
Realizing Correspondences in Realizing Correspondences in Realizing Correspondences in Realizing Correspondences in
MultiMultiMultiMulti----viewpoint Specificationsviewpoint Specificationsviewpoint Specificationsviewpoint Specifications

J.R. Romero, A. Vallecillo
Atenea Group

http://atenea.lcc.uma.es

GRACE Meeting on Bi-Directional Transformations

Japan, Dec 2008

(2)

MultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpoint specificationsspecificationsspecificationsspecificationsspecificationsspecificationsspecificationsspecifications

SystemSystem

OwnerOwner

ProgrammerProgrammer

EndEnd--useruser

MaintainerMaintainer

TesterTester

Start Shift Accelerate Brake

Engine Transmission Transaxle

Control

Input

Power

Equations

Vehicle

Dynamics

Functional/Behavioral Model

Structural/Component Model

Performance Model

Mass

Properties

ModelStructural

Model
Safety

Model

Other Engineering

Analysis Models

Cost

Model

System Model Multiple aspects
of a system:
Consistency

Different
stakeholders’
views

(3)

MultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpoint specificationsspecificationsspecificationsspecificationsspecificationsspecificationsspecificationsspecifications

� Viewpoint modeling tackles complexity but
introduces other problems

● What is (in) a multiviewpoint specification?

● Viewpoint integration?

● Change propagation?

● Viewpoint synchronization?

● And many others...

(4)

What is a MultiWhat is a MultiWhat is a MultiWhat is a MultiWhat is a MultiWhat is a MultiWhat is a MultiWhat is a Multi--------viewpoint Specification?viewpoint Specification?viewpoint Specification?viewpoint Specification?viewpoint Specification?viewpoint Specification?viewpoint Specification?viewpoint Specification?

� This is the approach used by most EAFs

� No correspondences between the viewpoint
elements… … or trivially based on name
matching

� Others assume the existence of a global
metamodel

(5)

A global metamodelA global metamodelA global metamodelA global metamodelA global metamodelA global metamodelA global metamodelA global metamodel

� Easier to manipulate from a theoretical point

� Simplifies reasoning about consistency

BUTBUTBUTBUT…………

● The granularity and level of abstraction of the viewpoints
can be arbitrarilyarbitrarilyarbitrarilyarbitrarily different

● The viewpoints may have very different formal semanticsdifferent formal semanticsdifferent formal semanticsdifferent formal semantics

● Should it consist of the intersectionintersectionintersectionintersection or of the unionunionunionunion of all
viewpoints elements?

� Both approaches have serious problems with extensibility
and expressiveness (not to mention complexity of the
second approach – think in the UML 2.0 metamodel)

� Only valid if viewpoints are Only valid if viewpoints are Only valid if viewpoints are Only valid if viewpoints are tightly coupledtightly coupledtightly coupledtightly coupled!!! !!! !!! !!!
(semantically speaking)(semantically speaking)(semantically speaking)(semantically speaking)

(6)

SauronSauronSauronSauronSauronSauronSauronSauron’’’’’’’’ssssssss approach to approach to approach to approach to approach to approach to approach to approach to metamodelingmetamodelingmetamodelingmetamodelingmetamodelingmetamodelingmetamodelingmetamodeling
(e.g., (e.g., (e.g., (e.g., (e.g., (e.g., (e.g., (e.g., OMGOMGOMGOMGOMGOMGOMGOMG’’’’’’’’ssssssss UML metamodel)UML metamodel)UML metamodel)UML metamodel)UML metamodel)UML metamodel)UML metamodel)UML metamodel)

The lord of the Metamodels

(obviously, adapted)

Three notations for the Structure modelers under the sky,

Seven for the Behavior modelers in their halls of stone,

Tree for mortal Packagers doomed to die,

One for the Designer of the Whole System on his dark throne

In the Land of Mordor where the Shadows lie.

One Metamodel to rule them all, One Metamodel to find them,

One Metamodel to bring them all and in the darkness bind them

In the Land of Mordor where the Shadows lie.

