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Abstract: The design of components for open and distributed systems is challenging
the software community with its specific problems. One of the current approaches is
based on a reflective model that uses standard, independent, composible meta-components
(controllers) to coordinate components and modify their behavior according to the user
requirements. However, this approach still has some pending issues, like the definition of
design methodologies that lead to reusable and composible components and controllers,
and the use of formal tools to reason about the correctness of the composed applications.
This paper presents a formal framework in Object-Z for specifying reusable controllers,
based on a component model for this kind of systems. The basic mechanisms of the
model are formalized, together with the concepts and methods that allow developers of
the controllers to prove their correctness, specify their behavior, and characterize the effect
of adding them to components.

INTRODUCTION

Current architectural approaches for developing software applications rely on com-
ponents and connectors. Components encapsulate computation, while connectors de-
scribe how components are integrated into the architecture. This separation of concerns
has clear advantages for system design, verification and reuse, and provides a composi-
tional methodology for specifying the architecture of applications, specially important
for open and distributed systems (ODS).

However, this approach also presents some limitations, since connectors are good for
defining and managing the interconnections between components, but they still lack the



ability to abstract other important properties, like resource discovery and management,
placement policies, reliability features, and other context-specific requirements [4].

To address these concerns, system developers are working on better and more so-
phisticated systems that incorporate new features, while component developers have to
undertake those requirements not covered by the systems themselves. However, this is
definitely not a good approach in the long term, since it leads to unnecessarily compli-
cated systems and components, hindering their reusability, portability and openness.
A more preferable approach would be to design generalized components which may be
customized to particular architectural contexts. Connectors would encapsulate these
customizations, keeping both components and systems as simple as possible, and free
of orthogonal and context-specific concerns and requirements.

Different authors follow a reflective approach [2, 5, 6, 10] that considers com-
ponents as black boxes that transparently modify their behavior through controllers
—layers, meta-objects or wrappers—, first-class entities that wrap them. Our proposal
is also based on this model, offering a three-layered structure: “Systems-Controllers-
Components”. Systems can be simplified to the minimum, offering just the infras-
tructure for the creation and communication of components. Components encapsulate
computations, and the standard add-on controllers provide components with the re-
quired behavior. In our software market there is not only room for systems and compo-
nents manufacturers, but also for developers of reusable controllers. The idea is to ease
the task of building applications by using off-the-shelf components and controllers.

In order to do so, some goals must be achieved. First, components and controllers
should be defined in such way that controllers can be added to components in a com-
patible, modular and independent manner, and composed to apply multiple properties
simultaneously to a component. And second, formal methods and models are needed
for specifying the behavior of the components, the controllers and the aggregates, for
reasoning about them, and for proving that the application requirements can be met
when putting all the pieces together.

Our work tries to achieve those goals. We have defined a reflective model for
open systems that includes the concepts of components and controllers, allows their
modular composition and aggregation to build up applications, and also targets other
ODS-related issues, like component evolution, environment-awareness, and dynamic
configuration [17]. It has two different parts: a communication model based on asyn-
chronous messages with local broadcasting capabilities, and a reflective architecture
on top of it to wrap components with controllers that modify their behavior according
to the user requirements. Controllers are not just mere computational filters, since
they not only capture and modify messages, but they can also split, reorder or join
them, reply to messages, or even interrogate the system and reconfigure themselves
accordingly.

However, providing component and application developers with (yet) another com-
positional model that aims for a global component marketplace is not enough, unless
it is supported by a methodology that guide and simplify their work and a formal
framework to reason about the component and the application properties.

In this paper we present the formal framework that supports the model, showing
how the model mechanisms and concepts can be formally specified, and the sort of



formal results that can be obtained. In particular, we study (a) the specification of
the component interfaces, (b) the characterization of the way in which controllers
modify the interface of components, and (c) the degree of replaceability of the modified
components with regard to the original ones.

The paper is structured as follows. Next section briefly describes the component
model used, and the following two sections define the concepts that allow the reasoning
about equivalence, compatibility and replaceability of components. After that the sort
of outcomes that our formal framework produces are shown, from both the theoretical
and practical points of view. In particular, we will show a method for producing speci-
fications of controllers and how to derive from them the desired formal results. Finally,
we relate our work to the contributions of other authors and draw some conclusions.

THE COMPONENT MODEL

This section begins with a brief explanation of the model, and then shows how its
concepts and mechanisms are specified in our formal framework. Instead of choosing
any of the existing component models, we have defined a neutral one with the minimum
set of features required for components to interoperate in ODS. The model is devised to
serve as a common component platform that abstracts all these features and implements
them in a natural way. None of the most commonly used component models fulfills
all ODS requirements, and using a simple and neutral model greatly simplifies the
reasoning processes about its components, and eases its implementation in any other
model. In particular, our aim is to be able to transfer our theoretical results to existing
commercial component platforms like CORBA, DCOM or JavaBeans.

Generally speaking, any computational entity can be modeled as an object (even
if internally implemented by many), with a state (given by its attributes) and some
access operations (its methods). We define component as an object encapsulated with
an interface compatible with the communication mechanisms offered by the system.
The capsule abstracts its properties, hides its implementation and allows it to interact
with other components.

