monterey, 
California, September 2004. Copyright IEEE CS Press. 

[3] F. Durán and A. Vallecillo. Specifying the ODP 
information viewpoint using Maude. In H. Kilov and K. 
Baclawski, editors, Proceedings of Tenth OOPSLA 
Workshop on Behavioural Semantics, pages 44-57, 
Florida, Oct. 2001. Northeastern University. 

[4] F. Durán and A. Vallecillo. Formalizing ODP Enterprise 
specifications in Maude. Computer Standards & 
Interfaces, 25(2):83-102, June 2003. 

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, 
J. Meseger and J. Quesada. Maude: specification and 
programming in rewriting logic. Theoretical Computer 
Science, 285:187-243. Aug. 2002. 

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, 
J. Meseguer and C. Talcott, Maude 2.0 manual. Available 
in 
���
�������������������, June 2003. 

[7] S. Eker, J. Meseguer and A.Sridharanarayanan. The 
Maude LTL model checker. In F. Gaducci and U. 
Montanari, editors, Proc. Of the 4th International 
Workshop on Rewriting Logic and its Applications 
(WRLA 2002), volume 71 of Electronic Notes in 
Theoretical Computer Science, pages 115-142, Pisa, 
Italy, Sept. 2002. Elsevier. 

[8] P. Linington. RM-ODP: The architecture. In K. 
Milosevic and L. Armstrong, editors, Open Distributed 
Processing II, pages 15-33. Chapman & Hall, Feb. 1995. 

[9] E. Najm and J.B. Stefani. A formal operational semantics 
for the ODP computational model. Computer Networks 
and ISDN System, 27:1305-1329, 1995. 

[10] E. Najm and J.B.Stefani. Computational models for open 
distributed systems. In H. Bowman and J. Derrick, 
editors, Proceedings of FMOODS’97, pages 157-176, 
Canterbury, 1997, Chapman & Hall. 

[11] ITU-T Recommendation X.901 | ISO/IEC 10746-1: ODP 
Reference Model Part 1. Overview. Geneva, Switzerland, 
1998. 

[12] ITU-T Recommendation X.902 | ISO/IEC 10746-2: ODP 
Reference Model Part 2. Foundations. Geneva, 
Switzerland, 1996. 

[13] ITU-T Recommendation X.903 | ISO/IEC 10746-3: ODP 
Reference Model Part 3. Architecture. Geneva, 
Switzerland, 1996. 

[14] ITU-T Recommendation X.904 | ISO/IEC 10746-4: ODP 
Reference Model Part 4. Architectural semantics.
Geneva, Switzerland, 1998. 

[15] R. Sinnot and K.J. Turner. Specifying ODP 

computational objects in Z. In E. Najm and J.B. Stefani, 
editors, Proceedings of FMOODS’96, pages 375-390, 
Canterbury, 1997. Chapman & Hall. 

 

27



 
The role of the RM-ODP Computational Viewpoint Concepts  

in the MDA approach1 

 
João Paulo Almeida, Marten van Sinderen, Luís Ferreira Pires 

Centre for Telematics and Information Technology, University of Twente 
PO Box 217, 7500 AE Enschede, The Netherlands 

{almeida, sinderen, pires }@cs.utwente.nl 
 

Abstract 
An MDA design approach should be able to 

accommodate designs at different levels of platform-
independence. We have proposed a design approach (in 
[2] and [3]), which allows these levels to be identified. An 
important feature of this approach is the notion of 
abstract platform. An abstract platform is determined by 
the platform characteristics that are relevant for 
applications at a certain level of platform-independence, 
and must be established by considering various design 
goals. In this paper, we define a framework that makes it 
possible to use RM-ODP concepts in our MDA design 
approach. This framework proposes a recursive 
application of the computational viewpoint at different 
levels of platform-independence. This is obtained by 
equating the RM-ODP notion of infrastructure to our 
notion of abstract platform. 
 
Keywords: Reference Model for Open Distributed 
Processing (RM-ODP), Model-Driven Architecture 
(MDA), platform-independence, abstract platform, design 
of distributed applications 

1. Introduction1 

The Model-Driven Architecture (MDA) [13, 16] 
represents a prominent trend in the development of 
distributed applications. The concept of platform-
independence plays a central role in MDA. A common 
pattern in MDA development is to define a platform-
independent model (PIM) of a distributed application, and 
to apply (parameterised) transformations to this PIM to 
obtain one or more platform-specific models (PSMs). 
Significant benefits of this approach are that PIMs can be 
reused to target different technology platforms, and that 
PIMs are unlikely to be affected by platform evolution. 

In our previous work [2], we have observed that the 
level of platform-independence at which PIMs are 
specified should be derived from application requirements 
and characteristics of the potential target platforms. In 
addition, in order to bridge the gap between requirements 

                                                           
1 This is a revised version of a paper that appeared in the 

Proceedings of the 1st European Workshop on Model-Driven 
Architecture with Emphasis on Industrial Applications (MDA-IA 2004), 
University of Twente, The Netherlands, March 2004.  

and implementation, it may be necessary to use models at 
different levels of platform-independence. 

In [2, 3], we have proposed a design approach that 
introduces the concept of abstract platform. This concept 
supports a designer in identifying the level(s) of platform-
independence at which PIMs are specified. An abstract 
platform defines an acceptable platform from an 
application developer’s point of view; it represents the 
platform support that is assumed by the application 
developer at some point in (the platform-independent 
phase of) the design trajectory. Alternatively, an abstract 
platform defines characteristics that must have proper 
mappings onto a set of concrete target platforms, thereby 
defining a level of platform-independence. Defining an 
abstract platform forces a designer to address two 
conflicting goals: (i) to achieve platform-independence, 
and (ii) to reduce the size of the design space explored for 
platform-specific realization. 

Any design approach that is intended to be 
successfully applied in practice should be supported by 
suitable design concepts. In this paper we define a 
framework that makes it possible to use RM-ODP 
concepts in our MDA design approach. This is obtained 
by equating the RM-ODP notion of infrastructure to our 
notion of abstract platform. This framework allows a 
recursive application of the Computational Viewpoint at 
different levels of platform-independence. 

This paper is further structured as follows: section 2 
reviews the notions of platform-independence and 
abstract platform as adopted in this paper, section 3 
discusses the RM-ODP concepts that are of particular 
relevance to our work, section 4 applies these concepts in 
our MDA design trajectory, and section 5 discusses some 
related work.  Finally, section 6 presents some 
conclusions and open issues.  

2. Platform notions 

Platform-independence [16] is a quality of a model that 
relates to the extent to which the model abstracts from the 
characteristics of particular technology platforms. For the 
purpose of this paper, we assume that platform 
corresponds ultimately to some specific middleware 
technology, such as CORBA/CCM [14, 15], .NET, or 
Web Services [21, 22], in which distributed applications 
are realized.  

28



Currently, a large number of middleware platforms are 
available (a small sample of these can be found in the 
latest proceedings of the ACM/USENIX Middleware 
conference [7]). Different middleware platforms provide 
different levels of support for applications. For example, 
there are platforms that offer confidentiality for 
distributed interactions, that implement transparent load-
balancing mechanisms, or that provide some capabilities 
for dynamic upgrade of application components. 
Platforms may also differ in the interaction patterns they 
support, such as request/response, message passing, 
message queues and group communication mechanisms. 
As a consequence, the design of an application in terms of 
a particular middleware platform is platform-specific, 
since: (i) the design depends on particular technological 
conventions adopted by the middleware platform; (ii) the 
structure of the application depends on the set of 
interaction patterns supported by the platform; and (iii) 
the functionality addressed at application level depends on 
the services provided by the platform. 

2.1. Levels of platform-independence 

Model reusability with respect to platforms can be 
obtained by making these models platform-independent. 
Ideally, one could strive for PIMs that are absolutely 
neutral with respect to all different classes of middleware 
platforms. This is possible for models in which the 
characteristics of supporting infrastructure are irrelevant, 
such as, e.g., conceptual domain models [5] and ODP 
Enterprise Viewpoint models [10] (which can be 
considered Computation Independent Models [16] in 
MDA terms). However, along a development trajectory, 
when system architecture is captured, different sets of 
platform-independent modelling concepts may be used, 
each of which is adequate only with respect to specific 
classes of target middleware platforms. This leads to the 
observation that there can be several PIMs, including 
various levels of platform-independence, to be identified 
by a designer.  

When different levels of platform-independence are 
necessary, they must be carefully identified. We propose 
to make this identification an explicit step in MDA 
development. The notion of abstract platform, as proposed 
initially in [2] and elaborated in [3], supports a designer in 
this step. 

2.2. Abstract platform 

An abstract platform is determined by the platform 
characteristics that are relevant for applications at a 
certain platform-independent level. For example, if a 
platform-independent design contains application parts 
that interact through operation invocations, then operation 
invocation is a characteristic of the abstract platform. 
Capabilities of a concrete platform are used during 
platform-specific realization to support this characteristic 

of the abstract platform. For example, if CORBA is 
selected as a target platform, this characteristic can be 
mapped onto CORBA operation invocations. 

Characteristics of an abstract platform may be implied 
by the choice of design concepts used for describing the 
platform-independent model of a distributed application. 
These concepts are often directly related to the adopted 
modelling language. For example, the exchange of 
“signals” between “agents” in SDL [11] may be 
considered to define an abstract platform that supports 
reliable asynchronous message exchange. These concepts 
may also be specializations of concepts from the adopted 
modelling language. This can be the case with UML, 
which is specialized in order to suit the needs of platform-
independent modelling, e.g., as specified in the EDOC 
UML Profile [18].  

Instead of implying an abstract platform definition 
from the adopted set of design concepts for platform-
independent modelling, it can be useful or even necessary 
to define some characteristics of an abstract platform 
explicitly, resulting in one or more separate and thus 
reusable design artefacts. During platform-independent 
modelling, a pre-defined abstract platform model may be 
composed with the model of the distributed application. 
For example, while UML 2.0 does not support group 
communication as a primitive design concept, it is 
possible to specify the behaviour of a group 
communication sub-system in UML. This sub-system can 
be re-used in the design of a distributed application that 
requires group communication. Other examples of pre-
defined artefacts that may be included in abstract 
platforms are the ODP trader [9] and the OMG pervasive 
services (yet to be defined [16]).  

We argue in the following sections that the RM-ODP 
Computational Viewpoint concepts are useful for 
specifying platform-independent designs. Our proposed 
framework makes use of both the implicit and the explicit 
approaches to define abstract platforms. 

3. RM-ODP in application design 

The ISO/ITU-T RM-ODP (Reference Model for Open 
Distributed Processing) [9] provides a specification 
framework for distributed systems development based on 
the concept of viewpoints. For each viewpoint, concepts 
and structuring rules are provided, defining a conceptual 
framework for specifications from that viewpoint. The use 
of different viewpoints in the design of complex systems 
is an accepted technique to achieve separation of 
concerns. This also has been reflected in standards such 
as, e.g., IEEE 1471 [8].  

The RM-ODP computational and engineering 
viewpoints are relevant to the purpose of our work since 
they focus on application and infrastructure concerns, 
respectively.  

29



3.1. Concepts in the computational viewpoint 

The computational viewpoint is concerned with the 
decomposition of a distributed application into a set of 
interacting objects, abstracting from the supporting 
distribution infrastructure. In contrast, the engineering 
viewpoint focuses on the infrastructure required to 
support distributed applications. It is concerned with 
properties and mechanisms required to overcome 
problems related to distribution (e.g., remoteness, partial 
failures, heterogeneity) and to exploit distribution 
capabilities (e.g., to achieve performance and 
dependability), but that are abstracted from in 
computational viewpoint specifications. 

The RM-ODP relies on the concept of (distribution) 
transparency, which is defined as the property of hiding 
from a particular user (or developer) the potential 
behaviour of some parts of a system [9]. In the context of 
the computational and engineering viewpoints, 
transparency is used to hide mechanisms that deal with 
some aspect of distribution. An example of distribution 
transparency is replication transparency, which hides the 
possible replication of an object at several locations in a 
distributed system. In the computational viewpoint, a 
single computational object would be represented, while 
this computational object may possibly correspond to 
several replica objects in the engineering viewpoint. The 
mechanisms necessary to ensure replica consistency and 
management are addressed in the engineering viewpoint, 
shielding the (computational viewpoint) designers from 
the burden of developing these mechanisms. Distribution 
transparency is selective in ODP; the Reference Model 
includes rules for selecting transparencies. Transparencies 
are constraints on the mapping from a computational 
specification to a specification that uses specific ODP 
functions and engineering structures to provide the 
required transparency. 

In the computational viewpoint, applications consist of 
configurations of interacting computational objects. A 
computational object is a unit of distribution characterized 
by its behaviour. A computational object is encapsulated, 
i.e., any change in its state can only occur as a result of an 
internal action or as a result of an interaction with its 
environment. An object is said to have interfaces, each of 
which expose a subset of the interactions of that object. 
Interaction between objects is only possible if a binding 
can been established between interfaces of these objects. 
The computational viewpoint supports arbitrarily complex 
bindings, through the concept of binding object, which 
represents the binding itself as a computational object. 
The behaviour of a binding object determines the 
interaction semantics they support. As with any other 
object, binding objects can be qualified by quality of 

service assertions that constrain their behaviour. The 
computational model does not restrict the types of binding 
objects, allowing various possible communication 
structures between objects to be defined [9]. 

3.2. The RM-ODP notion of infrastructure 

In [6], Blair and Stefani have equated the boundary 
between the computational and the engineering 
viewpoints to the distinction between application and 
infrastructure: “It is important to realize that the boundary 
between the two viewpoints is fluid, depending on the 
level of the virtual machine offered by the system’s 
infrastructure. Some systems will provide a rich and 
abstract set of engineering objects whereas others will 
provide a more minimal set of objects leaving more 
responsibility to the applications developer.” 
Specifications in the computational viewpoint are, 
according to this interpretation, influenced by the level of 
support provided by the infrastructure. By setting the level 
of support provided by the infrastructure, one can refer to 
computational concerns and engineering concerns. 

Equating infrastructure to predefined middleware 
platforms would lead us to the conclusion that 
computational specifications are directly influenced by 
the level of support provided by a selected middleware 
platform. Computational specifications would therefore 
be, to some extent, platform-specific. In this case, the 
separation of computational and engineering concerns 
would be identical to the separation between application 
and middleware platform concerns. The reusability of a 
computational viewpoint specification would be restricted 
by its dependence on platform characteristics. 
Furthermore, from the perspective of application 
developers, the separation of computational and 
engineering concerns would be implied by the availability 
of a software infrastructure. Therefore, we conclude that 
the motivation for the separation of computational and 
engineering concerns is predominantly bottom-up. 

Another interpretation for the infrastructure assumed 
by the computational viewpoint is that of an ‘ideal 
infrastructure’. In this interpretation, the motivation for 
the separation of computational and engineering concerns 
is predominantly based on the needs of the developer to 
handle the complexity of application and infrastructure 
separately, regardless of the availability of a software 
infrastructure. The engineering viewpoint offers the 
possibility for a designer to engineer the infrastructure 
explicitly. While this interpretation is ideal from the 
perspective of separation of concerns for the application 
developer, it does not leverage the reuse of middleware 
platforms, which would significantly improve the 
efficiency of the development process. 

30



Table 1 summarizes the implications of these 
contrasting interpretations of infrastructure. We conclude 
that both interpretations considered have limitations when 
applied in conjunction with the MDA approach, which 
inspired us to investigate an alternative. 

4.  RM-ODP infrastructure notion revisited 

Committing to one of the previously discussed 
interpretations of infrastructure is undesirable for the 
adoption of computational viewpoint concepts in the 
MDA. It may lead to models at a low level of platform-
independence, or it may lead to models which cannot be 
realized on existing middleware platforms. We propose to 
equate the term infrastructure, as used in RM-ODP, to our 
notion of abstract platform. This approach can be 
beneficial for the development of distributed applications, 
so that a proper balance can be obtained between the 
following design goals: 

- designers can use the separation of application and 
infrastructure concerns to cope with the complexity 
of distributed application design; 

- middleware platforms can be reused to improve 
significantly the efficiency of distributed application 
development; and 

- platform-independence can be obtained as a means to 
preserve investments in application development and 
withstand changes in technology. 

A consequence of equating infrastructure to abstract 
platform is that computational viewpoint concepts can be 
applied recursively at different levels of platform-
independence. The use of the same conceptual framework 
for different levels of platform-independence facilitates 
the definition of correctness relations or even automated 
transformations. 

An abstract platform is defined in terms of the bindings 
supported, the transparencies supported, and the types of 
quality-of-service (QoS) constraints that may be applied 
to interface contracts. The use of binding objects may 
provide considerable flexibility to implementations of 
platform-independent models, since it is possible to 

provide countless different implementations of a binding 
object. In addition, there is considerable freedom in 
choosing mechanisms for obtaining a required 
transparency and satisfying QoS constraints.   

At any point in a design trajectory, a mapping to a 
platform-specific realization may be defined, as long as: 
(i) the semantics for the original model is respected, as 
defined by the computational language; and (ii) quality 
characteristics of the realizations obtained through 
mappings are acceptable.  

4.1. Example: simple conference application 

In order to illustrate the use of computational 
viewpoint concepts along our model-driven design 
trajectory, let us consider a conference service that 
facilitates the interaction of users residing in different 
hosts. Initially, the service designer describes the service 
solely from its external perspective, as a conference 
binding object, revealing its interfaces and relating 
interactions that occur at these interfaces. Figure 1 shows 
a snapshot of the conference application with three user 
objects fulfilling the role of conference participant and a 
user object fulfilling the role of conference manager. 
Since characteristics of the internal structure of the 
binding object are not revealed, the user objects are 
specified at a high level of abstraction. The abstract 
platform at this level of abstraction supports the 
interaction between user objects and the conference 
binding object. The interfaces are described in terms of 
the ODP concepts of operation and signal. 

 

conference 
binding object 

participant 
interface 

manager 
interface 

participant 
interface 

participant 
interface 

 
Figure 1 Snapshot of conference application 

Table 1 Interpretations of infrastructure compared 

Interpretation 
(infrastructure equals to) 

Reuse of 
middleware 

Separation of concerns Platform-
independence 

Available middleware 
platform 

Yes Based on target platform Low 

Required middleware 
platform (ideal from 
application point of view) 

No explicit 
consideration 

Defined by designer’s needs; 
motivated by complexity in 
application design 

High 

31



This example reveals the flexibility of the specification 
at this level of platform-independence. The conference 
binding object may be further decomposed into a 
centralized or distributed, symmetric or asymmetric 
design, and different abstract platforms may be used to 
support the interactions of the objects that implement it. 
Any number of recursive decompositions of the 
computational objects may be applied as necessary. 

One possible way to proceed with design is shown in 
Figure 2. In this design, the internal structure of the 
conference binding object is revealed. The conference 
binding object is refined into a multicast binding and 
computational objects interconnected through this 
binding. The abstract platform at this level of abstraction 
supports multicast bindings as prescribed in the definition 
of the service of the multicast binding object.  

 

multicast binding object 

conference 
binding object 

manager 
interface 

participant 
interface 

participant 
interface 

participant 
interface 

multicast 
interface 

multicast 
interface 

multicast 
interface 

multicast 
interface 

 
Figure 2 Revealing binding decomposition 

At this point in the design trajectory, a mapping can be 
used to realize this design on top of a target platform that 
offers a multicast binding corresponding to that provided 
by the abstract platform. The engineering structures 
required to provide an adequate level of support are 
provided by the concrete platform. An alternative 
mapping could implement the multicast binding as a 

centralized object, realizing the interactions between the 
objects and the multicast binding object as distributed 
interactions. However, this alternative mapping may 
prove to be inadequate with respect to its quality-of-
service characteristics, e.g., since a centralized 
implementation may fail to satisfy performance and 
scalability requirements. This flexibility in mapping is 
possible because the refinement of the conference binding 
in the computational viewpoint does not commit to a 
particular distribution in terms of nodes, capsules and 
clusters, as would have been the case with a refinement in 
the engineering viewpoint. 

When the target platform does not provide the required 
level of support, the design can be further detailed in an 
abstract platform at a lower level of platform-
independence. The refinement depicted in Figure 3 
assumes an abstract platform that only supports binary 
bindings of operational interfaces. This mapping differs 
from the previous design steps in that it does not consist 
solely of decompositions.  

 

conference
binding object 

manager 
interface 

participant 
interface 

participant 
interface 

participant 
interface 

 
Figure 3 Revealing binding decomposition 

The development trajectory that results from our 
approach as applied to the example above is illustrated 
schematically in Figure 4.  

 

platform selection 

platform-
independent 

models 

platform-
specific models 

MQSeries-
based 

JMS-basedCORBA-
based 

Web 
Services 

based 

design 

alternatives 

(abstract) platform π 

π 

π π 

π  π π π 

Binary bindings for 
operational interfaces, 
no multicast (fig. 3) 

Computational viewpoint, 
multicast communication 
bindings (fig. 2) 

…

. 

. 

.

. 

. 

.

Computational viewpoint, 
complex group communication 
bindings (fig. 1)π 

 
Figure 4 Models at related levels of platform-independence 

32



4.2. Example: replication transparency 

An example that reveals the role of transparencies in 
the design trajectory is presented in Figure 5. In this 
example, a client and a server object interact through an 
operation interface. A replication transparency schema is 
used to specify constraints on the availability and 
performance of the server object. Two different mappings 
of the source model (a) are depicted below. In Figure 5 
(b), a realization is obtained by mapping the source model 
directly to a platform that supports replication 
transparency, namely, Fault Tolerant CORBA. The 
infrastructure depicted is provided with this platform [14]. 
In Figure 5(c), a realization is obtained by mapping the 
source model into a target model that explicitly addresses 
the replication of the server object. A replication object is 
introduced to execute the replication function, delegating 
requests to the different replicas. For simplicity, we 
consider stateless server objects, and therefore we can 
omit extra interfaces required for checkpointing. A 
possible realization of the application in Web Services 
[21, 22] is depicted schematically in Figure 5 (d). 

