Let 4 be a base base bare to the transfer of the transfer of the second second

Atenea Modeling Software Systems

Performance Analysis of Domain Specific Models

Antonio Vallecillo [Javier Troya, Francisco Durán, J.E. Rivera] Atenea Research Group IPCE 2011, Karlsruhe, Germany. March 2011

Preliminaries

- Model (of a <X>): A representation or specification of a <X> from a given point of view and with a particular purpose
- Prototype model: A functional model of a <X>, where the emphasis in on testing e.g., to verify the design
- Domain Specific Model: A model written in a domain specific language
- Domain Specific Language: A language which offers concepts and notations closer to the domain experts, at an appropriate level of abstraction, and with a particular purpose
- Model Transformation: An algorithmic specification (declarative or operational) of the relationship between models

Preliminaries

- Performance Analysis: the process of evaluating how a particular system is functioning (or will work), with the aims to
 - ensure that the system is working at optimum efficiency;
 - identify and correct issues that may negatively impact that efficiency;
 - help the engineer adjust components so that they make the best use of available resources.

Model-Driven Performance Analysis

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Model-Driven Performance Analysis

Palladio Component Model

Model-Driven Performance Analysis

A. Vallecillo: "Performance Analysis of Domain Specific Models"

Domain Specific Modeling Languages (DSML)

- Languages for representing different views of a system in terms of models
- Higher-level abstraction than general purpose languages
- Closer to the problem domain than to the implementation domain
- Closer to the domain experts, allowing modelers to perceive themselves as working directly with domain concepts
- Domain rules can be included into the language as constraints, disallowing the specification of illegal or incorrect models.

An example of a DSM

The design for a conference application intended to run on a Symbian/S60 phone.

[Borrowed from Juha-Pekka Tolvanen, "Domain-specific Modeling: Making Code Generation Complete" <u>http://www.devx.com</u>.]

Visual DSMLs

- VDSMLs tend to offer substantial gains over conventional textual languages
 - Formal studies show significant benefits for novices
 - Increasing number of VDSMLs being defined
- But not a panacea: every notation has advantages and disadvantages
 - [Not the subject of this talk]
- [T. Green, M. Petre "Usability Analysis of Visual Programming Environments: a 'cognitive dimensions' framework" *JVLC*, 1996]
 [Kirsten whitley "Visual programming languages and the empirical evidence for and against", *JVLC* 1997]
- [R. Navarro-Prieto, J. Cañas "Are visual programming languages better? The role of imagery in program comprehension", *IJHCS* 2001]

[Thomas R.G. Green & Marian Petre]

"The impossible equation"

End-user Programming[Modeling]

Most software creators are not software professionals

- End users are participants and developers, not passive consumers
- They do not reason about software like professionals [Mary Shaw, The Challenge of Pervasive Software to the Conventional Wisdom of Software Engineering, ESEC-FSE09]

End users are not "casual," "novice" or "naive" users; they are people such as chemists, librarians, teachers, architects, and accountants, who have computational needs and want to make serious use of computers, but who are not interested in becoming professional programmers.

[Bonnie A. Nardi, A Small Matter of Programming. MIT Press, 1993]

End-user (Visual) Modeling

-0× 10 00 ×

- 🗆 🗵

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Production systems

DSMLs are starting to proliferate

They allow users to model their systems at an appropriate level of abstraction

Some of them allow more than "documentation"

- Code generation
- Animation
- Simulation
- >

Very few allow specification and analysis of the Quality Properties (NFPs) of modeled systems

QoS usage and management constraints: performance, reliability, resource consumption and allocation, etc. How to conduct Performance Analysis on > High-Level, > Domain-specific, > End-user defined models?

Requirements for PA of DSM

Notations for describing systems must be:

- Simple and intuitive
- Close to the problem domain
- Close to the domain experts' language

Models must be:

- Abstract, yet precise
- Executable (to, at least, prototype systems)

QoS notations must be:

Simple and precise, yet expressive

Analysis results and feedback must be: Understandable and easy to manage

"Being abstract is something profoundly different from being vague... The purpose of abstraction is not to be vague, but to create a new semantic level in which one can be absolutely precise."

Edsger Dijkstra

Current notations for DSMs

Notations for describing systems must be normally are: Simple and intuitive Complex Close to the problem domainClose to the solution domain Close to the domain experts' language General purpose

Models must be normally are:
Abstract, yet precise Too detailed, imprecise
Executable Non-executable

QoS notations must be normally are: Simple and precise, yet expressive Too complex and low level (more than needed for most end-user DSMLs)

Analysis results and feedback must be normally are: Understandable and easy to manage Tough to deal with!