(7)

Correspondences: Orthographic projectionsCorrespondences: Orthographic projectionsCorrespondences: Orthographic projectionsCorrespondences: Orthographic projectionsCorrespondences: Orthographic projectionsCorrespondences: Orthographic projectionsCorrespondences: Orthographic projectionsCorrespondences: Orthographic projections

(8)

MultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpointMultiviewpoint SpecificationSpecificationSpecificationSpecificationSpecificationSpecificationSpecificationSpecification

(9)

ODP Correspondence metamodelODP Correspondence metamodelODP Correspondence metamodelODP Correspondence metamodelODP Correspondence metamodelODP Correspondence metamodelODP Correspondence metamodelODP Correspondence metamodel

(10)

CorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondences

� Identify sets of related elements in each view
� Defined in terms of ODP correspondenceSpecifications

� Could be just UML traces or weaving models, too

� Examples (from RM-ODP)
(A) Correspondence between

LoanLoanLoanLoan information and
computational objects

(B) The sets of LoanLoanLoanLoan instances in
the information view should
be consistent with the
objects stored by the
LoanMgrLoanMgrLoanMgrLoanMgr component of the
computational view, which
contains the loans stored in
the application's database

(11)

CorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondences

{BO.name = CH.name}

{BEO1.x = CO1.x and

BEO2.x = CO1.x}

(12)

RequiredRequiredRequiredRequiredRequiredRequiredRequiredRequired CorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondences

� Identify sets of related types (classes)
� Defined by (directed) transformation functions; or

� Defined by (bidirectional) transformations; or

� Could be just mere traces…

� Examples (from RM-ODP)
● “Each computational objectcomputational objectcomputational objectcomputational object that is not a binding object corresponds to
a set of one or more basic engineering objectsbasic engineering objectsbasic engineering objectsbasic engineering objects (and any channelschannelschannelschannels
which connect them). All the basic engineering objects in the set
correspond only to that computational object”

● “Except where transparencies which replicate objects are involved,
each computational interfacecomputational interfacecomputational interfacecomputational interface corresponds exactly to one engineering engineering engineering engineering
interfaceinterfaceinterfaceinterface, and that engineering interface corresponds only to that
computational interface”

● “Where there is a correspondence between enterprise and information
elements, the specifier has to provide…
…for each actionactionactionaction in the enterprise specification, the information information information information
objectsobjectsobjectsobjects (if any) subject to a dynamic schemadynamic schemadynamic schemadynamic schema constraining that action”

(13)

Expressing wellExpressing wellExpressing wellExpressing wellExpressing wellExpressing wellExpressing wellExpressing well--------formed correspondencesformed correspondencesformed correspondencesformed correspondencesformed correspondencesformed correspondencesformed correspondencesformed correspondences
Correspondences are not enoughCorrespondences are not enoughCorrespondences are not enoughCorrespondences are not enoughCorrespondences are not enoughCorrespondences are not enoughCorrespondences are not enoughCorrespondences are not enough……………………

(14)

WellWellWellWellWellWellWellWell--------formedformedformedformedformedformedformedformed rules rules rules rules rules rules rules rules forforforforforforforfor correspondencescorrespondencescorrespondencescorrespondencescorrespondencescorrespondencescorrespondencescorrespondences

� Define constraints and invariants on the set
of correspondences between the viewpoints
● Check that the correspondences obey the ODP rules

● Check that no correspondences are missing

� Examples (from RM-ODP)
● “Each computational object that is not a binding object corresponds to a set of
one or more basic engineering objects (and any channels which connect them)”

context CorrespondenceSpecification inv :
let CVOBJECTS = self.viewpointSpecification->

select(o:CV_Metamodel::CV_Object | not oclIsTypeOf(CV_Metamodel::Binding)) in
let NVOBJECTS = self.viewpointSpecification->select(n : NV_Metamodel::BEO) in
let CORRESPONDENCES = CorrespondenceLink->allInstances()->select(…) in

(CVOBJECTS->size()) = (CORRESPONDENCES->size()) and
NVOBJECTS->forAll(n | CVOBJECTS->exists(o | isRelated(o,n)) and
CVOBJECTS->forAll(o1,o2 | isRelated(o1,n) and isRelated(o2,n) implies o1 = o2)))

(15)

HoweverHoweverHoweverHoweverHoweverHoweverHoweverHowever……………………

� Scalability?
● The number of correspondences does not scale at all!

● How to define correspondences over
complete sets of elements at once?

� Usability?
● How to deal with correspondences without
obtaining cluttered and unusable models?

● How to visualize the models?

� Completeness
● How do we check that all required
correspondences are indeed specified?