The list of transparencies defined in the RM-ODP is 
not exhaustive. In [4] we have discussed the role of 
replacement transparency in an MDA design trajectory. 

5. Related work 

The ITU-T X.906 | ISO/IEC 19793 Working Draft [12] 
proposes the use UML profile for EDOC [18] to model 
the computational viewpoint. This profile provides the 
notion of recursive component collaboration which 
corresponds to the notion of computational object in the 
RM-ODP. However, no notion of selective transparencies 
is provided in the EDOC profile. Furthermore there is no 
support for the specification of QoS constraints. The 
EDOC profile may be considered to define a single 
implicit abstract platform: interactions in the EDOC 
profile are always decomposed into asynchronous 
interactions through “Flow Ports”. 

In [1], Akehurst et al. have focussed on the 
representation of the computational viewpoint concepts 
using MDA core technologies, namely UML and UML 
profiling. Putman [20] has also proposed some extensions 
to UML to accommodate the use of ODP design concepts. 
In this paper, we investigate the role of ODP concepts 
with respect to design goals introduced by the use of 
platform-independent models. Both references [1, 20] can 
be seen as complementary to the framework proposed in 
this paper, and the representations they propose may be 
applicable to the design trajectory we have discussed.  

 

if1 (a) 

(b) (FT-CORBA)

(c) 

(d) (Web Services) 

SOAP 
runtime 

SOAP
runtime 

SOAP 
runtime 

Client 

Replication 
proxy 

Server 
replica 

Server 
replica 

Host
H1 

Host 
H2 

Host
H3 

Client 

Server 

Server 
replica1 

Server 
replica2 

Client 

Replication 
Proxy object

if1 

if1 if1 if1 if1 

 
Figure 5 Alternative mappings for abstract platform with replication transparency 

 

33



6. Conclusions 

The separation of RM-ODP computational and 
engineering viewpoints is useful to distinguish between 
application and infrastructure concerns. This separation 
can be explored recursively along a model-driven design 
trajectory, allowing a designer to introduce infrastructure 
concerns progressively towards realizations on concrete 
infrastructures, i.e., available middleware platforms. We 
have demonstrated that the computational viewpoint 
concepts can be suitable for our design approach if we 
equate the RM-ODP notion of infrastructure to that of 
abstract platform. An abstract platform is defined in terms 
of the bindings supported, the transparencies supported, 
and the types of QoS constraints that may be applied to 
interface contracts. Characteristics of this abstract 
platform must be established by considering the different 
design goals. 

There is no obvious distinction between platform-
independent and platform-specific concerns, and no 
general rule to decide what is platform-independent. The 
needs to reuse platforms and to handle design complexity 
must drive a designer’s decision on the boundaries. 
Defining an abstract platform brings attention to 
balancing between: (i) platform-independent modelling, 
and (ii) platform-specific realization.  

The proliferation of different abstract platforms 
reduces the opportunities for large-scale reuse of 
platform-independent models and transformations. This 
calls for agreement on a small number of abstract 
platforms that are, to a great extent, application-domain-
neutral and platform-independent. Ideally, a reference 
architecture with a small set of canonical abstract-
platform-elements should be used to compose abstract 
platforms that suit the needs of particular projects. We 
intend to define such a reference architecture, based on 
concepts of the computational viewpoint of the RM-ODP.  

Using a well-founded reference model (RM-ODP) to 
refer to abstract platform enables agreement on the 
concepts for the description of abstract platforms, and 
may prove to be an initial step towards a comprehensive 
framework for the definition of abstract platforms. 

 

Acknowledgements 

This work is part of the Freeband A-MUSE project. 
Freeband (http://www.freeband.nl) is sponsored by the 
Dutch government under contract BSIK 03025. This work 
is also partly supported by the European Commission in 
context of the MODA-TEL IST project 
(http://www.modatel.org). 

References 

[1]  D. Akehurst, J. Derrick, A.G. Waters. Addressing 
Computational Viewpoint Design, in: Proc. 7th IEEE Intl. 
Enterprise Distributed Object Computing Conference 
(EDOC 2003) (IEEE Computer Society, Los Alamitos, CA, 
Sept. 2003). 

[2] J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and D. 
Quartel, A systematic approach to platform-independent 
design based on the service concept, in: Proc. 7th IEEE Intl. 
Enterprise Distributed Object Computing Conference 
(EDOC 2003) (IEEE Computer Society, Los Alamitos, CA, 
Sept. 2003) 112-123. 

[3] J.P.A. Almeida, R. Dijkman, M. van Sinderen, and L. 
Ferreira Pires, On the Notion of Abstract Platform in MDA 
Development, in: Proc. 8th IEEE Intl. Enterprise 
Distributed Object Computing Conference (EDOC 2004) 
(IEEE Computer Society, Los Alamitos, CA, to appear 
Sept. 2004). 

[4]  J.P.A. Almeida, M. van Sinderen, L. Ferreira Pires and M. 
Wegdam, Handling QoS in MDA: a discussion on 
availability and dynamic reconfiguration, in: Proceedings 
of the Workshop on Model Driven Architecture: 
Foundations and Application (MDAFA) 2003, CTIT 
Technical Report TR–CTIT–03–27, University of Twente, 
The Netherlands, June 26-27, 2003, 91-96. 

[5]  G. Arango, Domain Analysis: from Art Form to 
Engineering Discipline, in: ACM SIGSOFT Software 
Engineering Notes, Vol. 14 , No. 3, May 1989, 152-159. 

[6]  G. Blair and J.B. Stefani. Open Distributed Processing and 
Multimedia. Addison Wesley, 1997. 

[7]  M. Endler and D. Schmidt (Eds.). Proceedings of the 
ACM/IFIP/USENIX International Middleware Conference 
2003, in: Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, Volume 2672 / Jan. 2003. 

[8]  The Institute of Electrical and Electronics Engineers (IEEE) 
Standards Board. Recommended Practice for Architectural 
Description of Software-Intensive Systems (IEEE-Std-
1471- 2000), Sept 2000. 

[9]  ITU-T / ISO, Open Distributed Processing - Reference 
Model – All Parts, ITU-T X.901-4 | ISO/IEC 10746-1 to 
10746-4, Nov. 1995.  

[10]  ITU-T / ISO, Open Distributed Processing - Reference 
Model - Enterprise Language, ITU-T X.911 | ISO/IEC 
15414:2002, Oct. 2001. 

[11] ITU-T, Recommendation Z.100 – CCITT Specification and 
Description Language, International Telecommunications 
Union (ITU), 2002. 

[12] ITU-T / ISO, Use of UML for ODP system specifications, 
ITU-T X.906 | ISO/IEC 19793 Working Draft, May 2004. 

34



[13] Object Management Group, Model driven architecture 
(MDA), ormsc/01-07-01, July 2001. 

[14] Object Management Group, Common Object Request 
Broker Architecture: Core Specification, Version 3.0, 
formal/02-12-06, Dec. 2002. 

[15] Object Management Group, CORBA Component Model, 
v3.0, formal/02-06-65, July 2002. 

[16]  Object Management Group, MDA-Guide, V1.0.1, omg/03-
06-01, June 2003. 

[17]  Object Management Group, UML 2.0 Superstructure, 
ptc/03-08-02, Aug. 2003. 

[18] Object Management Group, UML Profile for Enterprise 
Distributed Object Computing, ptc/02-02-05, Feb. 2002. 

[19]  Object Management Group, Unified Modeling Language 
(UML) Specification: Infrastructure, Version 2.0, ptc/03-
09-15, Sept. 2003. 

[20]  J.R. Putman, Architecting with RM-ODP, Prentice Hall, 
USA, 2001 

[21] World Wide Web Consortium, SOAP Version 1.2 Part 1: 
Messaging Framework, W3C Recommendation, June 2003, 
available at http://www.w3.org/TR/soap12-part1 

[22] World Wide Web Consortium, Web Services Description 
Language (WSDL) 1.1, W3C Note, March 2001, available 
at http://www.w3.org/TR/wsdl 

35



 

 

Applying Model-Driven Development to Business Systems 

 using RM-ODP and EDOC 

 

Yoshihide Nagase 

Technologic Arts Inc. 

yoshi@tech-arts.co.jp 

Daisuke Hashimoto 

Technologic Arts Inc. 

hashimoto@tech-arts.co.jp 

Miwa Sato 

Technologic Arts Inc. 

msatoh@tech-arts.co.jp 

 

 

Abstract 

 

Improving development efficiency and maintainability for 

business systems requires a seamless development process, and 

both RM-ODP and MDA play a key role to this end. This paper 

shows our Model-Driven Development process in building 

business systems using RM-ODP and UML Profile for EDOC, 

with a case study of Electronic Health Record system models, 

and discusses several issues related to RM-ODP standard. 

 

 

1. Introduction 

 

As business systems are getting complex and large in 

recent years, their development efficiency and maintainability 

need to be improved. Especially, efforts to Total Optimization by 

SCM (Supply Chain Management) have a great influence on 

the way business systems are developed. To conduct Total 

Optimization, various information systems introduced to 

enterprise and supply chain need to collaborate with each other. 

In order to develop such information systems, it is required to 

model business processes and identify the roles of those systems 

in the entire business. Moreover, certain mechanism is necessary 

to transform the models seamlessly into implementation, which 

makes systems development more efficient with traceability 

among models. 

 

2. MDA and RM-ODP Viewpoints 

 

MDA, advocated by OMG (Object Management Group), 

is the technology that seamlessly reflects models to 

implementation. In MDA, models are developed from three 

perspectives: CIM (Computation Independent Model), PIM 

(Platform Independent Model), and PSM (Platform Specific 

Model). MDA is an abstract framework, thus concrete 

development processes are required for realization of MDA. 

This paper shows overview of our Model-Driven 

Development process using RM-ODP
1
 framework and 

notations defined by UML Profile for EDOC
2
 (referring to it as 

EDOC from now on).  

Our process uses RM-ODP Viewpoints as follows: 

business models are developed in Enterprise Viewpoint, 

information models in Information Viewpoint, and component 

models in Computational Viewpoint. These models are CIMs 

and PIMs in MDA. System architectures are defined in 

Engineering Viewpoint, and mapping rules are defined in 

Technology Viewpoint. In this development process, EDOC 

notations with defined semantics are used to define Enterprise, 

Information, and Computational Viewpoint specifications, since 

modeling elements, such as “process,” “entity” and 

“component” required for describing those viewpoint 

specifications, were already standardized in the EDOC standard. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Relation between MDA and 

 Viewpoints of RM-ODP 

 

In the following sections, Electronic Health Record system 

models
34
 are used as a case study for applying this development 

                                                   
1 The standard frameworks for distributed object systems, standardized by 

ISO/IEC and ITU. 
2 The set of extended UML for distributed object systems, standardized by OMG. 

It extends notations for components and business processes. 
3 The Enterprise Viewpoint part of these models are an accomplishment of “The 

Enterprise Viewpoint

Information Viewpoint Computational Viewpoint

Engineering Viewpoint

Technology Viewpoint

PIM

PSM

CIM

36



process. This case study is an accomplishment of a project 

formed by two organizations: JAHIS, whose focus is on 

establishing approaches for developing standard components for 

Electronic Health Record systems, and INTAP, whose focus is 

on interoperability among enterprise systems with RM-ODP. 

Japanese government has been involved in and funds the 

project. 

 

3. EDOC 

 

EDOC includes a set of following profiles and those 

meta-models that extend standard UML for enterprise 

distributed object computing environments.  

 

3.1 Component Collaboration Architecture (CCA) 

Profile 

 

CCA Profile is a profile used to define computational 

components and interactions between those components. In this 

profile, Process Component is defined as a fundamental 

functional component. In interfaces of a Process Component, 

three kinds of ports (Flow, Protocol, and Operation) can be 

defined. With those ports, three kind of interactions can be 

specified: data flow interaction (simple data flow in and out via 

Flow Port), protocol flow interaction (two-way interactions via 

Protocol Port), and operational flow interaction (call/return type 

of interaction via Operation Port). 

 

3.2 Entity Profile 

 

Entity Profile is a profile used to define entity’s structure of 

the target domain. Entity is a specialization of Process 

Component. Entity Data represents an aspect of Entity’s data 

structure. Entity Data can have primary key and foreign key like 

relational database. 

 

3.3 Business Process Profile 

 

Business Process Profile is a profile used to define business 

processes. This profile extends CCA Process Component to 

define Business Process, Compound Task, and Activity etc., 

which together provide necessary semantics and notations to 

represent enterprise viewpoint process models. An Activity is a 

work to be done to complete a process, and may be associated 

with one or more of three roles, which are Performer, Artifact 

                                                                                 
Development of Electronic Health Record System through Standardizing 

Components” as a special science research theme awarded by the Ministry of 
Health, Labor and Welfare in the fiscal year 2002. 
4 The scale of those models includes 12 communities and 32 business processes. 

and Responsible Party. Compound Task is a container of 

Activities, and Business Process is the outermost container of 

the composition. 

 

3.4 Event Profile 

 

Event profile is a profile used to define business processes 

driven by business events and the mechanism of the state 

transition for business entities. 

 

3.5 Relationship Profile 

 

Relationship Profile is a profile used to define clearer 

relationship between model elements.  

 

4. Enterprise Viewpoint 

 

In the Enterprise Viewpoint, target business models and 

system requirements are modeled. The most important artifacts 

of this Viewpoint are business processes. Organizing business 

processes in the entire supply chain and enterprise clarifies the 

role of information systems. The first thing to do in the 

Enterprise Viewpoint is to define a scope for the system and 

divide it into smaller ones for a unit called Community. It is the 

unit to organize the scopes with their purposes. Defining 

Communities can make the size of the scope appropriate. Next, 

procedures for accomplishing purposes of each Community are 

defined as business processes. With Business Process Profile 

and Event Profile of EDOC, event-driven and non-event-driven 

business processes can be described, and information and 

functions used in the business process as well as Responsible 

Parties of Activity can be defined.  

Modeling language with semantics of business processes 

was required to define business processes. Since business 

process semantics was not included in standard UML, we 

adopted EDOC for process modeling, instead of extending 

UML independently by ourselves. Therefore, Business Process 

Profile of EDOC was used in the development of Enterprise 

Viewpoint specification. Should we start this activity today, we 

will need to carefully watch and choose a right standard from 

BPDM, UML for ODP, and UML2.0 etc. 

In this viewpoint, we did not make much use of developed 

policy statements. The issue was lack of policy statement 

language with clear syntax, semantics, and grammar. Expected 

are the emergence of policy statement language, and the 

structuring rule for policies with other enterprise model elements 

in the enterprise viewpoint specification. 

 

 

37



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of Activity 

 

5. Information Viewpoint 

 

In the Information Viewpoint, information referred to and 

processed by the systems is modeled. Our development process 

defines that the details of information used in the business 

processes should be analyzed. The resulting information model 

elements of the system are described using Entity Profile in the 

EDOC. Later in this paper, the use of CCA Profile to describe 

Computational Viewpoint specification is explained. In order to 

integrate functional components derived from Enterprise 

Viewpoint specification with Entity Components from 

Information Viewpoint specification to complete the 

Computational Viewpoint specification, it is necessary to 

componentize Information Model with EDOC. 

The use of the Entity profile enables description of primary 

key and foreign key of entity implemented using relational 

database, and define access path to the target information by 

creating Entity Components. Constructing information as 

components is effective in preventing reduction of performance, 

since it identifies the gate of information to control the number 

of remote accesses.  

In this viewpoint, we did not consider dynamic addition or 

deletion of model elements. However, if dynamic change is 

included in Enterprise Viewpoint Model, such as dynamic 

creation of a Community with new roles introduced, 

information viewpoint model should also accommodate the 

corresponding dynamic changes within the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Example of Information Model 

(Consultation) 

 

6. Computational Viewpoint 

 

In the Computational Viewpoint, functions of systems are 

modeled. Our process defines that the details of functions used 

in the business processes (i.e. performers and artifacts) and 

entities should be analyzed, and the functions of systems are 

described as Process Components of CCA Profile in the EDOC. 

Therefore Computational Objects in RM-ODP are represented 

as Process Components of CCA.  

If collaboration exists among enterprises and/or among 

information systems, it is described as interaction among 

Process Components. Note that interfaces of components are 

discovered based on analysis of Information Viewpoint.  

In the EDOC, collaborations are described by connecting 

components through Ports. If the functions of systems require 

persistent information (database information), the Process 

Components are connected to the Entity Components. 

Operation procedure of the connected components (both 

process and entity) is defined as Protocol and described using 

State Machine diagrams of UML. 

It should be noted that in RM-ODP the basic unit for 

encapsulation is object, and the interaction between objects are 

made by Signal, Operation, and Flow. Although we believe 

CCA Process Component can represent Computational Object 

in pragmatic way, it would be preferable to have necessary 

modeling concepts for components and interactions between 

them (messaging) in RM-ODP itself (a discussion on the use of 

object versus component is described in 9.1). 

 

 

 

 

 

 

 

 

 

 

Performer

（（（（Function Used））））

Artifact

（（（（Information Used））））
Responsible Party

（（（（People,Company））））

Input the 

Consultation results

Physician 

in Charge of 

Outpatient

Physician 

in Charge of 

Outpatient

Consultation

Information

Consultation

Information

Input 

Consultation results

Input 

Consultation results

Decision Date

Target

Contents

Observation

Decision Date

Target

Contents

Observation

Decision Date

Target

Contents

Findings

Decision Date

Target

Contents

Findings

Diagnosis Date

Illness Name

Reasons for Diagnosis

Diagnosis

Diagnosis Date

Illness Name

Reasons for Diagnosis

Diagnosis

Treatment Policy

Treatment Plan

Treatment Policy

Treatment Plan

Consultation Date

Contents

Chief Complaint

Consultation Date

Contents

Chief Complaint

1..* 1

38



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of Component Model  

 

7. Engineering and Technology Viewpoints 

 

In the Engineering Viewpoint, system architectures are 

designed. The design includes deployment configuration of 

components, transaction, and security. 

It should be noted that there are choices in mapping 

Component Model onto platforms. One choice is on platform 

styles, and another choice is on configuration of nodes. Figure 5 

was our choice for pilot implementation, but there were other 

possibilities, e.g. client node could host only GUI application 

and network interface components, and all other components 

may be hosted on one or more server nodes. Also the same 

component model could have been mapped onto web services 

platform or CORBA platform. 

Another observation is that it is this viewpoint that shows 

portions of human-system interaction with Client node box. The 

model of human-system interaction should also be described in 

relevant viewpoints in addition to the Engineering viewpoint 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Example of Deployment Configuration 

 of Components 

 

In the Technology Viewpoint, PIM as the artifact of all the 

processes is mapped to a specific platform to derive PSM from 

it. The following example is one of mapping rules of EDOC 

to .NET. The mapping rules were used in the pilot development 

of Electronic Health Record system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Example of Mapping Rules (EDOC to .NET) 

 

In Table 1, interfaces provided by the Process Components 

and various Ports included in the components are mapped to 

interfaces of .NET components and their methods. The Entity 

Components are mapped to .NET components that use 

functions of ADO .NET. Remote accesses among components 

may be required depending on deployment configuration of 

components in Engineering Viewpoint. In this case, Web 

services and remoting functions of ASP .NET should be used to 

realize the remote accesses. 

 

 

EDOC (PIM)EDOC (PIM)EDOC (PIM)EDOC (PIM) .NET (PSM).NET (PSM).NET (PSM).NET (PSM)

Process Component

《ProcessComponent》

Mapped to .NET assembly.

Select assembly type according to requirement such as deployment,

performance, and security.

Protocol

《Protocol》

Mapped to interface.

Interface

《Interface》

Mapped to interface.

Protocol Port

《ProtocolPort》

Mapped to interface.

Operation Port

《OperationPort》

Initiator: mapped to method call.

Responder: mapped as interface method.

Flow Port

《FlowPort》

In case of flow port included in operation port:

Initiator: mapped to argument of method.

Responder: mapped to returned value of method.

Entity Component

《Entity》

Mapped to .NET component using ADO.NET.

Entity Data

《EntityData》

Mapped to ADO.NET DataSet defined by XML schema.

Key

《Key》

Mapped to constraint defined by XML schema.

Foreign Key

《ForeignKey》

Mapped to constraint defined by XML schema.

Database Server

Client

Database

Data Access

Business Logic
　　　　Common ServiceFacadeApplication

Process Component

（（（（Function））））

Entity Component

（（（（Information））））

《Process Component 》

Input Consultation

results

《Entity 》

Consultation

《ProtocolPort 》

Store Consultation

Information

《ProtocolPort 》

Store Consultation

Information

《ProtocolPort 》

Input Consultation

results

39



8. Viewpoint correspondence 

 

To realize the seamless development and to ensure the 

traceability, we need to elaborate on viewpoint correspondence. 

In RM-ODP and Enterprise Language standard, viewpoint 

correspondences are defined but are not very useful in practice. 

In EDOC, because of its design, Business Process Profile, Entity 

Profile, and Event Profile are defined as specializations of CCA 

Profile, and thus there exists stronger correspondence between 

those and CCA Profile. Once the mapping from those to CCA 

Profile is done, and the final model is represented in CCA 

Profile, the resulting model will be considered as a 

Computational Viewpoint Model. In our development process, 

EDOC/CCA-based viewpoint correspondences are applied to 

those viewpoint specifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Relationship of EDOC Profiles 

 

9. Discussion 

 

Based on the experience of the above explained project, it 

is the our belief that the following issues should be considered at 

the workshop. 

 

9.1 Computational Object vs. Component 

 

In this development process, Computational Object is 

represented as a Process Component. However, object and 

component are not completely the same. For instance, according 

to reference [11], component’s characteristics are described as 

“A coherent package of software implementation that 1) has 

explicit and well-specified interfaces for the services it provides; 

2) has explicit and well-specified interfaces for services it 

expects from others; and 3) can be composed with other 

components, perhaps customizing some of their properties, 

without modifying the components themselves.  As a 

consequence of these properties, a component can be 

independently developed, delivered, and deployed as a unit.” 