"Close to the problem domain"

Once upon a time, there was a team leader that was going on holidays. Before leaving, she made the last recommendation to her small team of three young engineers: "For the ongoing project, do not start coding in Java before the UML model is completely finished and you all agree on the model."

On the Monday morning, as soon as she left, one of the engineers told the others about a wonderful discovery he made while twittering in the weekend: a very powerful tool that generates UML diagrams from code. The decision was rapidly taken and all three started coding the problem in Java.

Some days before the end of the leader's holidays, all the Java code was used to generate UML diagrams and both the code and the UML diagrams were handled to the group leader.

She was quite impressed about the level of detail of the UML model and the narrow correspondence between the code and the model.

[Borrowed from J. Bezivin]

The precise meaning of models

10

"There are only 10 types of people in the world: Those who understand binary, and those who don't"

Same model for different concepts

Different models for the same concept

What does this model means?

A. Vallecillo: "Performance Analysis of Domain Specific Models"

Current notations for expressing QoS

- Annotations to existing (OO) models
- Very detailed and precise
- Provide connections with analysis models and tools (QNM, SPN, SPA)
- Excellent for modeling systems at certain levels of abstraction

However...

- At a lower level tan needed for most end-user DSMLs
- Complex (to read, write and maintain)
- Tedious, error-prone
- General-purpose
- Object-oriented

However...

- At a lower level tan needed for most end-user DSMLs
- Complex (to read, write and maintain)
- Tedious, error-prone
- General-purpose
- Object-oriented
- No "dynamic" management of QoS (contracts)
 - Negotiation of QoS?
 - Adaptation?

UML

MARTE

End-to-end QoS reqs?

Require complex quality models

Fig. 6. The QoS Model for the Speed Regulator example

[Borrowed from Espinoza et al.]

Easy-to-read specifications?

Notations to express QoS are strongly dependent on the notations used to express behavior

Fig. 7. Sequence Diagram for updateSpeed annotated with the UML profile for QoS & FT

Requirements on QoS specifications

[ISO WD 15935:1998]

- QoS constraints should be <u>modular</u> enough to be attached to individual objects.
 - It should be possible to derive the QoS of a composition of objects from the QoS of its component objects.
- The level of QoS should be <u>observable</u> so as to allow the development of monitoring applications.
 - Through observation, applications become "QoS-aware" and can operate a feedback control loop on the supporting computing or network resources.
- QoS should be guaranteed at certain periods
 - The nature of the guarantees can range from deterministic "hard" realtime guarantees, through weaker probabilistic guarantees or "bestefforts" policies.
- QoS should be <u>negotiable</u> so that, during the life of the system, some users can quit an application whereas others can appear with different needs.
 - The framework should be flexible enough to allow such QoS management policies as graceful degradation.

How can we specify DSMs?

How do we express in a precise and abstract manner:

- Structure
- Behavior
- Time-dependent functionality
- Quality properties (QoS,...)

Which is the best notation for each of those aspects?

- It depends on the purpose of the model...
- ...must have a precise meaning
- ...and must allow the analysis of the models

Each notation is more apt for a task

Each notation is more apt for a task

Each notation is more apt for a task

How do you solve this problem?

A 40-years-old man has a daughter and a son. If the difference of age between the kids is 4 years, and the sum of their ages is half of the age of the father, how old are they?

$$\begin{array}{c} x - y = 4 \\ + x + y = 20 \end{array}$$
 x = 12
2x = 24
x = 24

Solution: the older is 12 and the younger is 8

Problems, Notations, Solutions

An invariant through the history of mature disciplines is the search for notations that allow formulating problems in a language that allows their easy solution

$$\frac{\partial f}{\partial x_i}(a_1,\ldots,a_n) = \lim_{h \to 0} \frac{f(a_1,\ldots,a_i+h,\ldots,a_n) - f(a_1,\ldots,a_n)}{h}.$$

$$\vec{F} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v}) \qquad \int_{-N}^{N} f(x) \, dx \qquad \sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \Box (p \to q) \to (\Box p \to \Box q)$$

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v}\cdot\nabla\mathbf{v}\right) = -\nabla p + \nabla\cdot\mathbb{T} + \mathbf{f},$$

http://en.wikipedia.org/wiki/History_of_mathematical_notation http://en.wikipedia.org/wiki/Temporal_logic

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Our current software modeling notations

The UML way...