� Expressiveness
● How to describe the well-formed rules that the set of
correspondences between views elements should obey

� We need better tool support for dealing with
correspondences between the views

� Case studies:
● RM-ODP; Model-Driven Web Engineering (WEI, UWE)

(16)

CorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondencesCorrespondences at Metamodel at Metamodel at Metamodel at Metamodel at Metamodel at Metamodel at Metamodel at Metamodel levellevellevellevellevellevellevellevel

(17)

AnAnAnAnAnAnAnAn exampleexampleexampleexampleexampleexampleexampleexample

[MDEIS 2006]

(18)

OurOurOurOurOurOurOurOur ApproachApproachApproachApproachApproachApproachApproachApproach

� Use QVT relationsrelationsrelationsrelations to define correspondences
“intensionally”

� Generate the associated trace trace trace trace instancesinstancesinstancesinstances from
QVT relations

� Trace instances can then be transformed to
correspondenceSpecifications at model level (i.e.,
correspondences are given “extensionally”)

� Well-formed rules are then checked against this
full specification at model level

� The user normally works at the two levels!!!

(19)

SomeSomeSomeSomeSomeSomeSomeSome issuesissuesissuesissuesissuesissuesissuesissues

The user defines Relations at metamodel level

Generation of Trace instances

Transformation into correspondenceSpecifications

The final model with
all correspondences!

Well-formed rules are then
checked in the set of
correspondences

How to obtain different
views of the correspondences?
(e.g., per relation, user-defined, etc.)

(20)

SomeSomeSomeSomeSomeSomeSomeSome issuesissuesissuesissuesissuesissuesissuesissues

The user defines Relations at metamodel level

Generation of Trace instances

Transformation into correspondenceSpecifications

The final model with
all correspondences!

Well-formed rules are then
checked in the set of
correspondences

How to express the well-formed
rules at the meta-model level?

(21)

SomeSomeSomeSomeSomeSomeSomeSome issuesissuesissuesissuesissuesissuesissuesissues

The user defines Relations at metamodel level

Generation of Trace instances

Transformation into correspondenceSpecifications

The final model with
all correspondences!

Well-formed rules are then
checked in the set of
correspondences

How to maintain the consistency
between the correspondences and
the QVT transformations above?

(22)

AndAndAndAndAndAndAndAnd nownownownownownownownow????????

� Suppose that we already count on a tool for
expressing correspondences between views…

� What can I use it for?

(23)

Viewpoint synchronization(*)Viewpoint synchronization(*)Viewpoint synchronization(*)Viewpoint synchronization(*)Viewpoint synchronization(*)Viewpoint synchronization(*)Viewpoint synchronization(*)Viewpoint synchronization(*)

� During its life cycle, a software system
evolvesevolvesevolvesevolves and its specification changes
● The specification of a view should not conflict
with the specification of another view

● A modification in a view may induce a
modification in another views to preserve
consistency

� One solution is the adoption and
implementation of synchronizationsynchronizationsynchronizationsynchronization
mechanisms able to propagate the changes
on the related views

(*) Joint work with Alfonso Pierantonio and Romina Eramo [WODPEC’08]

(24)

Viewpoint EvolutionViewpoint EvolutionViewpoint EvolutionViewpoint EvolutionViewpoint EvolutionViewpoint EvolutionViewpoint EvolutionViewpoint Evolution

� Systems are continuously changing
●Changes may occur in the views by adding, modifying
o deleting elements

●Modifications are propagated through
correspondences to elements in other views

� Propagated changes can introduce
inconsistenciesinconsistenciesinconsistenciesinconsistencies, which need to be found and
solved
● View synchronization mechanisms and tools are
required

(25)

ProblemsProblemsProblemsProblemsProblemsProblemsProblemsProblems

� Correspondences may not provide all information
needed to perform automatic synchronization

● Sometimes Correspondence rules help (e.g. { BO.name =
CH.name })

(26)

{BO.name = CH.name}

(27)

ProblemsProblemsProblemsProblemsProblemsProblemsProblemsProblems

� Correspondences may not provide all information
needed to perform automtic synchronization

● Sometimes Correspondence rules help (e.g. { BO.name =
CN.name })

● Sometimes they are just “traces” (e.g. EV policies)

(28)

(29)

ProblemsProblemsProblemsProblemsProblemsProblemsProblemsProblems

� Correspondences may not provide all information
needed to perform automtic synchronization

● Sometimes Correspondence rules help (e.g. { BO.name =
CN.name })

● Sometimes they are just “traces” (e.g. EV policies)

� ““““RippleRippleRippleRipple”””” effecteffecteffecteffect

● Changes need to be propagated through
correspondences.