Computational Object of RM-ODP satisfies the 

characteristics 1) and 3), but not the characteristics 2). In 

addition, some components may work only within specific 

platform (or framework), and that platform (framework) might 

require certain components as prerequisite, or might require 

specific interface type for components. Computational 

Viewpoint is a viewpoint where computational aspects of the 

systems are the major focus, and we believe that an ODP system 

comprising loosely coupled objects, which require messaging 

based interactions, plays an important role in today’s internet 

world. It is, therefore, desirable to have not only object-based 

computation, but component-based computation. In this case, 

we propose to introduce a basic concept of component into 

Computational Language ([3] instead of [2]). Note that this 

proposal has close relationship with the next proposal regarding 

messaging. 

 

9.2 Communication by message 

 

Communication or interaction between objects in 

Computational Viewpoint is basically synchronous with RPC 

style. However, in the real world (e.g., in business-to-business 

transactions), asynchronous communication, or message-based 

interaction, is in fact used widely. If we only need to provide 

modeling capability for asynchronous communication, the 

discussion of property for the Binding Object will work. The 

difference between synchronous communication and 

asynchronous communication in Computational Viewpoint 

appears when describing a behavior of a client. While a client is 

blocked by issuing requests in synchronous communication, a 

client is allowed to continue processing in asynchronous 

communication even after issuing requests. The client in this 

case may need to monitor the status of the result in parallel to its 

processing in a different thread. For instance, in the case of Web 

Services, service provider may make two types of Web Services 

descriptions public: synchronous and asynchronous. And, the 

behavior of the client is quite different. The following is the 

issues for RM-ODP. 

1) Computational Language provides interfaces for objects 

which provide services, but does not provide interfaces for 

object requiring services. The behavior of the client is dependent 

on this “interface for object requiring services.” and it is hard to 

specify the client’s behavior without having this concept. 

2) There should be a standard way of describing structure of 

activities at the user side of interfaces. If activity structure 

section of [2] is assumed for this purpose, appropriate statement 

Business Process :: 

Activity

CCA :: 

Process Component

CCA :: 

Component Usage

Entity :: 

Entity

uses

Business Process :: 

Process Role

Business Process :: 

Performer

Business Process :: 

Artifact

Business Process :: 

Responsible party

Information

People,Company

Function

40



should be added in Computational Language. 

3) At this interface description level, there may be a necessity to 

introduce message management interface such as handling 

messages in a queue. 

 

9.3 Concept for composite interaction 

 

Three kinds of interactions are defined in Computational 

Language: Signal, Operational, and Flow. However, the concept 

of composite interaction, combining these different types of 

interactions, is not defined clearly. This concept will be useful if 

the interaction by two parties, like two companies in a typical 

business-to-business business process scenario, is represented as 

interactions between two Computational Objects, since the 

interaction may contain all the interaction patterns. It might be 

possible to consider Flow as the concept for this purpose, if you 

interpret the definition of Flow in [3] literally. If this is the case, 

the standard should be clear enough to state this. If this is not the 

case, the concept for composite interactions should be added in 

the Computational Language. Note that EDOC/CCA’s model 

element called Protocol manages the composite interactions, 

and UML2 has Protocol State Machine as a similar model 

element. 

 

9.4 Dynamic evolutions of models 

 

The dynamic evolutions of models means that model 

elements may be added or changed or deleted at some point to 

evolve into the model in the next phase. It may be viewed as a 

part of the lifecycle of models or versioning of models. For 

example, in the Enterprise Viewpoint Language, dynamic 

creation and deletion of communities are described. Other 

possibility includes dynamic addition of Enterprise Objects, 

Roles, Processes, and so on. If Enterprise Viewpoint Model 

evolves in such a way, corresponding viewpoint models should 

also evolve. In Information Viewpoint, Information Object 

might be added or deleted, and defined schemata may also 

evolve. In Computational Viewpoint, the whole model might 

change. It will certainly impact the engineering and technology 

viewpoint models. We will need to discuss: 

1) how these evolutions or changes (transition) can be described 

in each viewpoint, and 

2) what concepts in which viewpoint is required to achieve this. 

If we were successful, we may apply the result to “as-is model” 

and “to-be model” in Enterprise Architecture today. 

 

9.5 Human-System interactions 

 

In the Viewpoint Languages ([3] and [4]) today, there 

seems to be no place for describing Human-System Interaction. 

However, [2] defines “Perceptual Reference Point” under 

“Class of Reference Points” (see [2], section15.3.2). We believe 

it important to clarify the position of the standard. The 

discussion we would like to have is whether we would like to 

introduce new concepts around human-system interactions. 

Even if the result of it leads to take no action, there is a need to 

provide a guideline or an official statement on this point. If we 

could have concept(s) for this purpose in viewpoint languages, 

the following may be a possible candidate where the concept(s) 

may contribute to. 

1) Specification of Human-System interactions for the system 

providing similar services through multi-channels (Web, 

telephone, fax, e-mail, and letter) 

2) Screen design and screen flow for a Web-based application 

Note that there is a similar issue regarding “Interchange 

Reference Point.” 

 

9.6 Policy language 

 

The current policy related concepts are those of 

meta-model level concepts, and may be used as policy 

categories, but those are not detailed or concrete enough to 

apply in the real world specifications. The work done in network 

management area may be of interest to us. The followings are 

several modeling elements (minimum) to be considered. 

The policy will be initially described in natural languages. 

Therefore, the following elements may be required, as a 

minimum, to create a complete policy statement with existing 

policy concepts: subject, verb, object, and condition. If we tried 

to associate with Enterprise Viewpoint Language concepts, the 

following may apply to some cases. 

1) subject <-Enterprise Object | Role | Community 

2) verb <- Action including Obligation and so on| Process 

3) object <- Enterprise Object | Role | Community 

4) condition <- Predicate | Guard Condition 

Policy statement example: 

“If an emergency patient is brought into the hospital (Condition), 

a doctor on duty (subject: Role Doctor fulfilled by Enterprise 

Object Person) has an obligation (Obligation) to make a 

diagnosis of the patient (verb: Action 1, object: Role Patient 

fulfilled by Enterprise Object Person) or find a suitable doctor to 

request a diagnosis for the patient (verb: Action 2, object: Role 

Doctor fulfilled by Enterprise Object Person).” 

 

10. Summary 

 

10.1 Model-Driven Development 

 

41



Our concrete process worked well to develop business 

systems by Model-Driven Development, resulting in 

successfully applying our process to an Electronic Health 

Record system. It turned out that applying development 

frameworks of RM-ODP enabled seamless development from 

business models to program codes. Especially in developing 

business systems that aim for Total Optimization, this 

framework is certainly the best since the scope of collaboration 

can be considered as distributed objects. The use of EDOC also 

enables to describe various aspects of business systems in detail. 

As EDOC has great affinity for RM-ODP, it is the most 

appropriate modeling language in building CIMs and PIMs. 

Since this case study of Electronic Health Record system is 

implemented as the pilot system, our next goals are to use our 

process to implement an Electronic Health Record system of 

practical scale, and to apply our process to systems with other 

domains for its refinement. 

 

10.2 Possible revisions to the standard 

 

We have identified several issues for RM-ODP standard, 

and included some of our suggestions in this paper. It is our 

hope that those issues be considered, discussed, and resolved at 

the workshop, or passed to ISO/IEC and ITU-T RM-ODP 

group as a part of issues list for RM-ODP revision work. 

 

 

Reference 

 
[1] ISO/IEC IS 10746-1, Open Distributed Processing -Reference 

Model: Overview 1998. 

[2] ISO/IEC IS 10746-2, Open Distributed Processing -Reference 

Model: Foundations, 1996. 

[3] ISO/IEC IS 10746-3, Open Distributed Processing -Reference 

Model: Architecture 1996. 

[4] ISO/IEC 15414, Open distributed processing - Reference model 

-Enterprise language, 2002 

[5] UML Profile for EDOC Part I, Document number: ptc/2004-02-01 

[6] UML Profile for EDOC Part II, Document Number: ad/01-08-20 

[7] Model Driven Architecture, Document number: ormsc/01-07-01 

[8] MDA Guide, Document number: omg/03-06-01 

[9] JAHIS Web Site, http://www.jahis.jp/english/english.html 

[10] INTAP Web Site, http://www.net.intap.or.jp/e/ 

[11] D.F. D'Souza and A.C. Wills, Objects, Components, and 

Frameworks with UML (The Catalysis Approach), Addison-Wesley, 

1998 

[12] Moore, B., Ellesson, E., Strassner, J. and A. Westerinen,          

"Policy Core Information Model - Version 1 Specification", RFC 3060, 

February 2001. 

[13] Moore, B., Ed., "Policy Core Information Model        

Extensions", RFC 3460, January 2003. 

[14] Distributed Management Task Force, Inc., "DMTF Technologies: 

CIM Standards CIM Schema: Version 2.8" 

[15] Distributed Management Task Force, Inc., "Common Information 

Model (CIM) Specification: Version 2.2", June 14, 1999 

 

 

42



 
 

Architecting Frameworks for Specific Applications with RM-ODP 
 
 

Ana Paula Gonçalves, Sandro Antônio Vicente, Dib Karam Jr, Moacyr Martucci Jr 
Computing Engineering and Digital Systems Dept – Escola Politécnica da USP 

apaulacg@uol.com.br, sandro.vicente@poli.usp.br, dib@poli.usp.br, moacyr.martucci@poli.usp.br 
 
 

Abstract 
Today, distributed systems are commonly used in 
business enterprises in practically all market sectors. But 
such systems are characterized by their huge complexity 
due to physical distribution, lack of synchronization, 
heterogeneity, external parties and the very business 
logic related to the system itself. RM-ODP appeared as 
an interesting resource to assist the designing of 
architectures for distributed systems, providing means to 
capture business needs, distributed processing systems 
architecture, semantics of processing, and choice of 
technologies. This paper presents three different 
experiences in modeling architectures using RM-ODP: a 
proposal for use of RM-ODP for the development of 
convergent applications, a generic architecture for CRM 
systems and a framework based on ODP for the 
integration among different computer architectures. 
 
 
1 Introduction 
 

Nowadays, distributed systems became mature enough 
to be commonly used in business enterprises in 
practically all market sectors. Besides their business 
complexity, such systems are characterized by physical 
distribution, lack of synchronization and heterogeneity 
due to the fact that they are composed of a plethora of 
different applications and devices. In addition, such 
systems are also affected by external elements, such as 
telecommunication networks, 3rd party systems, etc. 

Hence, when a distributed system is being designed, it 
is necessary to assure that its architecture will provide the 
right levels of service, supporting interoperability, 
scalability, security, heterogeneity, and all other aspects 
that characterize such systems. 

RM-ODP (Reference Model – Open Distributed 
Processing) appeared as an interesting resource to assist 
the designing of architectures for distributed systems, 
providing means to capture business needs, distributed 
processing systems architecture, semantics of processing, 
and choice of technologies, all in a consistent and 
complete manner. It focuses on how to capture the 

components, their interrelationships, and formal 
semantics of processing aspects of an open distributed 
processing system. 

The paper objective is trying to show how the RM-
ODP can be considered a complete modeling tool, 
presenting an overview for three generic cases. Each case 
focuses a different set ofviewpoints, chose according its 
importance in application. The complete set of the 
viewpoints were used considering the three presented 
cases together. 

These experiences in modeling architectures 
addressing specific applications domains carried out by 
integrants of the Computing Engineering and Digital 
Systems Dept of Escola Politécnica da USP (University of 
Sao Paulo), which have been driving early researches in 
this area in Brazil. 

This paper is organized as follows. Section 2 presents 
a proposal for use of RM-ODP aiming the development 
of convergent applications. Section 3 presents a generic 
architecture for CRM (Customer Relationship 
Management) systems, which fits CRM strategies into 
the ODP (Open Distributed Processing) enterprise 
language. Section 4 outlines a framework based on ODP 
for the integration among different computer 
architectures. Finally, section 5 concludes the paper. 
 
2 Designing technologically convergent 

applications using RM-ODP 
 

This section presents a proposal for use of RM-ODP 
aiming the development of convergent applications. But 
it is important first to clarify the meaning of the term 
“convergent”. 

The term technological convergence is often mistaken 
for interoperability. The difference among them is that 
“interoperability” means capability to work with another 
autonomous systems or applications. Technological 
convergence means adaptation of services to different 
communications medias through the use of networks and 
terminals designed to bear such services, transparently 
providing users with access to these services’ information 
and applications. So these services are carried out using 

43



any network, any communications channel and providing 
a coherent human-interface with appropriate quality. 
This demands fundamentally capabilities of mobility, 
portability of applications and content, and 
interconnection and interoperability among platforms 
and operators. Any application involving several 
technologies, such as: digital television, mobile Internet, 
videoconference, telephony, interactive broadcasting, etc, 
can be considered a convergent application [1]. 

An appropriate solution in order to develop 
convergent applications employs the model of distributed 
computing using the Internet, client-server architecture 
in a decentralized networked environment, and 
independent and autonomous devices. Generally, this 
distributed computing model uses mainly the TCP/IP 
(Transmission Control Protocol - Internet Protocol 
protocol, for the communication among devices, using 
different architectures, operating systems and 
applications. Distributed object architectures provides 
suitable means to apply the model of distributed 
computing, enabling the transparent integration of 
distributed services upon software architectures, 
hardware platforms and networks [2][3]. 

Figure 1 presents an overview of architecture of 
convergent applications based on three different 
technologies: the Internet, mobile telephony and digital 
television. The integration among these three 
technologies is possible only through the use of 
standardized protocols and distributed objects. Thus, next 
section presents how convergent applications can be 

developed using the RM-ODP. 
 

Figure 1. General view of architecture of convergent 
applications based on three different technologies  
 
The following subsections present an overview of 

architecture for convergent applications using the 
computational, engineering and technology ODP 
viewpoints. The enterprise and information viewpoints 
are not addressed in this article because it aims to 
propose a generic architecture, able to be applied over 
different enterprise and information models. 
 

2.1. Computational viewpoint 
 

The computational viewpoint is responsible for the 
functional decomposition in terms of objects and their 
computational interfaces, which must be specified for the 
development of convergent applications [4]. Figure 2 
presents the objects and interfaces and they are detailed 
as follows. 
- User object: represents communication channel 

through which a user may use to send or receive 
information and services. Examples of instances of 
this object are: PDAs (Personal Digital Assistants), 
mobile telephones and digital television. This object 
has interface with Connection Object; 

- Connection object: is the object responsible for 
connection services among the user object and the 
service required, according to the type of 
communication channel. Examples of instances of 
this object are: Internet connection via TCP/IP, 
mobile phone connection via WAP (Wireless 
Application Protocol), digital television connection 
using image, sound and data compression and 
decompression techniques through the use of DVB-T 
(Digital Video Broadcasting - Terrestrial) standard. 
This object has interface with Convergence Services 
Objects; 

- Convergent services object: these objects represent 
convergent services, so they can be considered an 
application framework integrating different 
convergent services and obtaining services and 
information from different locations. 

 

 

Figure 2. Computational view of objects for convergent 
applications 

 
2.2. Engineering viewpoint 
 

The engineering viewpoint model provides support 
for the execution of the computational model [4]. Figure 
3 presents a simplified architecture in the engineering 
viewpoint, detailed as follows. 

 
 

Internet

Digital TV

Mobile

Phone 

Application 1

Application 3

Application 6

Application 4

Application 5

Application 2

Application 7

Protocol and
Object distributed

Internet

Digital TV

Mobile

Phone 

Application 1Application 1

Application 3Application 3

Application 6Application 6

Application 4Application 4

Application 5Application 5

Application 2Application 2

Application 7Application 7

Protocol and
Object distributed

User
Communication

Channels

Connection
Services

Services
Middleware

Information and 
Services

User Object Connection Object Convergence Services Objects

User
Communication

Channels

User
Communication

Channels

Connection
Services

Connection
Services

Services
Middleware

Services
Middleware

Information and 
Services

Information and 
Services

User Object Connection Object Convergence Services Objects

44



Stub

User
Convergence 

Services

Binder

Protocol

Stub

Binder

Protocol
Connection

P1 P2 P3 P1 P2 P3

Integration
Interface

of different
technologies

Stub

User
Convergence 

Services

Binder

Protocol

Stub

Binder

Protocol
Connection

P1 P2 P3 P1 P2 P3

Integration
Interface

of different
technologies

 
 

Figure 3. Simplified architecture of convergent 
applications in the engineering viewpoint 

 
When an user object requires a service or 

information, a stub object will provide functions to 
support transparency in the request of a service and its 
response. The binder object verifies compatibility among 
interfaces and keeps the connection integrity of the 
service request and its response. The protocol object 
interacts with protocols of the other different convergent 
services. For example, in figure 3, protocols like P1, P2 
and P3, transparently obtain the information or service 
from the binder and stub objects of the instances of the 
convergent services objects. The integration among 
Internet services, mobile telephony and digital television, 
for example, is possible through the use of interfaces 
concerning different technologies. An example for the 
use of this architecture would be a request of a service 
from a digital TV device (user in figure 3) that would 
enable a content search in a database server (convergence 
service in figure 3) using the Internet (connection in 
figure 3), whose answer would be delivered to the user’s 
mobile phone (user in figure 3). 
 
2.3. Technology viewpoint 
 

The technology viewpoint specifies the software and 
hardware components of the application [4]. Such 
technologies for convergent applications were proposed 
in light of studies on well-grounded technologies, 
availability of tools to support development and ease of 
development. 

The platform generally adopted is Java, because it 
provides APIs (Application Programming Interfaces) and 
facilities for the development of applications using 

different communications medias and devices, such as 
the following: 
- Internet integration interface: J2EE (Java 2 

Plataform Enterprise Edition) platform for the 
development of distributed objects allows both the 
use of an IDL (Interface Definition Language) with 
CORBA (Common Object Request Broker 
Architecture) and XML (eXtensible Markup 
Language) with SOAP (Simple Object Access 
Protocol); 

- Mobile telephone integration interface: use of the 
technology MIDP (Mobile Information Device 
Profile). The main characteristics of MIDP 
concerning software are the use of specific Java APIs 
for limited devices, as for example: java.lang.* 
classes, java.util.* classes, java.io.* classes, HTTP 
(hypertext transfer protocol) 1.1 protocols and 
HTTPS (hypertext transfer protocol security) X.509 
protocols. Characteristics concerning hardware are 
the screen size of 96x64, 1-bit intensity, black and 
white, 4,096 colors or touch-screen enabled; 

- Digital television integration interface: assuming the 
use of the European standard DVB-T, the MHP 
(Multimedia Home Platform) can be employed. Its 
main characteristics concerning software are the use 
of Java APIs like, for example: Personal Java, java 
TV API, Java Media Framework and DVB API 
extensions. Characteristics concerning hardware are 
MPEG-2 (Moving Picture Experts Group – 2) 
reception, screen resolution of 720x576 pixels and 
“true color” model. 

Figure 4 presents the technology layers proposed for 
the development of convergent applications. The layer 
that represents the facilities of the applications’ 
implementation is the main concern and is shown in the 
figure 4 with shaded blocks. 
 
3 Designing a CRM architecture with ODP 
 

In this section, an overview of a generic architecture 
for CRM systems is presented in light of the enterprise 
and information viewpoints. At first, the main idea of 
CRM concept is stated, as well as the concept of CRM 
Ecosystem [5], which is essential to drive the modeling of 
the CRM architecture in an enterprise context. 
 

45



 
Figure 4. Technology layers for the development of 

convergent applications 
 
 

3.1. Customer Relationship Management - 
CRM 

 
CRM is a marketing concept whose goals are the 

acquirement of new customers and the loyalty of existing 
ones. These goals are reached establishing a friendship 
relationship with customers, employing one-to-one 
interaction, to achieve complete knowing of them, 
predicting their behavior and habits [6]. Technology 
supports one-to-one customer interaction by means of 
automated and semi-automated contact points providing 
accessibility and distribution of information to the 
customers [7]. Interactions among contact points and 
front-office applications (such as sales, marketing and 
customer services) implement CRM process. 

CRM is implemented through the automation of 
horizontally integrated business processes involving 
front-office customer touch points via multiple, 
interconnected delivery channels [5]. We can distinguish 
three large functional groups necessary for a CRM 
architecture: operational, collaborative and analytical, 
where the operational CRM can be divided into front-
office and back-office. Front-office functions are 
performed by customer service, marketing automation 
and sales automation applications. Back-office are 
performed by Enterprise Resource Planning (ERP) 
systems, Supply Chain Management (SCM) systems and 
legacy systems. Analytical CRM comprises decision 
systems and tools for business performance analysis such 
as: data warehouses, data marts and data mining tools. 
Collaborative CRM comprises elements used as customer 
channels, such as: IVR (Interactive Voice Response) 
devices, CTI (Computer Telephony Integration) systems, 
ACDs (Automatic Call Distributor), web sites, agents 

terminals, etc [6]. These three functional groups working 
together establish a CRM Ecosystem, which is depicted 
in figure 5. 

 

ERPERP SCMSCM Legacy
Systems
Legacy

Systems

Customer
Service

Customer
Service

Marketing
Automation
Marketing

Automation
Sales Force
Automation
Sales Force
Automation

Data
Warehouse

Data
Warehouse

Data
Mining
Data

Mining

Product
Datamart
Product

Datamart
Customer
Datamart
Customer
Datamart

Market
Automation

Market
Automation

Category
Management

Category
Management

Campaign
Management

Campaign
Management

Voice
IVR, CTI, ACD

Voice
IVR, CTI, ACD

InternetInternet WapWap E-MailE-Mail FaxFax LetterLetter Direct
Interaction

Direct
Interaction

Fr
on

t
O

ff
ic

e
B

ac
k

O
ff

ic
e

OPERATIONAL CRM ANALYTICAL CRM

COLLABORATIVE CRM
C

us
to

m
er

In
te

ra
ct

io
n

 
Figure 5. The CRM Ecosystem 

 
 

3.2. Enterprise viewpoint 
 

In this subsection, a generic architecture for CRM 
systems is modeled using the ODP’s enterprise viewpoint 
[4]. This viewpoint is the basis to understand the overall 
structure of the CRM architecture in terms of which 
elements take part in the architecture and which roles 
they perform. 