Sauron's approach to metamodeling (e.g., OMG's UML metamodel)

The lord of the Metamodels

(obviously, adapted)

Three notations for the *Structure modelers* under the sky, Seven for the *Behavior modelers* in their halls of stone, Tree for *mortal Packagers* doomed to die, *One for the Designer of the Whole system on his dark throne* In the Land of Mof where the shadows lie. *One Metamodel to rule them all, One Metamodel to find them, One Metamodel to bring them all and in the darkness bind them* In the Land of Mof where the shadows lie.

- No general purpose language can express all different semantics without becoming a monster
 - Especially under the presence of antagonist semantics (Discrete & continuous; synchronous & asynchronous;...)

"More general does not mean Better. Heterogeneity may be better than generality.

... Useful semantics imply constraints on designers."

Edward A. Lee

A. Vallecillo: "Performance Analysis of Domain Specific Models"

The village metaphor

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Semantic (or "Meaningful") Domains

(vs. "meaningless" Models)

The meaning of a model M is defined by its interpretation in a meaningful semantic domain D.

Each Semantic Domain has

- Precise semantics
- A set of (equivalent) notations
- A set of analysis tools
- Underlying logic

The Prolog village

- The QNM village
- 🔟 The Petri Net village
- The Coq village
- The Process Alg village
- 💵 The Maude village
- 🔍 The Z village
- The Modellica village
- The B village

Expressing semantic bridges

As Model Transformations

- Possible if correspondences can be expressed as functions
- Pairwise consistency can be formally studied
 - ⁷ One form of consistency involves a set of correspondence rules to steer a transformation from one language to another. Thus given a specification S_1 in viewpoint language L_1 and specification S_2 in viewpoint language L_2 , a transformation T can be applied to S_1 resulting in a new specification $T(S_1)$ in viewpoint language L_2 which can be compared directly to S_2 to check, for example, for behavioral compatibility between allegedly equivalent objects or configurations of objects [RM-ODP, Part 3]

As Weaving Models

Possible if correspondences are just mappings

Semantic Mappings as Model Transformations

The relationship between domains D and D' is defined by a model transformation T:D->D'.

$$[[M]]_{D'} := [[T(M)]]_{D'}$$

How do we analyse models?

Crossing the bridges!!!

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Some initial experiments...

A Production System Example

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Behavioral semantics

Using in-place model transformations (Graph Transf.)

Image: Second secon

 $l:[NAC] \times LHS \rightarrow RHS$

unfinished >

Some essential additions

Time

Rule duration Y

- Periodicity, soft scheduling
- Ongoing rules
- Access to the Global Time Elapse
- Time stamps, scheduled actions

Specification of action executions

Without the need of unnaturally modify the metamodel

Rule LHS NAC RHS precondition postcondition invariant time elapse end start Action

 $l:[NAC] \times LHS \xrightarrow{t} RHS$

OCL for attribute calculations and rule conditions

Precise Semantics

Defined by a Semantic Mapping to Real-Time Maude

- This makes models amenable to simulation and to formal analysis using the Real-Time toolkit!
- **Implementable** (by a set of ATL model transformations)

Representing Models with Maude

(64P)E 2011

Representing Metamodels with Maude

op ProductionSystem : -> @Metamodel .

op PS : -> @Package .

sort PositionedEl . subsort PositionedEl < @Class . op PositionedEl : -> PositionedEl . op xPos : -> @Attribute . op yPos : -> @Attribue .

sort Container . subsort Container < PositionedEl . op Container : -> Container . op parts : -> @Reference .

sort Machine . subsort Machine < PositionedEI . op Machine : -> Machine . op in : -> @Reference . op out : -> @Reference .

. . .