● Some correspondences may define “cycles”, which may
introduce problems

(30)

Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling -------- ViewsViewsViewsViewsViewsViewsViewsViews

(31)

ProblemsProblemsProblemsProblemsProblemsProblemsProblemsProblems

� Correspondences may not provide all information
needed to perform automtic synchronization

● Sometimes Correspondence rules help (e.g. { BO.name =
CN.name })

● Sometimes they are just “traces”

� ““““RippleRippleRippleRipple”””” effecteffecteffecteffect

● Changes need to be propagated through
correspondences.

● Some correspondences may define “cycles”, which may
introduce problems

� DistributedDistributedDistributedDistributed andandandand independentindependentindependentindependent changeschangeschangeschanges

● Changes independently introduced by different people
may cause inconsistencies, too

(32)

Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling Viewpoint Modeling -------- ViewsViewsViewsViewsViewsViewsViewsViews

{BO.name = CH.name}

{BO.name = “connector”}

{CH.name = “channel”}

(33)

OurOurOurOurOurOurOurOur goalgoalgoalgoalgoalgoalgoalgoal

� An “engineering” approach to deal with the
problem of viewpoint inconsistency
management and synchronization
● Semi-automated (user-guided)

● Tool supported

� The “viewpoint synchronization” tool should
be capable of helping the system designer:
● identify the changes in the viewpoints,

● propagate them to the rest of the viewpoints, and

● (semi-automatically) manage and resolve
inconsistencies

(34)

Change Management ApproachChange Management ApproachChange Management ApproachChange Management ApproachChange Management ApproachChange Management ApproachChange Management ApproachChange Management Approach

� The approach derives a set of models which
represents all the possible consequences
caused by the changes
● Uses ASPASPASPASP to deal with non-deterministic derivations
which represent alternative solutions to a given
problem

� The approach consists of three (iterative) steps:
1. Change identification

2. Change classification and cascading

3. Change commitment and propagation

(35)

1) Change identification (1) Change identification (1) Change identification (1) Change identification (1) Change identification (1) Change identification (1) Change identification (1) Change identification (ModelDiffModelDiffModelDiffModelDiffModelDiffModelDiffModelDiffModelDiff))))))))

(36)

11111111’’’’’’’’) Identification of related elements) Identification of related elements) Identification of related elements) Identification of related elements) Identification of related elements) Identification of related elements) Identification of related elements) Identification of related elements

(37)

2) Change classification and cascading2) Change classification and cascading2) Change classification and cascading2) Change classification and cascading2) Change classification and cascading2) Change classification and cascading2) Change classification and cascading2) Change classification and cascading

��ModC

��RemC

��AddC

���ModV

���RemV

��AddV

ModCRemCAddCModVRemVAddVV1 / V2

(38)

3) Proposal for change propagation3) Proposal for change propagation3) Proposal for change propagation3) Proposal for change propagation3) Proposal for change propagation3) Proposal for change propagation3) Proposal for change propagation3) Proposal for change propagation

(39)

ToolToolToolToolToolToolToolTool supportsupportsupportsupportsupportsupportsupportsupport ((((((((ongoingongoingongoingongoingongoingongoingongoingongoing))))))))

� A visual tool for synchronizing the views and
correspondences of a multi-view specification

� The goal is to guide the user in managing and browse
the possible alternative adaptations

� The system designer can decide how to enforce
changes in the related views in visual way

� It considers the potential effects on the rest of the
system’s views when a change in one element is
recursively propagated to elements in other views
through the correspondences (using ASP)

Realizing Correspondences in Realizing Correspondences in Realizing Correspondences in Realizing Correspondences in
MultiMultiMultiMulti----viewpoint Specificationsviewpoint Specificationsviewpoint Specificationsviewpoint Specifications

J.R. Romero, A. Vallecillo
Atenea Group

http://atenea.lcc.uma.es

GRACE Meeting on Bi-Directional Transformations

Japan, Dec 2008