In the enterprise viewpoint, the entire CRM system is 
modeled by means of business objects, or enterprise 
objects, each one performing the roles necessary for the 
activities concerning those functional groups that 
perform the CRM process: Collaborative (CO), 
FrontOffice (FO), BackOffice (BO) and Analytical (AN). 
In addition, the customer who interacts with the CRM 
system is also considered a role in the enterprise 
viewpoint because it represents an entity external to the 
CRM system. Business roles and the interactions among 
them are depicted in figure 6 and detailed as follows. 
- Customer: performed by objects that represent the 

CRM system’ customers, concerning policies related 
to customers location, current situation, preferences, 
etc. Customers may interact with objects performing 
CO role; 

- CO: performed by objects representing the 
applications and devices, or groups of applications 
and devices that interact directly with the customers, 
such as IVR devices, human agent workstations, web 
connections, etc; 

- FO: performed by objects which perform activities 
such as: customer care services, contact 

Operating system

Java Virtual Machine

JVM
Configuration

Java Profile

Open API
(MIDP, MHP)

Value
added

middleware

App App

Internet
Proprietary

API

App App

CORBA

Operating system

Java Virtual Machine

JVM
Configuration

Java Profile

Open API
(MIDP, MHP)

Value
added

middleware

App App

Internet
Proprietary

API

App App

CORBA

46



management, telemarketing and sales force 
automation; 

- BO: performed by objects responsible for the core 
activities of the business where the CRM system is 
applied to, concerning ERP systems, legacy systems, 
SCM systems and operational databases; 

- AN: performed by objects responsible for the 
analytical CRM which perform activities that give 
intelligence to the CRM process, providing the other 
functional groups with policies so that the customer 
expectations could be better fulfilled. This role 
extends to data warehouses, data mining applications 
and OLAP (On-Line Analytical Processing) tools. 

 

Collaborative
:CO

Front-office
:FO

Back-office
:BO

Analytical
:AN

Customer  
Figure 6. CRM communities in the enterprise viewpoint 

 
The roles detailed above also define communities, 

each one containing sets of objects performing the same 
role. The interoperation among these communities is 
crucial to the one-to-one process and, consequently, to 
the CRM objectives.  

So, all those communities must comprise a federation 
whose primary objective is to provide a one-to-one 
service to the customer. A service can be further modeled 
as a set of interactions among the CRM communities. For 
example, the analytical community (AN) may detect a 
business opportunity and request the telemarketing 
automation system (FO community) to contact some 
customers to offer a product employing a customer 
channel, such as: voice, e-mail or postal delivery (CO 
community). For the customers that accept the offer, the 
back-office community (BO) will process their orders. 
Anyway, the analytical system will process the customer 
responses in order to learn a little bit more about them 
for future contacts. So the CRM goals will be achieved. 

 
 

3.3. Information viewpoint 
 

In this work, the information viewpoint is used to 
model the general structure of information concerning 
the CRM system. This viewpoint may deal with the 
invariant, static and dynamic information schemas, but 
in the case of the generic architecture for CRM systems, 
the invariant schema is more relevant to provide a class 
diagram representing the structure of the information 
essential for a CRM process. Thus, figure 7 depicts such 
class diagram, which identifies the following information 
classes concerned with the CRM process: 
- InfComponent: models information concerning the 

devices used in the communities CO and FO, where 
specifics characteristics of each of these communities 
are carried out by the specializations InfChannel and 
InfApp, detailed below.  

- InfChannel: models information concerning the 
touch-points (or channels) with customers, such as: 
IVR (Interactive Voice Response) devices, telephonic 
branches, web-server connections, etc; 

- InfApp: models information concerning front-office 
applications, such as help desk, sales force 
automation systems and market automation systems; 

- InfExAgent: models external entities (probably a 
customer) in touch with the CRM system in a 
specific moment, such as during a phone call for the 
company’s call center; 

- InfInteraction: models associations involving 
external entities, customer channels and front-office 
applications, representing a well defined interaction 
of a customer with the CRM system; 

- InfContact: models groups of inter-related 
interactions; 

- InfCustomer: represents each customer, comprising 
every piece of information related to him or her; 

- InfProduct: represents products and/or services 
offered to the customers; 

- InfDeal: models the relationship among a customer, 
products (or services) and the contact (group of 
interactions) that drawn the customer to the product; 

- InfCampaign: models campaigns about products, 
relating products to groups of customers likely to 
appreciate them, and involving appropriate front-
office applications to offer these products to the 
customer. 

In the context of a CRM system, the static and 
dynamic schemas are not so general as the invariant 
schema. The static schema defines specific states for each 
instance of the information classes identified in the 
invariant schema. For example, an instance of the class 
InfCanal, representing a telephone line, may have an 
attribute status that can be idle, busy, disabled and fault. 

47



These values comprise states represented by the static 
schema.  

Dynamic schemas can be used to define state 
transitions among the states identified in the static 
schema. For example, the behavior of a telephonic line 
can be described by a state diagram involving the states 
idle, busy, disabled and fault, as well as the events and 
conditions that trigger transitions from one state to 
another. 

 

InfChannelInfChannel

InfComponentInfComponent

InfAppInfAppInfExAgentInfExAgent

InfInteractionInfInteractionInfInteraction

InfCustomerInfCustomer

InfCampaignInfCampaign

InfProductInfProduct

InfDeal

InfContactInfContactInfContact

 

 
Figure 7. CRM static information schema 

 
 

4 Middleware for integration among 
computer architectures  

 
Enterprises applications have a large range of 

independent systems sometimes without interactions or 
fragile relationship [8]. On the other hand, dynamic 
advances in IT (Information Technology) increased 
complexity and customers demand for distributed 
information shown necessary a new way to manage IT 
systems. 

 
4.1. Distributed processing problem 

 
The relationship between different applications may 

be transparent, receiving and sending requests without 
new codes or additional application. 

All companies have distributed processing 
applications without interactions allowing double effort. 
Today, middlewares (management, availability and basic 
communication layer) have functions to interact with 
applications available for these stand alone systems. 

The companies’ wish is to allow systems and 
databases integration within enterprises and across 

enterprises, collaborations, mergers, acquisitions and the 
Internet (a totally unstructured data source), solving 
problems concerning heterogeneity and distribution. It is 
not a wish, is a necessity around the computational world 
because the information is an asset more valuable than 
the company’s facilities. By this way, accomplishing this 
whish is a complicate task and it is a challenge for 
developers and researchers [9]. 

In this context we are developing a multipurpose 
middleware, whose task is to allow integration and 
provide interoperability to distributed computer 
architectures. This middleware has been desiged to be 
used like an applications integrator providing 
interoperability between these applications. It is a 
necessary step for convergence between technologies. 

RM-ODP brings a general architectural view for this 
middleware as well as global conceptual definition, 
analytical structure and standard specification. This 
section focuses on business information (information 
flows and structures, restrictions and standards) and 
computational viewpoint (it is a real need for the system). 
 
4.2. Enterprise viewpoint 
 

It outlines a middleware architecture that will 
integrate independent and different applications, being 
capable to access distributed data and execute distributed 
tasks. This middleware will provide information 
wherever, however and whenever the user request. 
Therefore, this middleware architecture will be a 
distributed programming model and will allow 
communication for all applications in several scenarios 
with flexible customization and configuration. 

At the enterprise viewpoint, this architecture will 
install a component in existing applications that will 
intercept the requests and send them to the new 
middleware. When receiving the requests, this 
middleware will provide the best way available to attend 
it. This execution will be transparent to the users, i.e., the 
requester and executor are not publicly visible. A given 
application will take part of a new system comprising 
several architectures. Therefore, this application will be 
an object for this new system with its functions and it 
will access and accept others applications’ requests. 

This architecture improves the use of a corporative 
system, assuring information integrity, quality of service 
(QoS) levels and availability. 

 
4.3. Information viewpoint 

 
By information view, the component installed in an 

application responsible for the interception of requests 
and redirection to the middleware is the request object. 

48



Another component, also installed in the existing 
application, will receive the answer and will send it to 
the final user. It is a reception object. This mechanism is 
shown at figure 8. 

 
 

 
            middleware 

APPLICATION 1 APPLICATION N 

 
Figure 8. Information flow in the new architecture 

 
The middleware receives, dispatches and sends the 

requests and answers to its users transparently. It is a way 
to accomplish heterogeneous management. 

An existing architecture connected to this middleware 
will receive and send requests, integrating independent 
systems with different architectures without different 
gateways or bridges between each system. 

 
5 Conclusion 
 

The different approaches presented in this article 
show how RM-ODP can be properly used for the 
specification and modeling of distributed systems 
targeting different problems, which restates how RM-
ODP may be malleable for architecting of distributed 
systems. 

In the three cases presented, the studies show a weak 
points in RM-ODP when it was used for modeling 
systems where one or more blocks are legacy systems. 
Furthermore, for the implemetation the concern is the 
lack of compatibility between RM-ODP and distributed 
objects architectures like CORBA and  J2EE. 

Despite de fact that RM-ODP is not proper to 
formally specify an entire system, which would require to 
dig into its implementation details – in fact, such deed 
would be at least impracticable –, RM-ODP is 
appropriate to determine the architectural patterns 
necessary to drive the further development of the system, 
once RM-ODP modeling requires a good understanding 
of the interactions of the system with its environment, the 
elements that comprise the system, their 
interrelationships and the activities that must be 

performed, which compels the architects and designers to 
appropriately reason what to specify. Once a good 
architectural specification is ready, it is possible to 
provide an implementation for it using well-grounded 
technologies, basing on the ODP technology viewpoint. 
 
6 References 
 
[1] Presidencia Española de la Unión Europea, El Potencial de la 
Convergencia Tecnológica en el Desarrollo de la Sociedad de 
la Información, Colegio Oficial ingenieiros de telecomunicación., 
2002. 

[2] H. Balen, “Distributed Object Architectures with CORBA”, 
Sigs Books, Cambridge University Press, 2000. 

[3] G. Blair, G. Coulson, N. Davies, “Standards and Platforms for 
Open Distributed Processing”, Eletronics & Communication 
Engineering Journal, p.123–133, 1996. 

[4] ISO/IEC 10746-1, Information technology – Open 
Distributed Processing – Reference model: Overview, 1st edition, 
1998. 

[5] E. Shahnam, "The Customer Relationship Management 
Ecosystem", Delta Research Reports, 2000. 

[6] A. P. Gonçalves, “Proposta de Arquitetura Aberta de Central 
de Atendimento”, Master’s dissertation, EPUSP, 2001. 

[7] J. D. Wells, W. L. Fuerst, J. Choobineh, “Managing 
Information Technology for One-to-one Customer Interaction”, 
Information & Management, 1998.  

[8] M. Feridum, G. D. Rodosek, “Management of IT Services”, 
Computer Networks, v.43, pp 1-2, 2003. 

[9] K. Geihs, “Middleware Challenges Ahead”, Computer, pp 24-
31, June 2001. 

 
 

Acknowledegements 
 
The authors wish to thank the support of the UNILINS - 
Escola de Engenharia de Lins - Lins, Brazil. 
 

49



�

�

��������	
���
����
�������
��
��
�����
�����������
����
�
�

�������	�
	��	��
��
�
���
�����������
�

�
�����
�����	�����	

�
���	����	������

�
��
��
��������

��

��������	�	�
������
�����������������������
�����
�
������������� ��!���

��"#�	����$�������	�#%��&$&������'��(#	�%)��	&�
���$&�����

�
�	
��$*��
#���%��$&�
����������$��������!��
$+����
�#%�	'�$&��� ���#	)$���
#�% 	�	�$&��

�

�

����
����
�

��� �,,�� 
��� �,,��� �-�� �!��)� '��"����� ���� *.� 
�

���)���	#�� �&� �����-� ���'
�	�)� 
��� #�	/��)	�	�)��

�0'��	������� �-�� 
''�	�
�	��� �&� ����1	�1� ������

��1	����	�1� ���-�	(#�)� ��� ��&���
�	��� �.)���� 2��3�

�	1�
�	��$� �-�� �
	�� �*"���	/�)� 4���� ��� ��&	��� 
�

���-�����1.� 
��� ��� )'��	&.� 
�� �'��� 
��� ���#�
��

�	1�
�	���&�
��4��5����)��/������	1�
�	������'��0	�.�

��� �-�� *
)	)� �&� �����)� 
��� ���
������)�� 
)� 4���� 
)�

��������
�)&���
�	��$��������������)#����&��-	)�'��"����

4
)��-����/���'������&�
������)��
�����-
��'��&������

�-���	1�
�	����&�
��
�1���6�+�����1
�.�
''�	�
�	����&�


��	�)#�
�������'
�.����#)��
�7�8��
���9����*
)���

	����&
��$� ��� �-	)� �	1�
�	��� #)�� �
)��� 4�� #)��� 
�

������� 	�������	
��� ���
������� *
)��� ������:!��

�;�� 2!�&������� ������ �&� �'��� ;	)��	*#����

�����))	�13��0�������4	�-� �-��<������	������
��	�)�

&���
�	)�$�

�

������������	�� ��
 	�� ���!
"	�"��	�� ���	�
�#��

�	"�$���	�
�#�� ���	�� "����%����"
���� &�%����"
���

'��"	���
#��"
�����	#�������	(�

�

�� ��� !	"#��!��
)�� �	��� *
"!� 
���	��
�#� ���+	"
"
���� ���+��
	��

!� 	� "�� %��	� ����"��"� �"��"	#
��� ��#��
,�"
����� ���

"	�!�
�����!��#	��*!
�!�
�+����	+	"
"
 	����
%
��"
����

�%� "!	
�� &�%����"
��� '��"	��� -&'.(� )!	� ����
 	�


�"�����"
��� �%� 
�"	��	"� "	�!����#
	�� 
�� ��	� 	/��+�	(�

)!��#!�&'��
#��"
�������"
����	/
�"����"!	����0	"������

"!	�	�����"
�����	���$��������"
����"!�"���	��
%%
���"�"��

�	��	��������"��%�"!	���	������+��+�
	"����"����(�

)!
��+�+	��*
����	���
1	�"!	�	/+	�
�	�"�����	� 
����

���+	��"
 	� ��	��!� +��2	�"� ����	�� )�3��� "�� ��� 	�

���	��%�"!	��!���	�#	���%�&'����	��
,�"
����1����
�#�

	/"	��
 	�����������	������ 	�#
�		�
�#�"	�!�
��	�(�&��

+��"
������ "!	�	� 
�� ��� �""	�+"� "�� 
�"	#��"	� ��$4���

*
"!� 3�"
��� '	���"
��� "�� 	��1�	� %
�	$#��
�	��

�	+�	�	�"�"
��� �%� "!	� �++�
��"
���� ��� 	�"	�+�
�	� ����

*
�!�"���
#��"	(�

�

)�3���� *��� �����!	�� 
�� �55�� ���� *��� +��"
�����

%���	�� 1�� "!	� ��	��!� #� 	���	�"� 
�� "!	� ���"	/"� �%�

��)
� ��"
����� �	�	���!� +��#���(� )!	� ������"
���

���+�
�	�6�

• "*�� ��	��!� 
����"�
��� #���+��� �����	� )�������

���� 7�	�"�
�
"�� �	� �����	�� !� 
�#� "�� �
#��"	�

���#	��	#�����++�
��"
�����

• "*�� ��
 	��
"
	��� 
&�8� ���
�� 8� ���� &�&)� �����

'�1�"
	�� )������	�� 0��*�� %��� "!	
�� *��0�� ���

���	�
�#���	"�$���	�
�#�����#��#	���������	��

"����%����"
����

• '4�)$�3&�)�������+�����+	�
��
,	��
�����#	$

����	�&'��
#��"
���+��2	�"�(�

�

4�	��%�"!	�+�
������12	�"
 	���%�)�3��9��*���"!	�

�	%
�
"
��� �%� �� �	"!�����#�� ���� "!	� +�� 
�
��� �%� ��

#	�	�
�����!
"	�"��	�"��!	�+����"	�
�#�&'��
#��"
���(�&��

+��"
������������1
"
���*���"��	����	�"!�"�
"�
��+���
1�	�

"���	��	�"!	�#����+���"
�	������
#��"
���"	�!����#��
��

���"
+�	� ���� �	+	"
"
 	� �
#��"
��� +��2	�"�(� )!	� ���	�

	%%
�
	�"������	�"	�+�
�	���#��
,	��0��*�	�#	��	��	�%���

"!	
�� &�%����"
��� '��"	�� -&'.� 	 ���"
���� "!	� �	��� 
"�

*��������"��"�"!	�	���"��
�"	#��"	�"!	��	*�"	�!����#
	���

	 	�� 
%�"!	�
�
"
��� 
� 	�"�	�"�����1	�!
#!(�4�	��%�"!	�


�+��"��"�
���	�����������	��	��1��"!	�+��2	�"�*���"!	�

+��1�	�� �%� ��
�"	����	� �%"	�� �� �
#��"
��� ������(� &��

��
�"	����	� %��
�
"�"	�� *!	�� ���	��� ��	� %
��"� ������

��"
%��"�:��

�

)!	� �++����!� "�0	�� 1�� )�3��� "�� �	���	� &'�

�
#��"
������+�	/
"��*���"���	���+��	����
#��"
������

���	��	��	��%�"����%����"
����"!�"��++���������	��(�3�

���	���	+�	�	�"������1�"���"
����%���� 
�+�"�������"+�"�

��� ��� 
�"	��	�
�"	� �	���"(� '��	� �%� "!	�	�

"����%����"
�������� 
� �� 	�����"��%� ;������;�!�����

�+	��"
����<����!�����	 	��	�	�#
�		�
�#<�*!
�	��"!	���

����1	�"�"�������"���"	�(�)!	�
�+�"��������"+�"���%�&'�

50



�

�
#��"
���*	�	��	$%������"	�� ���� %�����
,	�� 
��"	����

�%� �	"�$���	��� 
�� ���	�� "�� �++��� ���	�� 	�#
�		�
�#�

"	�!�
��	����
0	����	�$"�$���	��"����%����"
���������	�

#	�	��"
��(�&���!��"��"����%���
�#����&'����	����*��"��

"����%���
�#����	����%�"!	�&'(��

�

)�3��� ��0	�� ��	� �%�  ��
���� 4�=� ���	�
�#�

�"��������� ���!� ��� �4�� ���� >�
� %��� ���	��

�	+�	�	�"�"
���?�4�@�?>�
@��A�&�%���"����	/�!��#	�

?A�&@�� '�7�� %��� �
#��"
��� +���	��� ���� +���	���

+�""	�����	���
+"
���?'�7�@������&�����
"
���
"���	����

���1
��"
��� �%� "!	� &'4B��$4��� �"������� ?&'4C�@�

?&'4�55�@�����>�
9��3�"
���'	���"
���"���	%
�	����


�"	��	�
�"	� ������� 	�"	�+�
�	� ���	�� ��+�1�	� �%�

	/+�	��
�#� ��*$�	 	�� ���+�"�"
���(� )!	� �� ��"�#	� �%�

��
�#� "!	�	� �"��������� 
��"	��� �%� +��+�
	"����

%�����
�����
��	����"�����	��"����
%������+�����
���"��

"�0	� �� ��"�#	� �%� +�	�	�"� ��� %�"��	� +�����"�� 
�� "!	�

���0	"� +���	(� D�*	 	��� ���� �	"!�����#�� ����

���!
"	�"��	� ��	�� ��"� 	�%���	� "!	� ���#	� �%� "!	�	�

�"��������������#�����"!	��%�����
������	��1�	�"��+����

"!	����	����	(�

&�� "!	� ���"	/"� �%� "!
�� *��0�� *	� *
��� �����	� "!	�

%����*
�#� �	%
�
"
��� �%� �� ���	�6� �� ���	�� 
�� ��

�	���
+"
��� ��� �� �+	�
%
��"
��� �%� �� ���"	�� ���� 
"��

	� 
����	�"�%������	��	�"�
��+��+��	�?��3=@(�&���
�	�

*
"!� ��"���� �	"�$���	�
�#� +�
��
+�	��� �� ���	�� *
���

��*����1	� �	%
�	�� 
�� "!	�"	�����%� �� �	"�$���	�(�����


��"���	�� �� ���+�	"	� ��$4��� �+	�
%
��"
��� ���� 1	�

%�����
,	�����������	�"
����%���	�������	����	����	��!�

�%� "!	�� 1	
�#� �	%
�	�� 
�� �	��"
��� "�� �+	�
%
�� �	"�$

���	���� ���!� ��� ���	"�$���	�� %���"!	�	�"	�+�
�	� 
	*�

�������"!	��%���"!	����+�"�"
����� 
	*(��

$� �%�&!	!'!()� ��	� � ��%*! +�

!,% ,�%* �

&�����	��"���	%
�	���#	�	�����	"!�����#��%���


�%����"
������"	���
#��"
�����)�3���+��2	�"�!��6��

• �
��"���� +�� 
�	�� �� "�+���#�� �%� �
#��"
���

+��2	�"�� ������
�#� "�� "!	� 0
��� �%� 
�%����"
���

"!�"� 
�� 
�+��"	��� ���� 
��"���	�� *	� !� 	�

�
#��"
���� "!�"� 
�+��� �!��#	�� ��� "!	� 1��
�	���

+���	�������B���
��"!	��++�
��"
����
�"	�%��	������

��"�(� '��	� �
#��"
���� ��	� ��� "	�!����#��

��
	�"	�� *!
�	� �"!	�� ��	� %�����	�"����� ��
 	��

1����1��
�	����!��#	(��

• )!	��� 
�	�"
%
	�� ���� 
�+�	�	�"	��  ��
����

+���	���+�""	�����*!
�!��������������"�
�����	�

"!	� ���#	� �%� ������� 
�"	��	�
�"	� %�����
����

*!
�!� +�"	�"
����� ���� 1	� �	��	�� 
��  ��
����

�
#��"
���+��2	�"�(��

3�� 
�+��"��"� ��"���	� �%� "!	� +��2	�"� *��� "!	�

�����
%
��"
����%��
#��"
�����"
 