Representing Behavior with Maude

http://atenea.lcc.uma.es/e-Motions

e-Motions

ATL - EDF/EDF.behavior_diagram - Eclipse Platform	And a second	- O X
File Edit Diagram Navigate Search Project Run Compatibility Window Help		
Tahoma ▼ 9 ▼ I A * 3 → ▼ %		🖹 🌔 ATL 🖏 Java
Inhoma Inhoma InitialRule InitialRule <pi< td=""><td>Palette Palette Palette Ongoing Rule Helper Simulation Behavior model *: EDF.behavior Behavior model *: EDF.behavior Behavior model *: EDF.behavior Behavior model *: EDF.behavior Browse EMF Registry Initial model: Time limit: 100 Default time elapse: Resulting Model *: \EDF\result.edf Browse (') = mandatory</td><td>Palette Palette NAC Variable Object Slot Link Clock Condition Action Execution E Object Role * *</td></pi<>	Palette Palette Palette Ongoing Rule Helper Simulation Behavior model *: EDF.behavior Behavior model *: EDF.behavior Behavior model *: EDF.behavior Behavior model *: EDF.behavior Browse EMF Registry Initial model: Time limit: 100 Default time elapse: Resulting Model *: \EDF\result.edf Browse (') = mandatory	Palette Palette NAC Variable Object Slot Link Clock Condition Action Execution E Object Role * *
	OK Cancel	
Executing e-Motions		

Model Simulation and Analysis

[Simulation 2009]

Simulation/Execution of specifications

(trew initModel in time <= 20.)

Reachability Analysis

1.1

Deadlock	search initModel =>*
	ProductionSystem {
Invariants	< O : Tray capacity : CAP, parts : PARTS, SFS >
Invariance	OBJSET }
	(find earliest {initModel} =>* {ProductionSystem {
Others	< T : ActionExec rule : "Collect", value : null,
	SFS@T > OBJSET }} .)

- LTL Model checking
 - Liveness properties

(mc {initModel} |=t [](ensembled('he10.ha10) -> collected('he10.ha10)) in time <= 100 .)</pre>

A. Vallecillo: "Performance Analysis of Domain Specific Models"

(687)E 2011

Adding NFPs to DSMLs

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Adding NFPs to DSMLs

Use of "observers"

Adding NFPs to DSMLs

Observers capture the state of the NFPs and monitor their progress

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

Making use of the Observers

The system can self-adapt under certain conditions

Making use of the Observers

With the new configuration, the system transmits sounds in a faster way

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

A more complex example

A. Vallecillo: "Performance Analysis of Domain Specific Models"

A more complex example

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011

http://atenea.lcc.uma.es/index.php/Main_Page/Resources/E-motions/PacketSwitchingExample/Results

Analysing the results

Pros and Cons

Advantages

- Addition of observers independently of the system
- Simple modelling of QoS properties
- Ability to monitor QoS properties
- Results obtained in easy-to-manipulate format
- More expressive than other notations (SPA, SPN, QNM,...) (generalized distributions, OCL expressiveness, dynamic topologies, action executions as 1st class citizens,...)

Limitations

- Efficiency of simulations
- Difficult to debug
- Not for every problem or domain
- More expressive than other notations (SPA, SPN, QNM,...) (Difficulties for defining semantic bridges due to large gaps/chasms)

We are not alone...

LIGHTWEIGHT MODELING

DEFINITION

- constructing a very abstract model of the core concepts of a system
- using an analysis tool based on exhaustive enumeration to explore its properties

WHY IS IT "LIGHTWEIGHT"?

- because the model is very abstract in comparison to a real implementation, and focuses only on core concepts, it is small and can be constructed quickly
- because the analysis tool is "pushbutton", it yields results with little effort

in contrast, theorem proving is not "push-button"

WHAT IS ITS VALUE?

it is a design tool that reveals conceptual errors early

decades of research on software engineering proves that the cost of fixing a bug rises exponentially with the delay in its discovery

- it is a documentation tool that provides complete, consistent, and unambiguous information to implementors and users
- it is easy (at least to get started) and surprising (you get the result of scenarios you would *never* expect)

"If you like surprises, you will love lightweight modeling." —Pamela Zave

EASY + SURPRISING = FUN

[Pamela Zave, keynote talk at MODELS 2010]

A. Vallecillo: "Performance Analysis of Domain Specific Models"

Recap

- One challenge for software engineers now is to provide end-users with Modeling Languages (and associated tools) that allow them to model their systems in a cheap, quick and useful way, and to analyse them using push-button approaches.
- Current widely-used general-purpose modeling notations (especially behavioural and QoS) do not seem to be really up to the job
- Integrating heterogeneous notations and their associated tools using model transformations seems to be one promising way to go

Challenges

- Definition of new languages for behavioural descriptions, which allow easy specification of Quality Properties and their analysis
- Improved languages for QoS specification
- Semantic bridges to other domains
 Better connection with analysis tools
- Improved traceability mechanisms
 Improve understandability of results
- Better feedback to users
 - E.g., Performance anti-patterns (!)

Thanks!

Acknowledgements:

A. Vallecillo: "Performance Analysis of Domain Specific Models"

ICPE 2011