"
	��"!�"���	�+��"��%�

"!	� '��'
�
�	��� %���� "!��	� "!�"� ��	� +��"� �%� "!	�

�0��#�	����%�"!	��
#��"
��(���

&�� +�����	�� "�� "!
�� *��0� ��� �	"!�����#��� "!	�

)�3���+��2	�"�!����+	�
%
	��������!
"	�"��	�<�"!	�

��� ����	�� )�3��� %���	*��0� <� "!�"� ����*��

����#
�#� ����	��
 	� �
#��"
���� 1��	�� ��� "!	�

���#	� �%� ���	�� �	+��
"��
	�� ���� ���	��

"����%���	��(�

)�� �	%
�	� �� �
#��"
��� %���	*��0���	�!��� "��"!
�0�

�1��"�"!	��	�	 ��"����+��	�"���		�	�6�

• "��+�	+��	�"!	��
#��"
����

• "��	/	��"	�"!	��
#��"
��(�

�

��	+��
�#� ���
#��"
��� 
�+�
	��"!	� �1
�
"��"���	+�	�	�"�

���� �"��	����	���
+"
����%�"!	��
#��"
���+���	���"��1	�

+	�%���	�(� &�� "!	� +��2	�"�� *	� ��	�� "!	� '�7��

%�����
��� ���� ��"�"
��� ���� �� �4�$1��	�� �	+��
"����

��+�1�	�"���"��	�'�7�����	��(��

�

E 
"!
�� "!	� +�	+���"
��� +!��	�� �%"	�� �	�
#�
�#� "!	�

�
#��"
��� +���	��� ���	��� ��	� !��� "�� "!
�0� !�*� "��


�+�	�	�"� 	��!� +���	��� ��"
 
"�(� )!
�� *��� ���	� 1��

	��
�!
�#� "!	� +���	��� �	���
+"
��� *
"!� "!	� ��$����	��

;
��"���	�"�"
������	�;�*!
�!�
��
��"	��*!�"���%"*��	�

���+��	�"����	���	�� 
��	��!���"
 
"������*!�"�0
����%�

������� ��"
���� �		��"��1	� ���	� %���"!	���"
 
"��"��1	�

%��%
��	�(� '"��
�#� �� ���	�� �%� "!	� 
�+�	�	�"�"
��� -"!	�


��"���	�"�"
������	�.�	����	��"!�"� 
�%����"
���
����"�

���"(� )!
�� 
�%����"
��� ���� 1	� �	$��	�� *!	�� �� �	*�

�
#��"
���!���"��1	�+	�%���	�(�

�

�
#��"
��� +�	+���"
��� 
� �� 	�� ����� "!	� �	%
�
"
���

���B��� "!	� 
�	�"
%
��"
��� �%� "!	� �	"�$���	��� "��

�	+�	�	�"�"!	�
�+�"�����"!	���"+�"���%�"!	�&'��
#��"
��(�

�
������� 	��!� "����%����"
��� ���+��	�"� �		��� "�� 1	�

�+	�
%
	������ 
�+�	�	�"	�(�&��"!	����	��%������	�$"�$

���	��"����%����"
���
"�
��+���
1�	�"����	����	/	��"�1�	�

�+	�
%
��"
��� ���#��#	(� )�+
������� �� #	�	�
��

"����%����"
��� 	�#
�	� *
��� 	/	��"	� "����%����"
���

�+	�
%
	��������
�"��%����	�(�'	�"
���&F�+�	�	�"�����	��%�

���	�� "����%����"
��� "	�!�
��	�� 	/+	�
�	�"	�� *
"!
��

"!
��+��2	�"(�

�

)!	�0
�����%�"�����"!�"���	���	�����
�#�"!	�	/	��"
����%�

"!	��
#��"
�����	�"�+
�����6�

• '+	�
��
,	���	 	��	�	�#
�		�
�#�"�����<����!�����

+���	��� ���� +�""	��� �����,	��� <� "�� ����� "!	�

� �
��1�	� �	#���� ���	� ���� "�� �
��� 	�� ����

�	�	 ��"�!
#!$�	 	���"���"��	��

• G3'7�"������*
"!�#��+!
������+�1
�
"
	������!����

>�
�"������

51



�

• ���	�� �	+��
"��
	�� "�� �"��	� ���� +�1�
�!� "!	�


�+�"����"+�"����
�"	��	�
�"	����	����

• ���	�$"�$���	�� "����%���	��� ���� ���	�

#	�	��"���(�

�

���

H-
�����

H-����


#����
�
��

'��
�
�

	
���

�������
�
��

��

�	"�$���	����

%.��
����

���

H��/
��

H��
���

H#����


	
���

�������������


������	�
 ���	���		
�

�����,

���
�	���
��"��

��%"*��	

0�#��
���

�����,
0�
���
�	���
��"��

��%"*��	

���
 ��	���������
 �����	
 �	����

)�3������	*��0

Figure 1: TRAMs Framework 
�

)!	� �
#��	� �� �	+
�"�� "!	� )�3��� %���	*��0�

���!
"	�"��	(�4��"!	�"�+���	� �!�*	��"!	�"�����"!�"� ��	�

��	��%���+�	+��
�#�"!	��
#��"
�������
��"!	�1�""���"!	�

"����� ��	�� *!	�� 	/	��"
�#� "!	� "����%����"
��(� &�� "!	�

�
���	�� �� ����#	�	�"� ���+��	�"� �	�"���
,	�� ����


�%����"
��� �		�	�� 1�� �� ��	��"�����"���� ���� ���
"���

"!	��
#��"
���+���	��(�

�

)�� ������
,	�� "!	� )�3��� %���	*��0� 
����
�
���

�������
��&"���	����"�
�+��	�����+���	������"���6�	��!�

���+���� ���� �	%
�	� 
"�� �*�� �
#��"
��� +���	���� ��	�

"!	
���*��+��+�
	"����%�����
������������	�"�"!	
���*��

"����(� D�*	 	��� 
�� ���	�� "�� "�0	� +��
�� �� ��"�#	� �%�

���	�$��
	�"	�� 	�#
�		�
�#� "	�!�
��	�� 
"� 
�� 
�+��"��"�

"����	�������!����+���
1�	���"���	+�	�	�"�"
����"!�"���	�

1��	������	"�$���	��(�

�

�	"�$���	�
�#� 
��"!	�0	��"����!
	 	�"����%
�	$#��
�	��


�"	�$�+	��1
�
"��� ��� �++��
"	� �%� 
�"	�%��	$1��	�� 
�"	�$

�+	��1
�
"�� "!�"� +	��
"�� 
�� ���"� ���	�� ����� �����	$

#��
�	�� 
�"	�$�+	��1
�
"�(� � ����� 
��"���	�� ����"����"!�"�

��++��"��'�7�����	����"���#	�����+����"!	����	��%�"!	�

+���	����	+��
"����������#����
"���++��"��
�+��"B	/+��"�

%���"
���(� &�� ���
"
���� ���� ���	�� "����%���	�� "!�"�

0��*��"!	�"�+	��%�"!	�
�+�"�������"+�"����	�������"!�"�


�+�	�	�"�� "!	� "����%����"
��� �+	�
%
��"
��� ���	�� ����

+����"!	����	��%���"����%���	�(�

�

3��
�
"
���
�+�	�	�"�"
����%�"!	�)�3���%���	*��0�

+�
��
+�	��*�����!
	 	��1��"!	�	����%��55�(�)!
��
�
"
���

�	����"��"��� +	�%���	�� "!	� �
#��"
��� �%� "!	� =>&�

��+�1
�
"
	�� �%� �� ���#	� G4�4
$1��	�� 
�������	�

�++�
��"
��� 
�"�� "*�� �
�"
��"� "��#	"�6� ��	� 1��	�� ���

D)�
�����I� �����
+"��������	�������	�1��	�����I� ��

�++�	"��"	�!����#�(� )!	� %
���� �	����"��"����+�	�	�"	��


�� �55�� �	����"��"	�� "!	� �
#��"
��� �%� 1��
�	���

���+�"�"
�����+��"���%�"!	��++�
��"
��(�����"!�"�+��+��	�

��� 
�"	��	�
�"	� �	"�$���	�� 1��	�� ��� ��$4��� ����

3�"
����	���"
���*�����	��-�		��	�"
���&&&.(�

1� �!	%'��(��&%���( ���!��- !#%���

3�� 	/��+�	� �%� �� "�+
���� +�""	��� %��� �� �
#��"
���

+��2	�"� 
�� �	+
�"	�� 
�� �
#��	� �(� � )!
�� +�""	��� �	���"��

%����"!	�	/+	�
	��	��%�"!	�
����"�
���+��"�	���
� �� 	��


��)�3��((�

�

��	+��
�#

�
#��"
��

F��
��"
��

�
#��"
��

��	$�"��� 3�!
	 
�#�	��!

�
#��"
����"	+

�!��	

Figure 2 : TRAMs process-type�
�

)!	� +�	$�"���� 
�� �� +!��	� 
�� *!
�!� "!	� �	�	 ���	� %���

��0
�#� ���
#��"
��� 
�� ���	(�'��	"
�	�� 
"� 
��1	""	��"��

#	"��
���%�����1���	"	��++�
��"
����
�+���1���	$*�
""	��
"�

���+�	"	���%��������"�!(� �'��	"
�	���!�*	 	���"!
�� 
��

��$�	��
�"
��� �
�+��� 1	����	� ��� ��	� 
�� ��+�1�	� "��

���	��"���� "!	� 1��
�	��� ���	�� "!�"� ��	� !
��	�� 
�� ���

�1���	"	��++�
��"
��J�

�

&��"!	�K��	+��
�#��
#��"
��L�+!��	����	�!���"�6�

• &�	�"
%��"!	��
#��"
�����"��	�"���	����	��
#��"
���

���+�	/
"�(� &�� 
"� �� 1��
�	��� ��� "	�!����#
��

	 ���"
��:� ��	�� 
"� 
�+��� �!��#
�#� "!	� ��"��

�"���#	��"!	���	��
�"	�%��	���"!	��	"*��0�	�	�	�"���

���������(�

• &�	�"
%��<�����
%��		�	���+	�
%��$�"!	��	"�$���	���

"�� 1	� ��	�� ���
�#� "!	� �
#��"
��(� &�� "!	� )�3���

�55��%
�����	����"��"����*	���	����G4�4
��	"�$

���	�� 
�����2���"
���*
"!�����'��	"�$���	��"��

�	+�	�	�"� "!	� �����	� ��"�(� )!	� ��'� <� +
)	��

�
''	�1��#''����$�
��"!	�"������"
�����=>&����"	��

��	�� 
��"!	� 
�������	��++�
��"
��(�&�����
"
����*	�

��	�� �� �	"�$���	�� "�� �	+�	�	�"� ��$4���

��#�	�"	��*
"!�>�
���"
����	���"
�������	+"�(�

• ���	��"!	��
#��"
���+���	��� 
��'�7�������"���"��

�	��	� ���� +�	$	/
�"
�#� +���	��� +�""	��� -
%�

�++�
��1�	.(� � ��� ���	�
�#� "!	� +���	��� ��	� ����

�	�
�	� ��� "!	� ���1	��� �%� ���	��� "!�"� ��	� "�� 1	�

����#	���	+���"	���<�%���
��"���	�"!	�=>&���+	�"�

52



�

����1	�+�"� 
�� �� �	+���"	�����	�� 
�����	�� ��"�"��

+����"	� +��	� 1��
�	��� ��"�� ���	��(� 3"� "!
�� �"�#	�

��������	������	�
�	�"����	����
�"	��	�
�"	��	"�$

���	�� "!�"� "!	� ���+���� ���� *��"� "�� ��	� %���

 ��
��������	��
 	��
#��"
���(�

�

�

)!	��
#��	����	+
�"��"!	�+�""	���"!�"�*�����	��
��"!	�

%
�����	����"��"���%���"!	�	/	��"
����%�"!	��
#��"
��(�(�

�
��"�� *	� !� 	� �� �	 	��	$	�#
�		�
�#� +!��	�� "!	�� "!	�


�+�"����	�����	�"����%���	��<����"���"���"
������$�
��

"	�����%�"!	� ;�	�"���;� 
�"	��	�
�"	��	"�$���	�(� )!	��

"!
�� 
�"	��	�
�"	� �	+�	�	�"�"
��� 
�� �	$*��0	�� ��
�#�

!	��
�"
��� ���� ������� ����"�"
���� 
�"�� �� ���	�

����	+"���� ���	�(� �
������ "!
�� �	$*��0	��

�	+�	�	�"�"
��� 
�� ��	�� ��� "!	� 
�+�"� %��� #	�	��"
�#� "!	�

��"
%��"���		�	��1��"!	�"��#	"�+��"%���(�

�

'����	��� G������� )��#	"���

'����	

��%"*��	

)��#	"

��%"*��	
��"�

G��+�"
�#

��	�	�"�"
��

�	"��$

	�#
�		�
�#M "����%M "����%M

&�+�� 	

+�	�	�"�"
��

#	�	��"M

�	"��$

	�#
�		�
�#
'→�

)����%����"
��

�→G
)����%����"
��

G!��#	� =	�	��"
��

�

Figure 3: Process pattern for the migration of 
a COBOL Interface to Java/HTML 

�

E!	�� �� ���+���� �		��� "�� +	�%���� ���"
+�	� ����

�	+	"
"
 	� �
#��"
����� �� ������� 
�"	��	�
�"	� �	"�$

���	��!	�+��"�6�

• �	��	��	� �
#�
%
���"��� "!	� ���1	�� �%� ���	��

"����%���	��� "�� 1	� �	 	��+	�� -%��� ���� "!	�

�
#��"
����"��1	����	.��

• �	��	��	�"
�	���������"���%�"!	�
�%����"
������"	��

	 ���"
��� ���
�#� %��"!	���
#��"
���(� )!���� 
"�����

1	�+���
1�	�"���	��	�"!	����	����"��	��
��+�	 
����

�
#��"
�������*	������"���	��	�"!	�"����%���	��.(�

4�� "!	� �"!	�� !���� �� �	�
��"	�� �����	$"�$"��#	"�

����"
��� ���� 1	� ���!� �
�+�	�� "�� �	 	��+�� �
�+���

1	����	� *	� ���� ����	�"��"	� �
�	�"��� ��� "!	� ��++
�#�

���	��"!�"���	��		�	��
��"!	��+	�
%
���
#��"
������	(�

)�� ������
,	�� "!	� �	"	��
�
�#� �	�
�
��$��0
�#�

%��"������	6�

• )!	����1	���%��
�
�����
#��"
����	/+	�"	��"��1	�

+	�%���	��-���
%�
"�
������	$�!�".��

• )!	�����1
�
"���%�"!	�"��#	"��++�
��"
����� 
%�"!	��

��	� "�� 1	� ��
�"�
�	�� ���� "!	� �	�#"!� �%�

��
�"	����	�+	�
����

• �)!	� � �
��1
�
"�� �%� �� "����%���	�(� &�� ���!� ��

���	��*	�����	��
������	��"����"!�"�*	�*
���"	���

"�� %� ��� "!	� �+"
��� "!�"� �	��	� "!	� � �
��1�	�

"����%���	����"!	��"!���"!	��+"
���"!�"��	��
�	��

�	 	��+
�#��	*���	�(��

2� �� #!��!�� ���% �%	���%� ��( ���!��
�!	%'�3��%	�!�� ��!	-���	��#��!��

�%�����#��

)!	� ������� 
�"	��	�
�"	� �	"�$���	�� ��	�� 
�� "!	�

%
���� )�3��� �	����"��"��� 
�� �� ����	�"
��� �%� ���	���

1��	�� ��� &'4B��$4��� -�	%	�	��	� ���	�� �%� 4+	��

�
�"�
1�"	�� ����	��
�#.� ���� ��� 4�=N�� >�
� 3�"
���

'	���"
��(�

�

��$4��� ��++�
	�� "!	� +��+	�� ����	+"�� %���

�
�"�
1�"	�� ���+�"	�� ���"	�� �+	�
%
��"
���(� ��$4���


�� 1��	�� ��� ��� �12	�"� �++����!(� )!	� ���"	�� 
��

�	���
1	��%����%
 	����+�	�	�"���� 
	*+�
�"��?&777$

��O�@�?�>)@���� 	�
�#����*	���1��
�	�����+	�"�����"!	�

���"�"	�!�
������+	�"�(��

&�	�"
%�
�#� "!��	�  
	*+�
�"�� ����*�� ���"	��

�+	�
%
��"
���"��	/+�	����"�"!	����	�"
�	�1�"��
�"
��"��6�

"!	�1��
�	���"!	�&'���++��"��-7�"	�+�
�	�F
	*+�
�".��"!	�

*��� 
"� 
�� ���	�	�� 
�� "!	� ���+�"	�� ���"	�� �	#���
�#�


�%����"
��� ���� %���"
���� -&�%����"
��� F
	*+�
�"��

���+�"�"
�����F
	*+�
�"��7�#
�		�
�#�F
	*+�
�".�����

"!	�"	�!�
�����!�
�	���%�"!	����+�"	�����"	����++
�#�

��	���	��
�	�	�"��-7�#
�		�
�#�F
	*+�
�"��)	�!����#��

F
	*+�
�".(�

)!	� 0	�� +�
�"�� �%� ��$4��� ��	� "!	� ��%%
�
	�"�

���+�	"	�	����%� 
"������	+"�������"���"��
�#����	������

"!	��	�	 ���	��%� 
"���1�"���"
����	 	��(�&��"!
��*����"!	�

��%"*��	� ���!
"	�"��	��%�"!	� ���"	��"��1	�1�
�"�����1	�

*	��� �+	�
%
	�� ��
�#� "!
�� �	"� �%� ����	+"�� ?�=
CC@�

?�=
5�@�?�
5�@�?4�3G@�?�3'&�34@(��

�

D�*	 	���"!	�	��1�"���"
������	���
"	�!
#!��	 	����	��

���� ��� ��"� ����*� "�� 	/+�	��� "!	�  	��� �	"�
�	��


�%����"
���"!�"�����1	�%�����
������%"*��	����	(�3�����

	/��+�	�� ��$4��� ��	�� ��"� ����*�"�� �+	�
%�� ��"
����

����	�"	��*
"!��+	��"
�����%���������������	��
"�����*�

�+	�
%�
�#� *
"!� 	���#!� �	"�
�� "!	
�� ���	���
�#�

53



�

�	���"
��(��
#��"
����++�
��"
������	�����1�
�#���"�"!	�

�		�� %��� %�����
,
�#� ���
�#� 
��"���"
����� *!
�	�

�	��
�
�#� �"������� ���� +��"%���$
��	+	��	�"(� 3�"
���

'	���"
���"���	����"�"��1	�"!	��
#!"�����
��"	�%���"!
��

��
"	�
��(�

�

E	�"!	���!��	�"�� 
�"	#��"	�3�"
���'	���"
����	"�$

���	��*
"!���$4����	"�$���	�(�

E	�
�	�"
%
	���!��	����������������	+"��%����	��!�

�"�������� ���� �
�+���	�� ����#
�������"
��
"�� %������	�

�"�������"�*�����"!	��"!	���
(	(�%����"!	����	��1�"���"�

����	+"�"�*�����"!	����	��	"�
�	������	+"(�

�

3�����	/��+�	��*	�*
���%��������"!	����+�"�"
�����

 
	*+�
�"�� *!
�!� 
�� "!	� �	�"���� 	�	�	�"� �%� ���� "*��

�	"�$���	��� 
�"	#��"
��(� I���"
��� +�
�"�� *	�	�


�	�"
%
	�� "�� ��!
	 	� "!	� ���+�
�#� �%� "!
�� ��$4���

 
	*+�
�"�*
"!�3�"
���'	���"
���?'7��5�@(�

&%�*	�����
�	��"!	���$4�������	+"���%�3�"
�������

4+	��"
���� ������
�#�"��"!	�4��� �"�������� ���412	�"�

!��� ���	!� 
����*!
�!� 
�� �	%
�	��1�� �� �	"��%�3�"
����

� �������3�"
���
��;���	"!
�#�*!
�!�!�++	��;(��

&�� 3�"
��� '	���"
���� "!	� 3�"
��� ����	+"� 
�� �� %
��"�

������ ��	�� ���� 
�� ��"������"!	� %�����	�"�������	+"��%�

"!	�3�"
����+��0�#	(�3��3�"
��� 
�� �	%
�	��� 
��3�"
���

'	���"
���� ��� ;�� 1	!� 
����� �+	�
%
��"
���"!�"� ��"�����


�+�"��"��+�����	���"+�"�;(�7 	��
%�1�"!��	%
�
"
�������

��"��"�
�"���	/+�	���"!	����	��	���"
���
"��		����1 
����

"!�"�"!	�4��� �	%
�
"
��� 
�����	��1�"���"����� 
�����	��

"!	���	�#
 	��1��3�"
���'	���"
����"������(�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4��"!	��"!	��!�����
��4�������&�"	�%��	�
�����+��	��

�%�&�"	���"
����������%�"!	����	�"�+	�-�	1�
����'��
�	���

������4.(�3��4+	��"
���!��� �� �
#��"��	� �	%
�	��1�� ��

���	� ��� *	��� ��� +����	"	��(� &�� >�
�� ��� �'��
�	���

-�	%
�	�� 
�� "!	� G��	� +��0�#	.� ����	�+����� "�� "!	�

�+	�
%
��"
����%������-��(�&"�!��������	�����,	��������

+����	"	��� 
�!	�
"	�� �	�+	�"
 	��� %���� "!	�

������������� ���� +�-
/	��
���
�#���� �1�"���"�

�����	�(� 3� ���-��� 
�� 
�+�	�	�"	�� 1�� �� ������#���

-+��0�#	� 3�"
���B3�"
��� ������"
��.(� )!	�� *	� ����

	��
��� ��+� "!	� 4����'��
�	��� ����	+"� "�� "!	� >�
�

�'��
�	��(�

�

4�� �
#��	� ��� "!	� ;4+	��"
��;� �	�"��#�	� �	+�	�	�"��

1�"!�"!	�>�
�����"!	�4���4+	��"
�������	+"�(�)!
��

��
��	��	�"��#�	 �	+�	�	�"������%
��"�2���"
���+�
�"�����
	��1�	�� ��� "�� �
�0� "!	� "*�� �	"�$���	��(� )!	� �	�����

2���"
���+�
�"�
���	+�	�	�"	��1��"!	�;3�"
��;��	�"��#�	��

*!
�!�������
�0��"!	�"*���	"�$���	��(�

)!	� %
���� �	"�$���	�� 
�"	#��"
�#� 4���

G��+�"�"
����� 
	*+�
�"��	"�$���	������>�
�3�"
���

'	���"
����	"�$���	��-�
#��	��.�
����*����+�	"	�����

�� 	��� 1�"!� "!	� ��%"*��	� ���!
"	�"��	� ���� "!	� ���
�#�


��"���"
���� ����*
�#� �� 1	!� 
��� �+	�
%
��"
���� "!���

�+	�
�#� "!	�*���"�*����� �����+�	"	����	� #	�	��"
���

%�������	��(�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Operation InterfaceTemplate
Causality : OperationCausality

Signal InterfaceTemplate
Causality : SignalCausality

FlowInterfaceTemplate
Causality : FlowCausality

Flow

Annoucement

Invocation
Name : String

Terminaison
Name : String

1..n1 1..n1

Terminated

Interrogation

1..n

1

1..n

1
Has Inv

1..n

1

1..n

1 Has Ter

OperationSignal

InterfaceTemplate

Interaction

1..n

1

1..n

1 Consists of

Parameter
Type : any
name : String

Signature
name : String
numberOfParameter : Int

11 11

Has

0..1

0..n +composed_Of

0..1

0..n

�P��+	�
%
��"
����

P�+	�
%
	���

���

ModelElement
(from Core)

PrimitiveAc
tion

Classi fier
(from Core)

Pin

multip li ci ty : Multipl icity
ordering : Orderi ngKind 0..1

0..*

+type

0..1
0..*

DataFlow

ControlFlo
w

InputPin

1 1

+destinati on

1 +fl ow1

OutputPin

1

0..*

+source1

+fl ow0..*

Method
(from Core)

Procedure

language : Nam e
body : String
isList : Boolean

0..*

0..1
+resul t 0..*

{ordered}
+procedure

0..1

0..*

0..1

+argum ent 0..*
{ordered}

+procedure

0..10..* 0..10..*

+body

0..1

Binding Object

ComputationalObject

0..n

0..n

0..n

0..n

Primitive Binding

Behavior

Action

isReadOnly : Boolean

0..*

1

+consequent

0..*

+predecessor 1

1

0..*

+successor

1

+antecedant0..*

0..*

0..1

+inputPin 0..*

{ordered}

+action

0..1

0..*

0..*

+/avai lableInput

0..*

0..*

0..1 0..*

+action

0..1

+outputPin

0..*{ordered}

0..*
0..*

+/avai lableOutput

0..*
0..*

1

0..1

+action 1

0..1

31�"���"
�����((��P�1�"���"
����

P�	���
1	����

���� �

������	�"
����%�

���

�(��

��� ���

5((��

5((��

Figure 4: An extract of the final meta-model coupling RM-ODP Computational viewpoint and 
UML Action Semantics 

54



�

4� "���(� �!	%'� � ����! ����!��

�%#&��5"%�� �! � � ���'����(� #!3!'�

- !( �������!�6�,��

)!	� "����%����"
��� +���	��� �	�
	�� ��� ���	��

"����%����"
��� "	�!�
��	�(� )�3��� +��"�	��� ��	�


� �� 	��
��"!	�4�=�
�
"
�"
 	�%����"������
,
�#����	��

"����%����"
��� "	�!�
��	�� 0��*�� ��� �4�� QBFB)�

�	��	�"� %��� ���+����(� &�� "!
�� ���"	/"�� ���	� �%� "!	��

���	�����	 	��+	��"!	
���*��"����%����"
���	�#
�	(�

)�3���+��2	�"�"!���!���	/+	�
�	�"	��"!�		�"�+	���%�

"����%���	���� *!
�!� ��	� ����1��	��������	��	/+�	��
�#�

����	�+���	��	�1	"*		������	+"���%�"*���	"�$���	���

���*
"!
�����	"�$���	�6��

• ���	�� &�� 3�"
��� -�&3.�� 1��	�� ��� �� '4�)$

�3&�)�"���6�"!	����#��#	�
��%������	�����"
 	�����


��1��	�����+�	�
��"	���#
������

• )�
� <� %���	��� ����	�� �)�3��� $� �� 1��	�� ��� ��

�����	�)�������"���6�"!	����	��!� 	����	�����"
 	�

�
#��"��	��������
�+	��"
 	�1����?�7
@��

• 3""�
1�"	� =�������6� "!	� ���	�� ��	� ��"!	��"
��

	/+�	��
����
��''
�?R3')@�?R�>)D@(�

)!	����	����	�	/	��"	��1��"����%����"
���	�#
�	��
��

���+�
���	�*
"!�"!	��"���"��	��!�*��
���
#��	��(�

�
�
���
�����


�
��
��

����������

��

�����

�	%
�	��1�
�	%
�	��1�

��/
��

�����

��
���

�����

����
������
��.�

��/
�����

����
������
��.�

��
������

�
�
���
�����
�

��7���������


���������

�
�

Figure 5: Model transformation process 
�

3��� "!�		� �++����!	�� ����*� ���+��
�#�

"����%����"
����� "�� "���	� ����	+"� 	 ���"
��� ���
�#�

"����%����"
����"���	��	�"!	�"����%���	������"��	��"�+��"�

�%� 
"(� 4���� 3""�
1�"	� =�������� ����*� 
�%	��
�#�

���
%
��"
���� ��"���"
������� *!	�	��� �&3� ���� )�
�

��	� "!	� ��	�� "!�"� ���� �%%	�� �� ��	�� %�
	����� �����	"	�

��"�"
��(�

3�� �!�*�� 
�� �	�"
��� &&�� �� �
#��"
��� 
�� "�+
������

�
 
�	�� 
�� "!�		� ��1$+���	��	�(� 3�� ��� 	/��+�	�� *	�

+�	�	�"� !	�	� "!	� "����%����"
��� �%� ���+�"
�#�


�%����"
���%����G4�4
�
�"��I� ��*!
�!�*���+��"��%�

"!	��55���	����"��"���-�
#��	�8.(�

�

�
Figure 6: Transformation sub-process for 

computing information 

)!
�� "����%����"
��� 
�� ���+��	�� �%� �	 	���� �"	+�(�

)!	� %
��"� ����
�"�� 
�� +���
�#� �����	����	� %����G�1���

+��#����(� )!
�� �+	��"
��� ����� ����
�"�� 
�� �	�	�"
�#�

�	�	 ��"� ���+�"
�#� 
�%����"
��(� E	� 	/"���"� ���"����

%��*� ���	��� 1�� ��	� �%� ��
�
�#� "	�!�
��	�(� �	���"�

���	�����	�1��	�������+��"%�����+	�
%
���	"�$���	��%���

G�1��� �����	� ���	�� G�1��'	�)�3��(� )!
�� �	"�$

���	������1	�����
�	�	����������"
����	"�$���	������

�	%
�	� ����	+"�� ���!� ��� G�1�����#�����

G�1��F��
�1�	��"��� G�1������	���	�� &%�� E!
�	��

3%%	�"�"
����G��+��
�����	"�(�

)!	�%����*
�#��"	+�"����%����G�1��$��
	�"	�����	���


�"�� +��"%���� 
��	+	��	�"� ���	��� 1��	�� ��� "!	� ��$

4��B3�"
��� '	���"
����	"�$���	��+�	�	�"	�� 
�� S&&&(�

)����%����"
��� ���	�� ��	� 	/+�	��	�� 1�� ��++
�#�

G4�4
� �	"�$���	�� ����	+"�� "�� 3�"
��� '	���"
���

�	"�$���	����	�(��

�

�	*���++
�#����	�6�

• G�1�����#������G�����

• G�1��F��
�1�	��"����3""�
1�"	�

• G�1������	���	����	"!���

• G�1��'"�"	�	�"����0���=���+3�"
���

• &%���G���
"
����3�"
���

• E!
�	���
��+3�"
���

• 3%%	�"�"
�����3��3""�
1�"	F���	3�"
���

• 3�
"!�	"
�7/+�	��
�����3++������"
��3�"
���

• G��+��
����<�3++������"
��3�"
���

�

3�"
���'	���"
�������	+"����	���
"	��
�
����"��I� ��

��"
���� ����	+"�(� )!	�	%��	�� *	� �	�
�	�� "�� �����

����
�	�� "!	� ��$4��B3�"
��� '	���"
��� �	"�$���	��

��� �� "��#	"� �	"�$���	�� %��� "!
�� "����%����"
��� ��1$

+���	��(� )!	� ���"� �"	+�"!��� ����
�"�� 
�� #	�	��"
�#� "!	�

I� �� �����	� ���	� %���� 
�"	��	�
�"	� ���	��(� 7��!�

G�1���+��#����
��"������"	�������I� �������(�

)!	� �	���"
�#� +��#���� 
�� �	�#	�� *
"!� I� �� ���	�

#	�	��"	��1���"!	��"����%����"
�����1$+���	��	�(��
����

+��#����� ���� 1	� 1�
�"� ���� ���"�
�� ���� �	��
�	��

%���"
����
"
	�� 	/"���"	�� %���� G�1��� +��#����(�

D�*	 	��� "!	� #	�	��"	�� I� �� ���	� �"���� 	/�	��
 	���

KG�1��$��
	�"	�L(� )����%����"
��� ���	�� ���� 1	�


�+�� 	��"��#	"�1	""	��I� ��+��#����(�

8� #!�#'"��!����	��" �&% �* ! +��
�

)!	� )�3��� +��2	�"� !��� �	����"��"	�� !�*� "�� "�0	�

�� ��"�#	� �%� "!	�	�	�#
�#� ���	�$��
	�"	��"	�!�
��	��

"�� %��
�
"�"	� ����	��
 	� �
#��"
���� *
"!
�� �� ���#	�

���+���(�3��*	��	�"
��	��
��"!	�
�"�����"�����	�"
����

"!	� ���"� �%� 1�
��
�#� �� ���	�$�*��	� �
#��"
���

%���	*��0�����1	�!
#!��1�"��	"�����%� 
� 	�"�	�"�����

55



�

1	���
�0���1	�+��
"
 	� 
%�"!	����+����!���"��+	�%����

 ��
���������	��
 	��
#��"
����"��"�0	��� ��"�#	��%�"!	�

�	*�"	�!����#
	�(�

�

)!	� )�3��� +��2	�"� %
���� �	���"�� *	�	� ��
���� ��

�	"!�����#������ ���!
"	�"�����+�
��
+�	��"!�"�!	�+��"��

�++��� "!	� 1	�"�+���"
�	�� %����
#��"
��� +��2	�"�� <� �
0	�

*	��$0��*�� �
#��"
��� +�""	���(� )!	� 	/+	�
�	�"��

��!
	 	�� ���
�#� "!
�� +��2	�"� !� 	� ����*	�� '4�)$

�3&�)�"�� 
�+�� 	�"!	
���
#��"
���"����� ����"��*
�	�


"���%%	��"�*������"!	���
#��"
������0	"�����*!
�!�"!	�

���+���� ���	���� !��� 0��*$!�*� �"��	�� 
�� ���	���

-�4�)�3�� %��� 	/��+�	.(� E	� �!����� ��"	� "!�"�

)�3��� %		�1��0� 
�� ���	�� "����%����"
��� !��� �����


�%��	��	�� "!	� 4+	�QF)� �	�+���	� -"!	� ��� ����	��

;��	��!���1�
��
��;.�"��"!	�4�=N��QBFB)����(�

�

)!
��*��0�!�����������	���%��
"%����""	�+"�"�����1
�	�

"!	�!
#!$�	 	�����!
"	�"���������	+"���%���$4���*
"!�

��*$�	 	�����+�"�"
���������"���"��1�
�#�1��"!	�3�"
���

'	���"
��� �"������(� )!
�� 
�"	#��"
���!���+	��
""	�����

"����	� �
�	�"�����$4��� ��� ��� 
�"	��	�
�"	����#��#	�

%���"!	��	+�	�	�"�"
����%�"!	��++�
��"
����"!�"� ��	�+��"�

�%�"!	� 
�%����"
��� ���"	���%� ���	�"	�+�
�	�� ����*!
�!�

������1	���12	�"�"����
�"	����	�����	 ���"
��(�

�

E	�1	�
	 	�"!�"�"!	�	�
���"
�������"��%��	�	���!�*��0�"!�"�

�		��� "�� 1	� ���	� 
�� "!	� %
	��� �%� 
�%����"
��� ���"	��

�
#��"
��(�&��+��"
�������*	��		��"���"�������������
%��

"!	��"��"	#
	��"!�"�����
�+�� 	�"!	�������
���%�"!	����	�

"!�"� 
�� �	 	��	�� ��� �� ���	�(� )!	� �
%%
���"� +��"� �%� ��

�
#��"
��� 
�� �"
��� "!	� �1
�
"�� "�� +�����	� !
#!$�	 	��

���	���%������*$�	 	�����	(�

('!��� )�

��'6� ���
����++
�#�'�++��"�

7�4G�6� 7�"	�+�
�	��
�"�
1�"	��412	�"�G��+�"
�#�

&'4�6� &�"	���"
����� 4�#��
,�"
��� %���

'"������
,�"
����

��3�6� ���	����
 	��3��!
"	�"��	�

�4��6� �	"��412	�"����
�
"��

4�=�6�� 412	�"�����#	�	�"�=���+�

�&�� ���"%����&��	+	��	�"����	��

�'�� ���"%����'+	�
%
�����	��

QBFB)�6�� Q�	��BF
	*B)����%����"
���

����6�� �	��	�"��������+�����

��$4���6� �	%	�	��	� ���	�� �%� 4+	�� �
�"�
1�"	��

����	��
�#�

'�7��6� '�%"*��	� ����	��� 7�#
�		�
�#� �	"�$

���	��

>�
�6� �>�
%
	�����	�
�#�
��#��#	�

A�&�6� A�
��	"���"��&�"	��!��#	�

A'
)�6� 	A"	��
1�	� '"��	�!		"� 
��#��#	�

)����%����"
���

E �G�6� E�����E 
�	�E	1�G�����"
���

 %�% %�#%��

93%':��(��	�����	���(��	�"
	�6������7�4G����+��	�"��"��GG��

���+��	�"�6� �� +�	�
�	� ��++
�#� �+	�
%
��"
��� -�55�.(� ��� ����$�

�������,,���=�	��1�	�������	(�
�G'���58�'+�
�#	��-�55�.�

93(';;:� A(� ������� �(�(� =	� �
�� ���� �(� 
	� �	��
���� K>�
�#� "!	�

>�
� 
��#��#	� "�� 7/+�	��� "!	� 4��� 7�"	�+�
�	� G���	+"�L�� 
��

����		�
�#���%�"!	�����&�"	���"
�����7�"	�+�
�	��
�"�
1�"
�#�412	�"�

G��+�"
�#� G��%	�	��	� -7�4GNCC.�� &777� ��	��� -7�.�� ����!	
���

=	�������'	+"	�1	���CCC�

93('<�:� A(� ������� �$�(� =	� �
��� �(� 
	� �	��
��� K4�� "!	�

G���"���"
����%��
�"�
1�"	����$4����+	�
%
��"
���L�����		�
�#��%�

"!	� )!
��� &�&�� &�"	���"
����� E��0
�#� G��%	�	��	� ��� �
�"�
1�"	��

3++�
��"
��������&�"	��+	��1�	�'��"	���-�3&'��55�.(�

93'<�:�A(���������(�
	��	��
����K&�%����"
���'��"	�����!
"	�"��	�

*
"!���$4��6������$"!	$%
	���	/+	�
	��	L�����		�
�#��%�"!	�4+	��

�
�"�
1�"	�� ����	��
�#6� 7�"	�+�
�	�� G��+�"�"
���� R��*�	�#	��

7�#
�		�
�#������	��
��"
���-E44��7GR7���55�.(�++�O$�O(�I��	�

�55�(�

9	���3�!:� 3(� �
����"�� �(� �	���� I(� 
	� �	��
���� I(� �	��
��� �(�

)�� 	����� T'+	�
%�
�#� ��� &�%����"
��� '��"	�� ���!
"	�"��	� *
"!�

�3'&�34�� �� �"������� 1��	�� �	"!��L�� ����		�
�#� �%� "!	�

&�"	���"
�����G��%	�	��	����7�"	�+�
�	�&�%����"
���'��"	���-&G7&'�

�55�.�

9�%%%��2=�:� &777� T� �	����	��	�� +���"
�	� %��� ���!
"	�"�����

�	���
+"
����%���%"*��	$
�"	��
 	����"	���U�&777�'"����O�<�555(�

9��!;4:�&'4B&7G�&'� �5O�8$/��&)>$)��	�(AC5/� �4+	���
�"�
1�"	��

����	��
�#$�	%	�	��	����	�����"�/���CC�(�

9��!$<<$:� &'4B&7G� &'� ������ 4+	�� �
�"�
1�"	�� ����	��
�#�

�	%	�	��	����	��<7�"	�+�
�	�
��#��#	�������55��

�9+���:� >(� R��"	��6� 4��	�	�� 3""�
1�"	�� =�������(� ���
�

��&���
�	�
�-�CV5.����-�.6����C$��8�

9+�"�&:� ��(� R��"!6� '	���"
��� �%� ���"	/"� %�		� ���#��#	�(�

�
�-��
�	�
���.)���)��-���.�-�C8V.�

9�	�:�T����	����
 	��3��!
"	�"��	�<�3��!
"	�"��	�1�����4��'G�

U�<������	�"����1	�������B�55�$5O$5��<�4�=$�55��

9�	�(:� T� ��3� =�
�	� U� <� �����	�"� ���1	�� �1B�55�$5�$5�� <�

4�=$�55��

9�!�:� 4�=(� K�	"�$412	�"� ���
�
"�� -�4�.� '+	�
%
��"
���  �(�L(�

)G(� �����	�"� %�����B5�$5�$5�� 4�=(� 3+�
�� �55�(�

!""+6BB***(��#(��#�

9!	�#:� �(�(� =	� �
��� 4�3G� 6� 3��3#	�"$4�
	�"	���	"!�����#��

���	�� ��� 4��� I������� �%� 3�"�������� 3#	�"�� ���� ���"
$3#	�"�

'��"	����R��*	����1�
�!	���-I��(��55�.�

9-"�:�I$�(���"�����T�3��!
"	�"
�#�*
"!���$4���U����	�"
�	$D����

�55��

9�-%�:�'�%"*��	� ����	���7�#
�		�
�#��	"����	��� ���%"�3��+"	��

'+	�
%
��"
������ 	�1	���55��

9�% -<2:� �(� �	�������� '(� ���,
"����� ���� �(� �(� =	� �
��� �����

��3� ���"%���$'+	�
%
�� ���	�� "�� G��	� =	�	��"
��6� G��+�
�#� �%�

��$4��� ���� >�
� 3�"
��� '	���"
��� '"��������� "�� �++	��� 
��

����		�
�#�� �%� "!	� &�"	���"
����� G��%	�	��	� ��� '�%"*��	�

7�#
�		�
�#� �	�	���!� ���� ����"
�	� -'7��N5�.�� 
��� F	#���� >'3��

I��	��55��

9"�':�6�;4�=�>�
%
	�����	�
�#�
��#��#	�'+	�
%
��"
��;��412	�"�

����#	�	�"� =���+�� ����!� �55��� 4�=� )G� �����	�"� >�
�(��

-3�"
���'	���"
��.�%�����B5�$5�$5���***(��#(��#�

9>��:� 4�=� KA�
� �	"���"�� &�"	��!��#	� -A�&.�  �(�L(� )G�

�����	�"���BCC$�5$5��4�=(��CCC(�!""+6BB***(��#(��#�

9>�':� 7/"	��	�� ���0�+� 
��#��#	� F	��
��� �(5�� E�G�

�	��������"
���

!""+6BB***(*�(��#B)�B�CCVB�7G$/��$�CCV5��5(+�%�

56



Challenges for ODP-based infrastructure for managing dynamic B2B networks

Lea Kutvonen
Department of Computer Science, University of Helsinki

Lea.Kutvonen@cs.Helsinki.FI

Abstract

The availability of open networks and the rise of service-
oriented architectures have created an environment where
collaboration between enterprise ICT systems becomes
technically plausible. The current challenges for collab-
oration management focus on ensuring the semantics and
pragmatics of collaborations. It is especially interesting
to capture the inter-enterprise business processes in such
a way that autonomous computing systems can control and
manage collaborations of that form. Furthermore, manage-
ment of open collaborations requires shared concepts and
protocols for trust management.

The reference model of open distributed processing (RM-
ODP) standards deal with distributed information process-
ing systems that are exploited in a heterogeneous environ-
ment, under multiple organizational domains. The stan-
dards provide, besides general terminology and viewpoints
for division of system specifications, a model for an infras-
tructure that supports distribution transparent communica-
tion at application level.

Our contributions to the field involve a B2B middleware
architecture for managing application level collaborations
in a evolvable and dynamic way. The work is consistent with
RM-ODP, but extends the management and communication
facilities. This paper discusses the challenges rising from
this approach.

1 Introduction

The globalization of business and commerce makes en-
terprises increasingly dependent on their cooperation part-
ners; competition takes place between supply chains and
networks of enterprises. In this competition, the flexibility
of enterprise information systems becomes critical. The IT
systems and development teams should be able to respond
in a timely way to the requirements arising from the chang-
ing co-operation networks and their communications needs.

The availability of open networks and the rise of service-
oriented architectures have created an environment where

collaboration between enterprise ICT systems becomes
technically feasible. The current challenges on collabora-
tion management focus on ensuring the semantics and prag-
matics of collaborations.

It is especially interesting to capture the inter-enterprise
business processes in such a way that autonomous comput-
ing systems can control and manage collaborations of that
form. We need automated processes - automated within rea-
son and trust - for creating inter-enterprise relationships so
that the selected business processes can span this new, tem-
porary business network. In these processes, fundamental
tools are those that ensure interoperability in a technically
and semantically heterogeneous environment. On the other
hand, we need environments where new business process
models can be developed, published, and evolved. Business
applications, business needs, and business network topolo-
gies change rapidly, and that change has to be reflected by
new business process models. Even more frequently there
are pressures on changing the membership of an existing
business network - a company fails, another provides a bet-
ter quality service, yet another has more robust suppliers.

This paper describes how the foundations of RM-ODP
(the reference model of open distributed processing) [8, 9]
have been expanded and interpreted in the web-Pilarcos
project for the benefit of open business network manage-
ment. The goal of the project is to develop middleware
services that support inter-organizational co-operation. The
web-Pilarcos project aims at managing dynamic communi-
ties in a way where membership requires technical, seman-
tic and pragmatic interoperability. The architecture design
specifically addresses the needs of independent evolution of
computing platforms, application services, and operational
policies in each enterprise involved. The solution gives spe-
cial emphasis to runtime expression of pragmatic aspects.
The perspective taken is of the interoperability middleware
developer. The concepts and services of the interoperabil-
ity middleware become available for applications, both for
service providers and service users.

In addition, this paper discusses some of the challenges
rising from the need for new, global infrastructure services
for B2B collaboration management. Some of these chal-

57



lenges can be addressed by the ODP development com-
munity itself, some others need to be resolved through
industry-driven consortia.

Section 2 outlines the required functionality for es-
tablishing eCommunities, controlling their behaviour, and
changing their behaviour and structure during their lifetime,
drawing attention to the challenges for B2B middleware.
The required concepts and their relationship to RM-ODP
concepts are discussed in Section 3. Section 4 briefly de-
scribes a B2B middleware architecture and services that are
partially addressed by RM-ODP functions but have been en-
hanced and refined by our work. The paper is concluded by
challenges for future work.

2 Composing and controlling eCommunities

Our essential goal is to support dynamic collabora-
tion between service components (even, enterprise appli-
cations), across autonomic enterprises. The basic idea is
very close to the ones behind virtual enterprises (VEs) or
extended enterprises, and builds on loosely-coupled, au-
tonomous services.

Traditional extended enterprise models evolved from
the intra-organizational integration of enterprise applica-
tions. The B2B application integration solutions lead to
tight coupling of applications based on data-oriented inte-
gration, application-interface oriented integration, method-
oriented integration, portal-oriented integration or process-
integration oriented integration [22]. On the other hand,
ERP systems were burdened with heavy development cycle
overhead, as enterprise application changes, IT computing
platform changes, and business process changes were not
supported. The next wave of systems took up a more dy-
namic approach [31]. The second phase ERP systems allow
dynamic configurations of applications with peer-to-peer
relationships. Also, the business process control aspects
and integration of workflow management have strengthened
the area. Furthermore, distributed business process manage-
ment systems have started to emerge.

A move from static, monolithic extended enterprises to
dynamically managed, loosely connected VEs has taken
place. However, the connection between VE management
mechanisms and business process management is not yet
well developed.

The challenges met with the loosely-coupled, open col-
laboration networks are three-fold.

1. The participating enterprises should be autonomous,
and furthermore, the services becoming part of the col-
laboration network should be autonomically adminis-
tered.

2. The B2B middleware should provide automatic facil-
ities for ensuring interoperability within the managed
collaboration networks.

3. The B2B middleware environment should provide a set
of concepts for managing collaboration network mem-
bership, conditions, and dynamics. These concepts
should be supported by pervasive middleware services.

Autonomy is one of the key design aspects. It spans

� selection of computing platform, and schedule of tech-
nical changes in it,

� selection of service components put externally avail-
able,

� evolution life-cycle of each offered enterprise applica-
tion, including withdrawal of services already part of
some VEs,

� decisions on the kind of collaborations that are entered,
� decisions on the kind of partners are accepted, and
� decisions on leaving existing collaborations.

Within each collaboration, situations may rise where the op-
erational goals of the collaboration and an enterprise contra-
dict. In contradictory situations, enterprises should be auto-
nomic in deciding whether they act according to their inter-
nal interests (and expect the sanctions of contract breaches)
or comply with the VE rules.

The autonomy challenge is addressed by the use of ser-
vice oriented architectures. For example, Web Services
technologies provide a suitable frame for hiding technical
processing differences. The engineering and deployment
detail of service provision is left for the enterprises to man-
age, and between enterprises, only such service features are
made visible (as metainformation) that are relevant to inter-
operability and managing dynamic changes in communica-
tion.

Another essential autonomy requirement of enterprises
is that they should be able to determine the set of potential
partner enterprises, a set of trusted partners. Trust informa-
tion services should become one of the global infrastructure
services (compare: DNS name service is a global infras-
tructure service). Trust should be tagged to each resource,
client, and VE, and the levels of trust be dependent on the
socially and technically correct behaviour of the element,
as seen by others in the network. Trust management is an
integral part of a VE architecture.

Collaboration between service components or enterprise
applications require interoperability. Interoperability – i.e.
the effective capability for mutual communication of infor-
mation, proposals and commitments, requests and results
– requires technical, semantic and pragmatic interoperabil-
ity [5]. Technical interoperability means that messages can
be transported from one application to another, for example
using a common transport protocol, or other shared signal-
ing method. Semantic interoperation means that the mes-
sage content is understood in the same way by the senders

58



and the receivers. This may require transformations or other
manipulation of messages, based on shared ontologies. Fi-
nally, pragmatic interoperability captures the willingness of
partners for the actions necessary for the collaboration. The
willingness to participate has two sides: capability of per-
forming a requested action (for example, whether there is
an application method available or not), and policy dictat-
ing whether the available action should or should not be
performed (for example, a bank transfer handled after of-
fice hours).

The purpose of the B2B middleware is to provide a set
of collaboration related concepts for application compo-
nents to use, without the need of application software to
include complex routines for example for partner discov-
ery, interoperability guarantee, or change management. The
concepts include community, role within the community,
member of a community in a role, business process, pol-
icy, eCommunity contract, and contract breach, all of which
have their counterparts in RM-ODP standards, as described
in Section 3.

The most prevalent concept for our collaboration man-
agement architecture is the model of dynamic collabora-
tions themselves, eCommunities. An eCommunity is con-
trolled at operational time by an eCommunity contract. The
eCommunity contract essentially uses a set of business pro-
cess models as a model of the behaviour of members within
the eCommunity. The collaborating services from each en-
terprise are aware of the business process model used be-
tween them, but do not implement the control of it. Instead,
the control is left for B2B middleware services. These mid-
dleware services run metalevel protocols for controlling the
eCommunity structure and state, including reports of con-
tract breaches.

The life-cycle of an eCommunity has two modes:

� establishment phase supported by a breeding environ-
ment that ensures selection of appropriate partners and
the interoperability of involved services, and

� operational phase supported by reflective control envi-
ronment that manages dynamic changes in the eCom-
munity, and detects and resolves breaches of contracts.

The services of the breeding environment may be used
even after reaching the operational phase, as the reflective
control facilities may call upon restructuring of the eCom-
munity. The breeding environment should allow as open as
possible route for enterprises to join in, giving an effective
market for new partners. It provides facilities to a) populate
an eCommunity to be created, b) negotiate eCommunity es-
tablishment, and c) commit eCommunity establishment.

The eCommunity management services at operational
time are provided by the eCommunity contract object itself
thought the following operations: a) terminate eCommu-
nity, b) notify of entering compensation process, c) notify

of detected eCommunity contract breach, d) query eCom-
munity contract metainformation and eCommunity status in
terms of progress in the business process, membership, and
breach management process definitions, e) repopulate and
negotiate an existing eCommunity; and f) for members to
join/leave an eCommunity role.

Access to these operations is made available at each plat-
form at each administrative domain, regardless of whether
the service is actually realized locally or remotely sup-
ported. (Different deployment models even open up new
electronic service market opportunities.)

The middleware services providing for these services are
discussed further in Section 4.

3 Refinement of RM-ODP concepts

The ODP standards provide for system architectures
that allow distributed information processing applications to
collaborate in a heterogeneous environment and under mul-
tiple organizational domains [7]. The ODP standards direct
systems to be built so that they support cost-effective inter-
operability of applications, despite their implementation us-
ing different platform architectures and resources. For this,
it is essential to accommodate system evolution and run-
time changes, and define a transparency support framework
for communication.

The RM-ODP provides a division of an ODP system
specification into viewpoints, in order to simplify the de-
scription of complex systems [9]. The viewpoint languages
each refine a set of general concepts defined for the ref-
erence model [8] The enterprise viewpoint language has
been further developed [16], as it brings in business related
aspects. Furthermore, the reference model defines struc-
turing rules and functions for a supporting infrastructure
for global computing. The functions that have been fur-
ther standardized include the trading service [10], naming
framework [12], type repository function [15], and inter-
face binding framework [11] together with the supporting
protocols [14].

In the web-Pilarcos architecture, we have tackled the
challenges of autonomy, interoperability, and suitable con-
cepts and services for managing eCommunities with these
tools. Conceptually, the terms service and service offer
management, community, federation and contract deserve
further attention.

The concept of service is missing from the RM-ODP
model, although it is mentioned in various term explana-
tions (e.g. object [8, 8.1]). We define service as an abstract
processing step that either creates, modifies, or consumes
information, from the point of view of its environment. Ser-
vices are made available at interfaces (seen from the com-
putational or engineering viewpoints) and defined by the
structural, behavioural and semantic rules of the interaction

59



involved (seen from the enterprise, information and compu-
tational viewpoints).

Services are provided by administrative domains, for ex-
ample by enterprises, departments or any independent ICT
systems. The administrative domains are the units of auton-
omy within our model. How engineering and deployment
of services are organized within the administrative domain
is hidden from the service users and B2B management ser-
vices. Only management functions within the administra-
tive domain, like node or object management, are involved
with the technology and engineering of these.

In RM-ODP, models of behaviour (including interactions
between objects and internal actions) are restricted to sig-
nals, announcements and interrogations, described using in-
terface signatures. Signatures reveal operation names and
data types, as well as parameters involved. However, for
business processes, more complicated choreographies need
to be expressed, although built on top of these basic prim-
itives. In addition, these primitive actions need to be at-
tached with nonfunctional features too, like QoS or trust.

For these challenges, enhancing RM-ODP with more
elaborate conversation models is not the right solution. In-
stead, tools for introducing and reflecting such models are
needed. Such models are specific to application areas, and
may need to evolve in time, or may be negotiable between
collaboration partners. In contrast to this, association of
nonfunctional features to interfaces should become an in-
tegral part of the RM-ODP model, but again leaving the on-
tologies of features and usable values open for extention.

For the use in eCommunities, the services can be pub-
lished by exporting service offers to a trading service. The
service offer represents details of the behaviour of the ser-
vice (what kind of application protocol needs to be followed
using it), and other information further describing the nature
of the service depending on the application domain.

The structuring rules of the web-Pilarcos style of service
offers is captured in Figure 1. The structure is more de-
tailed than can be found in the ODP trading function stan-
dard, which requires interface type name, interface refer-
ence, and some attributes as name-value pairs. What is to
be noted here is that the service offer captures aspects from
all five viewpoints, either as descriptions of the service to
be provided or as a requirement to be fulfilled by the envi-
ronment in the subsequent contract. This structure differs
from OWL-S and UDDI based solutions (e.g. [30]) by not
addressing the groundings (access details) or the actual lo-
cation of services. These locating aspects are only captured
by the eCommunity contract formed according the offers;
the grounding aspects are considered private for each en-
terprise. Only the interoperability-related features are re-
quired.

By capturing all viewpoint aspects into the service offer,
we address the interoperability ensuring challenge. Making
metainformation available in such structured way, we use

the interface matching mechanisms of the trading service
to match all relevant aspects of interoperability at the same
time. This of course applies only for static analysis; for ex-
ample for policies subject to further changes, only dynamic
monitoring can catch mismatches.

This kind of matching process requires that the service
offers are expressed in commonly understood terms in the
areas of business processes and services within that con-
text, nonfunctional features associable to processes or ser-
vices, and policy frameworks meaningful for the services in
question. In this area, some ontology creation tools exist,
but there is no consensus on what principle the ontologies
should be organized on.

service offer := ((interface syntax)
(interface protocol)
(information el format)
(nonfunct aspects)*)*
(policies)
(platform requirements)
(channel requirements)

interface syntax := <IDL specification> |
<WSDL specification>

interface protocol := <partial ordering
rules of operations
in syntax>

nonfunctional aspects:= <QoS offer> |
<trust requirement> |
<security mechanism name>

information element format
:= <schema>

policies := <policy framework
name> <policy name>
<policy value offer>

platform requirement := <platform name>
channel requirements := <channel type name>

<binding type name>

Figure 1. Structure of service offers.

The concept of community is used for describing the col-
laboration of several services. The ODP enterprise language
specifies a community as a configuration of enterprise ob-
jects with a contract on their collective behaviour [16,
5.1.1]. The community specification includes [16, 5.2]

� a set of roles; the role specification gives requirements
and restrictions for the behaviour of an object;

� rules for assigning enterprise objects to roles; the pol-
icy rules can address individual objects or relation-
ships between objects, and can make restrictions on
behavioural and non-behavioural properties of the po-
tential objects;

� policies that apply to roles; policy values act as se-
lectors for alternative behaviours for the objects – and
thus also for the community;

� description of behaviour that changes the structure or
the members of the community during its lifetime.

Each role [9, 9.14] in the community specification de-
notes a possible behaviour. The behaviour descriptions are

60



refined with policy statements indicating which parts of the
behaviour are prohibited, permitted or obliged to take place
and under what conditions.

A role can be populated by an object that represents an-
other community. In this way, larger systems can be com-
posed of subservices. Functional composition is better sup-
ported by inclusion of multiple community specifications
into a system specification and definition of the relation-
ships between communities.

A community specification may be divided into several
epochs, each epoch [9, 10.5] presenting a different set of
services supported by the community. For instance, a ser-
vice might have a configuration phase and an operational
phase; during the configuration phase only a management
interface is available, but during the operational phase the
actual service interfaces are also available.

The ODP community structure is used as a baseline for
defining eCommunity contract structure in web-Pilarcos.
The eCommunity contract has the structure that is outlined
in Figure 2.

The eCommunity contract structure is determined by the
selected business network model. This model is suggested
by the initiator of the eCommunity establishment. The mod-
els need to be available through a shared repository, so all
potential partners can assess whether the goal, structure and
terms of the community are acceptable.

Besides roles to be populated by services, the template
shows requirements for the binding objects that are needed
for realizing interactions between roles. For bindings, we
expect an explicit, open binding object [13, 1]. The binding
object provides a framework and interface for the commu-
nication service. The binding object also provides a man-
agement interface through with the internal structures can
be configured using the local communication facilities or
additional helper components. The benefit of this model is
that the requirements on shared platform services become
minimal: We need common understanding of interface de-
scriptions and common understanding of a few alternative
communication channel structures.

In addition to the metainformation contents, the contract
object provides operations for changing members and com-
munity structure.

For the purposes of web-Pilarcos architecture, we have
connected the role behaviour to a service behaviour. Thus,
assignment rules are directly related to import requests from
the trading service for suitable service offers from potential
members of the eCommunity. This is in line with current
trend of service oriented architecture (SOA) where the def-
inition of abstract service, service discovery, and semantic
composition of services are topical [25, 24, 24].

Service oriented architecture, and more specifically, web
services provide evidence for the industrial movement to-
wards independently developed and administered services.

� reference to the business network model;
� current epoch information;
� process for changing epoch;
� for each role

– assignment rules that specify the requirements on
� service type;
� nonfunctional aspects;
� restrictions on identity, participation on

other eCommunities, etc;
– conformance rules that are used for determining

conformance to the role which the assigned com-
ponent is in the role; similar as above;

� for each interaction relationship between roles

– channel requirements
– locations of the channel endpoints
– QoS agreement
– security agreement
– information presentation formats

� for each policy that governs the choices between al-
ternative behaviour patterns in the business network
model

– acceptable values or value ranges;
� references to alternative breach recovery processes;
� objective of the eCommunity (rules that can be used for

various nondeterministic choices in the eCommunity;
for example, what kind of attributes are more attractive
when selecting a new member, available info for these
rules is in service offers and in the business network
model and in policy values of this eCommunity)

Figure 2. eCommunity contract information.

The service itself has become the key element: the be-
haviour pattern, nonfunctional features, and contracting for
providing a specified service in a context. The context is
defined by an environment, including local and network re-
sources, availability of required services, etc.

As the business network model captures services in
terms of only their interface and external exchanges of in-
formation, the model is free from private information flows
and workflows within the service providing organization or
unit. This is a great benefit, as many industrial approaches
on inter-enterprise workflow and business process modeling
have reported that the current modeling languages and tools
enforce too tight coupling between partners [4, 27]. The
phenomenon is a natural consequence of the development
history through integrated ERP systems, to A2A integra-

61



tion, and further to process-aware B2B integration. The VE
approaches however do not yet have sufficient support for
business process management.

The basic ODP concepts introduce communities and
contracts as a way of expressing how the partners can reach
a shared goal. However, no notation or further refinement
has been given for expressing the goal or behaviour. We
have chosen to use an ad-hoc enterprise viewpoint language
for defining these aspects. The language resembles XML-
based business process modeling languages and workflow
languages; in practice, the service descriptions use en-
hanced WSDL descriptions [26].

We have not adopted the UML notations nor taken
MDA [28, 3] as a driving force for the design. As discussed
above, the focus in this work is not in the generation of ser-
vice implementations themselves, but in composing eCom-
munities from existing services. We do not use the term
reuse here, as the facilities for establishing collaborations is
the primary goal. Naturally, the descriptions required by our
infrastructure and those of MDA tools overlap, and this is
to be considered as a great benefit. However, there is a dif-
ference between the bias towards ergonomic modeling tool
view of the business network and the bias towards manage-
ment software beneath.

It should be noted that with this work, we do not drive
the standardization of domain specific business processes in
itself, but standardization of facilities that help in evolution.
A methodology where new standard processes or new sug-
gestions can be published and adopted efficiently is a more
persistent approach.

The ODP interface references and bindings [11] standard
discusses management of explicit binding objects. Intro-
duction of such binding objects with a set of selective trans-
parency support and nonfunctional aspects management is
needed. Many commercially interesting consortia recom-
mendations on the area of inter-enterprise workflows, web
services choreographies, and business process management
systems expect a transaction-aware communication layer to
appear. Although the current ODP standards create a place-
holder for a unifying structure, it is not concrete enough
to guide the isolated development trends for cross-platform
protocols and services in this area.

The RM-ODP defines <X> federation as a commu-
nity of <X> domains where there is a shared objective [9,
5.1.2,5.1.1]. A <X> domain is defined as a set of objects
with a shared controlling object over the characteristic fea-
ture X [9, 10.3].

In the web-Pilarcos architecture, we form federations be-
tween eCommunity management agents in administrative
domains. An administrative domain can be seen for ex-
ample as an enterprise, a division, or another unit: essen-
tially the domain is the unit of autonomy within our model.
The objective of the federation of eCommunity manage-

ment agents is collectively to form, maintain and use ap-
plication level services from their domains in the roles of
the eCommunity. As helpers, each agent has local manage-
ment services, such as node or object management, moni-
tors that are able to report breaches from the assumed inter-
action pattern, and binding factories. The shared goal of the
management agent federation is to keep the agreed eCom-
munity running according to the contract.

4 Open B2B infrastructure services for
collaboration management

In the web-Pilarcos environment middleware services for
B2B collaboration management fall into two categories: co-
operative management services for multidomain applica-
tions and local element management services [20].

The breeding environment services include only cooper-
ative services:

� The standard trading service [23] for maintaining a
repository of service offers, for the use of the enhanced
trader.

� The enhanced version of ODP type repository [6]
for holding relationship information between generic
types (service types, binding types, interface types)
that are technology-independentand used for matching
purposes and technology-dependent templates that are
used for instantiating the corresponding components
and objects [17]. This mapping information is created
by system programmers separately from business ar-
chitecture descriptions and service offers.

� The repository for publishing and relating various
business process models.

� The enhanced trader for populating business architec-
tures with selected components [21]. The business
process models contains roles as placeholders for ser-
vices, but the selection of services for neighbouring
roles is not independent, due to, for example, the need
for shared binding requirements.

� The federation manager for negotiating, maintaining
and renegotiating the eCommunity contract that repre-
sents an application instance.

The cooperative management services – enhanced trad-
ing, trading, type management, eCommunity management,
federated binding – are all services that have a local server
running in each domain. These active agents take care of
making requests to their peers in other domains, as there
is otherwise no authority to invoke management actions
in a foreign domain [18]. The requests carry contracts to
pass relevant meta-information that identifies what should
be done and how.

62



The operational environment services include both local
and cooperative services. The most essential cooperative
service is that of the eCommunity contract object itself, with
its management operations. The interface to the replicated
contract object is maintained by all eCommunity managers.

In traditional protocol systems, interoperability could
be verified statically, although with practical limitations
and with expense. However, the process models described
above cannot be fully verified any more. Two aspects, the
deontic guards on actions and pragmatic monitoring of re-
sources cause a situation where only some of the joint be-
haviour can be verified. For example, we can determine
non-interoperability if available functionality is not suffi-
cient for safe communication, leaving guards and pragmatic
decisions aside. Or, non-interoperability can be stated if
guards on actions are so contradictory that there are no ac-
ceptable traces through the process left.

Therefore, we need to add dynamic verification into the
system, meaning introduction of

� monitors that enforce enterprise policies on resources
(pragma) and notifies about discrepancies caused,

� monitoring of external service interaction confor-
mance to the business process, and notification if in-
consistent actions occur, and

� controllers of channels and notifications when channel
properties have changed in a significant way.

The local service management adds lifecycle services
and local bindings to this list.

� Service deployer for instantiating components for each
role according to the contract that represents the appli-
cation instance. The service deployer uses type repos-
itory information to map the contract onto appropriate
technology solutions [21].

� Binding factory for instantiating communication chan-
nels between components. Because no remote instanti-
ation service is supported across organizational bound-
aries, the binding factories at each computing sys-
tem involved must cooperate. Again, the factories use
repositories for mapping contract information onto ap-
propriate engineering solutions [21, 19].

� Implementation repository for storing software pack-
aging and maintaining their automatic installation
scripts.

The overall view to the operational environment is
twofold: First of all, the service components interact suc-
cessfully with their peers in the eCommunity through bind-
ing objects. We call this the real system. Secondly, there is
a level with a set of protocols for monitoring, configuring
and reorganizing the real system constantly. We call this
the metalevel. The relationship between these two layers is
taken from reflective system design.

In reflective systems [2], the metainformation constantly
describes the current real system structure, topology, state,
qualities, etc. The essential part of the system infrastruc-
ture services are those facilities that are needed to keep the
real system and the metadata in causal connection with each
other. This means that changes in metainformation need to
cause changes in the real system, and vice versa. For ex-
ample, if an eCommunity member fails permanently, the
eCommunity contract object reports that the member has
abruptly left the eCommunity. Furthermore, the eCommu-
nity contract object is proactive and starts the search for a
replacing member in the eCommunity. After commitments
from other members are received, the new member is joined
to the eCommunity contract, and consequently, the service
component is started up and bound to its peers through bind-
ing objects. Changes of metainformation can also be such
that they only take effect later in the real system. For exam-
ple, change in an enterprise policy is not necessarily effec-
tive immediately.

5 Conclusion

The above discussion shows that the RM-ODP concepts
are suitable for modeling enhanced system software ser-
vices for automated management of dynamic eCommuni-
ties. However, the standard definitions give fairly vague di-
rection to the work.

In the design, we have noted the need for further ODP
functions, such as

� business process model repository;
� community aware coordination functions; and
� trust management functions (build on top of security

functions).

Interoperability support mechanisms require definition
of new ontologies for defining terms and semantics for ele-
ments in the business or service models, and interoperability
related attribute sets to be used together with service types.
Similarly, ontologies for policy sets relevant for business
processes and resources would be needed.

Furthermore, some existing concepts and framework
standards need refinement. For example, concepts related
to service and various alternatives for explicit binding ob-
ject architectures were discussed above.

6 Acknowledgments

This article is based on work performed in the Pilarcos
and web-Pilarcos projects at the Department of Computer
Science at the University of Helsinki. The Pilarcos project
was funded by the National Technology Agency TEKES in

63



Finland, Nokia, SysOpen and Tellabs. In web-Pilarcos, ac-
tive partners have been VTT, Elisa and SysOpen. The web-
Pilarcos project is a member in national ELO program (E-
Business Logistics) [29]. The work is strongly integrated
with RM-ODP standards work, and recently has found an
interesting context in the FP6 INTEROP NoE collaboration.

References

[1] G. S. Blair, G. Coulson, N. Davies, P. Robin, and T. Fritz-
patric. Adaptive Middleware for Mobile Multimedia Appli-
cations. In Proceedings of the 8th International Workshop
on Network and Operating System Support for Digital Au-
dio and Video (NOSSDAV), 1997.

[2] G. Coulson. What is reflective middle-
ware? IEEE Distributed Systems Online,
2003. Area on Reflective Middleware –
http://dsonline.computer.org/middleware/RMaraticle1.htm.

[3] D. S. Frankel. Model Driven Architecture - Applying MDA
to Enterprise Computing. OMG Press, 2003.

[4] D. Hollingsworth. The Workflow Reference Model: 10 Years
On. Fujitsu Services, UK; Technical Committee Chair of
WfMC, 2004.

[5] INTEROP NoE, EU FP6. Interoperability research
for networked enterprises applications and software.
http://interop.aquitaine-valley.fr/.

[6] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. ODP Type Repository Function. IS14746.

[7] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 1: Overview, 1996. IS10746-1.

[8] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 2: Foundations, 1996. IS10746-2.

[9] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 3: Architecture, 1996. IS10746-3.

[10] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. ODP Trading function. Part 1: Specification, 1997.
IS13235-1.

[11] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – ODP Interface References and Binding, Jan.
1998. IS14753.

[12] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – ODP Naming framework, 1998. IS14771.

[13] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Interface references and binding, 1998. IS14753.

[14] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – Protocol Support for Computational Interac-
tions, 1999.

[15] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. ODP Type repository function, 1999. IS14746.

[16] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. ODP Enterprise Language, 2003. IS13235.

[17] P. Kähkipuro, L. Marttinen, and L. Kutvonen. Reaching In-
teroperability through ODP type framework. In TINA’96
Conference: The Convergence of Telecommunications and
Distributed Computing Technologies, pages 283 – 284. VDE
Verlag, Aug. 1996. Extended abstract.

[18] L. Kutvonen. Management of Application Federations. In
H. Konig, K. Geihs, and T. Preuss, editors, International
IFIP Working Conference on Distributed Applications and
Interoperable Systems (DAIS’97), pages 33 – 46, Cottbus,
Germany, Sept. 1997. Chapmann & Hall.

[19] L. Kutvonen. Trading services in open distributed environ-
ments. PhD thesis, Department of Computer Science, Uni-
versity of Helsinki, 1998.

[20] L. Kutvonen. Automated management of interorganisational
applciations. In EDOC2002, 2002.

[21] L. Kutvonen, J. Haataja, E. Silfver, and M. Vähäaho. Pilar-
cos architecture. Technical report, Department of Computer
Science, University of Helsinki, Mar. 2001. C-2001-10.

[22] D. S. Linthicum. B2B Application Integration - eBusiness-
Enable Your Enterprise. 2001.

[23] Object Management Group. OMG Trading Object Service
Specification, June 2000. OMG formal/2000-06-27.

[24] M. P. Papazoglou and D. Georgakopoulos. Service oriented
computing. Commun. ACM, Oct. 2003.

[25] M. P. Papazouglou and W.-J. van den Heuvel. Service-
oriented computing: State-of-the-art and open research is-
sues.

[26] T. Ruokolainen. Component interoperability. Master’s the-
sis, University of Helsinki, Department of Computer Sci-
ence, 2004. In Finnish.

[27] K. Schulz, K.-D. Platte, T. Leidig, R. Guggaver, K. Elams,
A. Zwegers, F. Lillehagen, G. Doumeingts, A. Berre,
M. Anastasiou, M. Nunez, R. Goncalves, D. Chen, and
M. Missikoff. A gap analyisis – interoperabilty develop-
ment for enterprise application and software - road maps.
Technical report, 2003.

[28] J. Siegel. Developing in OMG’s Model-Driven Architecture.
Object Management Group, Nov. 2001. White paper, revi-
sion 2.6.

[29] TEKES. ELO program, 2003.
http://www.tekes.fi/programs/elo.

[30] The Intelligent Software Agents Group The Robotics In-
stitute Carnegie Mellon University. Semanatic matchmak-
ing for web services discovery. Technical report, 2003.
http://www.damlsmm.ri.cmu.edu/.

[31] M. Ulieru and R. Unland. Emergent holonic enterprises:
How to efficiently find and decide on good partners. Inter-
national Journal of Information Technology and Decision
Making, 2(4), Dec. 2003.

64



Proposal for a Model Driven Approach to Creating a Tool to Support the 
RM-ODP 

D.H.Akehurst 
University of Kent 

D.H.Akehurst@kent.ac.uk 

Abstract 
The potential for revising the RM-ODP standards is an 

excellent opportunity to move the given specifications into 
a form that is more amenable to the provision of tools that 
support the standard. Adoption of the approach 
advocated by the RM-ODP would be greatly increased if 
tools to support the approach were more readily 
available. This paper proposes an approach to generating 
such tools, directly, from a model based approach to 
specifying the RM-ODP viewpoint languages and 
correspondences. In particular this paper highlights 
certain requirements that the specification approach 
would need to meet if the production of such tools were to 
be achievable. 

1. Introduction 
The Reference Model for Open Distributed Processing 

(RM-ODP) [11] belonging to the International Standards 
Organisation (ISO) was published about ten years ago. 
Although originally developed with respect to the 
telecommunications industry, as we move into a situation 
where more and more software systems are essentially 
distributed, this reference model becomes similarly more 
and more relevant to software development. 

Over the last few years there has been more focus on 
supporting distribution and an increase in the number of 
different technologies to support distributed software 
systems; originally CORBA, COM, DCOM and lately 
Web Service based approaches such as .NET and J2EE. 

Even though these distribution technologies have been 
proposed, the take up and use of the RM-ODP has not 
been as common place as its relevance and potential 
usefulness would lead us to expect. Contrast this with the 
outputs from the OMG, such as the UML and latterly their 
MDA approach, which appear to be widely used and are 
certainly commonly discussed. 

There could be a number of reasons for this, marketing 
and publicity being one possible candidate. However, 
another reason is the accessibility of the OMG outputs 
which are nearly always supported by tools (even if they 
are not considered to be the best possible tools), these 

give practitioners a tangible artefact by which to evaluate 
and try out the proposed technologies. 

Where are the easy to use graphical language based 
tools to support the RM-ODP? Perhaps such a tool cannot 
be created and at the same time be technically sound. 
However, it would be useful to have one that provides the 
easy accessibility offered by the numerous UML tools, 
which, it could be argued, are not always so technically 
sound but do provide an easy way into the world of 
OMG-Oriented Modelling. 

Development of a simple graphical tool based on the 
RM-ODP is not quite as straight forward as it is for 
languages such as UML. Firstly, the RM-ODP proposes a 
five viewpoints approach to system design involving at 
least as many separate but related sets of concepts but 
specifically does not prescribe any particular language 
with which to write design specifications. Secondly, the 
concepts recommended for each viewpoint are described 
using English text (as opposed to the OMG’s approach of 
modelling the language concepts – known as 
metamodelling). 

Thus, before we can build a tool that supports the 
design of systems using the RM-ODP approach, we need 
to address these two issues. This position paper proposes 
using the OMG’s approach to solving the second issue, by 
forming metamodels that define the concepts described in 
the ODP Standard documents, as has been done for some 
of the viewpoints already [2, 9, 10] The first issue, that of 
viewpoints and languages, we can address by firstly 
defining notations that map to the metamodel concepts 
and secondly by specifying the inter viewpoint 
relationships as relations between metamodel concepts. 
Both of these (inter viewpoint correspondences, and 
notations) can be defined using the relation based 
transformation specification technique taken from the 
MDA initiative [8]. 

In the following sections we first discus the five 
viewpoint language concepts and their corresponding 
metamodels; secondly we propose a technique for 
defining notations for each viewpoint; thirdly we illustrate 
an approach for specifying inter-viewpoint consistency 
relationships. The paper ends with a discussion about the 

65



is
fo

2

d
E
C
a 

m
‘F
la
F
co
m

C
F

in
to
E
M
re
su

3

re

appropriate notations (or concrete syntax). The ODP ISO 

 

Foundations 

Computational Enterprise 

Information Engineering Technology 

Figure 1 Viewpoint Metamodels 
sues and problems to be addressed and a future direction 
r the work. 

. Viewpoint Metamodels 
A number of papers have proposed metamodels for 

ifferent RM-ODP viewpoints; [10] proposes an 
nterprise Viewpoint metamodel; [9] and [2] discus 
omputational Viewpoint metamodels; and [7] describes 
metamodel for the RM-ODP Foundation concepts. 
A RM-ODP tool could be based on a set of five such 

etamodels, with the addition of (at least) a common 
oundations’ metamodel. Using an OMG MOF like 
nguage we can illustrate the approach as shown in 
igures 1-3. Fi  shows an overview of six packages 
ntaining the metamodels for the five viewpoints and a 
etamodel for the common Foundations. F  and 

 show example segments of possible 
omputational and Engineering Viewpoint metamodels. 

gure 1

igure 2
igure 3

gure 5
The specification of viewpoint (or language) concepts 

 this manner makes it very easy to generate core parts of 
ols that support the viewpoints. Tools such as the 
clipse Modelling Framework (EMF) [5] and Kent 
odelling Frameworks (KMF) [6] easily generate basic 
positories that can form the core of a design tool from 
ch models of a language. 

. Viewpoint Notations 
In addition to repository functions a useful design tool 

quires a mechanism for populating the repository using 

standards along with books such as [Blair/Stefani] make 
use of notations for describing various viewpoint designs. 
However although clearly understandable the notations 
are informally defined. If we can define these notations 
more formally, then there is scope for auto-generation of 
tools to support the viewpoint languages. 

In [1] and [4] a modelling approach to defining visual 
languages is described. The approach is to define the 
concrete syntax of the notation as a model and 
subsequently specify a model transformation (via a set of 
relations) between the concrete syntax model and the 
concepts metamodel. 

Using notation from the latest submission to the 
OMG’s QVT RFP [8] and the technique defined in [3], an 
example for part of a Computational Viewpoint language 
specification is illustrated in Figure 4. It shows the 
specification of relations between Computational Objects 
and Circles, and between Interfaces and Solid rectangles 
(or bars); an example of the notation is shown in Fi . 

The detail of the relations must be added to the 
graphical view of them, defining the domain and range of 
the relation and a matching condition expression that 
specifies which elements from one side (domain or range) 
of the relation are mapped to elements from the other. It is 
also necessary to define characteristics of the relation 
such as whether it is functional, total, bijective, etc. (The 
detail of the relations is shown in an Appendix.) 

This approach can be used to define notations for all of 
the viewpoint concepts giving us a set of models and 

 
 

CompObject 

Interface 
0..* 

interface 

Primitive 
Binding 

2 

binding 

interface 

Computational 
Configuration 

object 0..* 

Figure 2 Computational Objects 
66
EngObject 

Cluster 

0..* 

Cluster 
Manager 

Engineering 
Configuration

0..* 

BasicEngObject 

Figure 3 Engineering Objects 
Diagram Computational 
Configuration 

Circle CompObject 

SolidRect Interface 

Figure 4 Syntax-CompVP Relations 



relations from which it is possible to generate a tool that 
facilitates drawing designs in each of the viewpoint 
languages, including the necessary features of such a tool 
offered by a model repository. 

wsers 
owser

service 

u

display

n 

The relations are characterised as ‘inverseFunctional’ 
(or 1-to-many), each ‘single’ CompObject maps to 
‘many’ BasicEngObjects (or Channels), but each 
BasicEngObject (or Channel) maps to a single 
CompObject. The relations are also defined as ‘onto’ and 
‘total’ specifying that every CompObject and 
BasicEngObject (or Channel) in the domain and range of 
the relations must be part of the relation. 

It is not feasible to define a matching condition for 
these relations (i.e. an expression that would define which 
objects from domain and range are mapped to each other) 
because there is no way at the meta-level to determine 
which objects should be related. The correspondences 
must be set up by the designer on a per design basis; 
however, the specification of these relations will enable a 
generated tool to indicate whether on not the 
correspondences have been set up. 

The KMF tool developed at the University of Kent [6] 
has been used to generate parts of such tools for visual 
languages from this type of specification. 

5. Conclusion, Issues and Future Work 
The previous sections have given an idea of how 

model based specifications of language concepts and 
relations between them can be given to define aspects 
from the RM-ODP standard. Using code generation 
techniques these types of specification can be used to 
generate tools that support designing a system from the 
different ODP viewpoints. 

4. Inter-Viewpoint Consistency 
A key part of the RM-ODP is the inter-viewpoint 

consistency specifications that tie the information from 
the five viewpoints into a consistent design from which an 
implementation can be produced. 

Similarly to the specifications linking concrete syntax 
to metamodel concepts, we can define relations that link 
concepts between the different viewpoints. However, for 
some of the consistency relationships it is not possible to 
define them at the meta-level. It is necessary for the 
connections to be made at the design stage, for this we 
need another language (or at least a tool mechanism). 

This paper has illustrated the ideas using languages 
provided by the OMG However, OMG languages are not 
essential, any precise approach to defining the languages 
and relationships would provide the necessary starting 
point for generating tools. In particular the following 
specifications should be given: 

1. Precise definitions of the viewpoint language 
concepts – beyond the textual descriptions currently 
given – i.e. metamodels. 

Figure 6 shows inter viewpoint consistency relations 
between concepts from the Computational Viewpoint and 
the Engineering viewpoint. This relations model the 
following correspondence: 

2. Precise specification of the correspondences 
between concepts in each viewpoint, along with 
suggested mechanisms for specifying these – i.e. a 
Correspondence Specification Viewpoint. 

“Each computational object which is not a binding 
object corresponds to a set of one or more basic 
engineering objects (and any channels which connect 
them). All the basic engineering objects in the set 
correspond only to that computational object.” 

3. Precise specification of example notations for each 
viewpoint. Perhaps both graphical and textual.  

In addition, a number of full example system designs 
should be provided illustrating intended use of the 
framework. 

The approach to generating tools presented in the paper 
is an initial idea, a number of issues and problems are 
likely to make it difficult. Some of these are discussed 
below: 
• Metamodelling – What concepts should be used to 

define the metamodels? Sections 6 and 7 of Part 2 of 
the standard informally define some language 
definition concepts, is it possible (or even a good 
idea!) to extend these to give a full and sufficient 
metamodelling language. 
CompObject 
(from Computational) 

BasicEngObject 
(from Engineering) 

inverseFunctional and onto and total 

Channel  
(from Engineering) 

inverseFunctional and onto and total 

Figure 6 A Comp-Eng Correspondence 
bro
: Br

service 

manager : 
Service 

Manager 

film1 
: VideoStream 

videoTrans 

vsCtrl 

videoRec 

film2 
: VideoStream 

videoTrans 

vidWins1 

vidWins2 

vsCtrl 

videoRec 

 
Figure 5 A Computational Configuratio
67



• Relations – Is the proposed technique for specifying 
relations expressive enough for the proposed task. 
Some correspondences are not at all easy to define! 
How useful or possible is it to define them all as 
relations? 

• Correspondences - we need a mechanism for a 
designer to specify correspondences, i.e. we need a 
viewpoint for defining inter-viewpoint 
correspondences. 

• Technology Viewpoint – the concepts for a 
metamodel of this is not obvious, in fact the 
concepts currently in the standard are minimal. Is it 
necessary to have something more and if so what 
should be in it? 

Extending the idea of a supporting tool; it would be 
very useful to provide MDA like support for generation of 
system implementations (or simulation/analysis models) 
from the given designs. To facilitate this we certainly 
need good definitions of Technology models. 

Generating an implementation could be achieved using 
an MDA like approach of transforming information drawn 
from designs given in the five viewpoints and providing a 
set of implementation source code, configuration, and 
deployment files. 

6. References 
[1] Akehurst D. H., "An OO Visual Language Definition 

Approach Supporting Multiple Views," in proceedings 
VL2000, IEEE Symposium on Visual Languages, 
September 2000. 

[2] Akehurst D. H., Derrick J., and Waters A. G., 
"Addressing Computational Viewpoint Design," in 
proceedings Enterprise Distributed Object Computing 
Conference, EDOC 2003, Brisbane, Australia, pp. 147, 
September 2003. 

[3] Akehurst D. H., Kent S., and Patrascoiu O., "A relational 
approach to defining and implementing transformations 
between metamodels," Journal on Software and Systems 
Modeling, vol. 2, pp. 215, November 2003. 

[4] Clark A., Evans A., and Kent S., "Engineering modelling 
languages: A precise meta-modelling approach," in 
proceedings ETAPS 02 FASE Conference, LNCS, 
Springer, April 2002. 

[5] IBM, "Eclipse Modeling Framework," 
http://www.eclipse.org/emf/, 2003. 

[6] KMF-team, "Kent Modelling Framework (KMF)," 2002, 
www.cs.kent.ac.uk/projects/kmf 

[7] Naumenko A., Wegmann A., Genilloud G., and Frank 
W. F., "Proposal for a formal foundation of RM-ODP 
concepts," in proceedings ICEIS 2001, Workshop On 
Open Distributed Processing - WOODPECKER`2001, 
Setúbal, Portugal, pp. 81-97, July 2001. 

[8] OMG, "Request for Proposal: MOF 2.0 Query / Views / 
Transformations RFP," Object Management Group, 
ad/2002-04-10, April 2002. 

[9] Romero R. and Vallecillo A., "Formalizing ODP 
Computational Viewpoint Specifications in Maude," in 

proceedings EDOC 2004, Monterey, California, 
September 2004. 

[10] Steen M. and Derrick J., "ODP Enterprise Viewpoint 
Specification," Computer Standards and Interfaces, vol. 
22, pp. 165-189, September 2000. 

[11] X.901-5, "Information Technology - Open Distributed 
Processing - Reference Model: All Parts," ITU-T 
Recommendation, 1996-99. 

Appendix A 
The detail of a relation specification needs to define a 

matching condition that indicates which elements of 
domain and range should be related. In addition the links 
between relations should define the contents of the 
domain and range sets for the sub relations. The following 
specifications indicate the approach for the relations given 
in F . Depending on the level of difference there is 
between the related components, the complexity of the 
expressions in the relation specification will vary.  

igure 4

relation { 
  domainType : Diagram 
  rangeType : ComputationalConfiguration 
  matchCond : true 
  subRel : { CircleRelCompObj( 
                  diagram.circles, 
                  config.objects ) } 
} 

relation { 
  domainType : Circle 
  rangeType : CompObject 
  matchCond : compObj.name = circle.label.text 
  subRel : { RectangleRelInterface( 
                  circle.connections, 
                  object.interfaces ) } 
} 

68

http://www.eclipse.org/emf/
http://www.cs.kent.ac.uk/projects/kmf