In our model, components interoperate using mailboxes and asynchronous mes-
sages. Each component has a mailbox with a unique global identifier, through which
the component sends messages to other mailboxes and receive messages from other
components. Messages are information entities with a header and a body. The header
is a set of fields with the delivery information. The body is just another field with no
predefined structure, used to store the data being delivered.

An important field of every message is its selector, that determines the operation to
be executed by the target component. For every method f implemented by a component,
we define four different selectors: !f , ?f , Re:!f and Re:?f . The first one invokes the
method, and Re:!f is used for replying to it. Selector ?f asks the destination component
whether it implements method f or not, and Re:?f answers this question. Besides, the
special selector ‘??’ requests a component for the list of its methods.

Components being black boxes, their behavior is defined by their interfaces. We
define the interface of a component as the set of message selectors that it sends out
(outputs) plus the received ones that it understands and treats (inputs), supposing that



received messages not understood by a component are discarded. From these sets the
concepts of (syntactic) compatibility and replaceability of components will be defined.

On the other hand, mailbox identifiers have two parts: a local name and a domain
address. In our context, a domain is a set of interconnected machines, and defines the
‘environment’ of a component. The sender of a message can specify just a destination
name, meaning that the mailbox belongs to its local domain, or a whole mailbox
identifier. But it can also specify a special name (BCST) so that the message gets sent
to all mailboxes currently in the destination domain.

Our model tries to minimize both systems and components requirements, dealing
with every context-specific requirement in a modular and independent way through the
use of controllers. Controllers are first-class entities that can be attached to mailboxes,
capturing their incoming and outgoing messages and modifying them according to
their purpose. Multiple controllers can be attached to the mailbox of a component,
getting chained in such way that outgoing messages from a controller become incoming
messages to its successor.

Each controller implements a property that deals with an ODS specific require-
ment, like dynamic re-configuration, error detection and recovery, maintainability or
adaptability. We have initially identified a set of properties that we think of particular
interest for ODS, and that can be achieved through the use of controllers (many be-
havioral properties can be implemented that way, although not all, as can be learned
from Aspect-Oriented Programming [11]). We will not go in detail about them, just
mention three that provide components with autonomy in an open environment:

Independence Components should be self-governed, able to discover the services
they need and free to decide the provider to use. A controller implementing
this property maintains a list of the services used by its component, dynamically
updated with the information from the received messages. When delivering a
message, the controller checks whether the target component is working or not,
sending always the message to a known active component. The controller is also
able to interrogate its environment for valid service providers, therefore making
the component ‘environment-aware’.

Self-Protection Components should protect themselves against external failures and
avoid never-ending waits. Controllers implementing this property use a time-
out table for outgoing messages, together with the component instructions for
handling timeout conditions. They produce replies to the component when the
target component of a method does not reply within a given deadline.

Adaptability Components should be extensible and able to accommodate to different
interfaces and protocols. Regarding extensibility, controllers of this property try
to find available service providers and re-divert to them the incoming service
requests not implemented by the component. Regarding interoperability and
interface adaptation, they try to find translators for the outgoing messages they
handle, entities similar to Wiederhold’s mediators [18] or to Yellin and Storm’s
adaptors [20]. Mediation is a smart way to achieve evolutionary adaptation
of interfaces, since it separates the controllers from the adapters themselves,



improving the reusability of the controllers and the independent evolution of the
adapters.

The remainder of this section is devoted to the specification of the basic mechanisms
of the model. Object-Z [8], an object-oriented variant of Z [15], has been chosen as
formal notation. Z is extremely powerful for dealing with sets and functions, the
basic terms in which our model can be formally expressed, and Z also allows the
incremental development of specifications and the refinement and derivation of code,
very important for easing the implementation of the specified systems. On top of that,
Object-Z provides a more structured specification design, the possibility of associating
operations with states, and the use of inheritance for specializing controllers. We will
also make use of some temporal logic operators like always (�), eventually (�) or
previously (−�) in addition to Z’s first order logic. These operators are commonly
used in Object-Z for specifying class history invariants, and their semantic description
can be found in [13]. Using temporal logic has greatly simplified our definitions and
alleviated many of the formal proofs.

Basic Types

The following definitions specify some of the basic types used in our model:

[NAME,DOMAIN, SERVICE]
ADDR == NAME × DOMAIN

DECORATOR ::= ! | ? | Re:! | Re:?
MsgID == DECORATOR × SERVICE

Mailbox identifiers are of type ADDR, which has two parts: the name of the mailbox
and the domain where it ‘lives’ (e.g. av@lcc.uma.es). Service identifiers (i.e.
method names) belong to type SERVICE, and message selectors are of type MsgID.
Types NAME, DOMAIN and SERVICE are considered as basic types, since their internal
structure is not relevant at this level of the specification. The only restriction is that
there should be a constant of type NAME indicating that a message has to be sent to
all mailboxes in a domain:

BCST : NAME

The following functions are used to ‘project’ the parts of the mailbox identifiers and
message selectors:

Name == first[ADDR]
Dom == second[ADDR]

Decorator == first[MsgID]
Service == second[MsgID]

Type MSG describes the messages sent and received by components through mail-
boxes (we have only included here the fields relevant to this specification):

MSG
To : ADDR [Destination mailbox]
From : ADDR [Originator mailbox]
Selector : MsgID [Msg Selector]
Info : STRING [Msg Data]



Controllers

Controllers can be considered as active wrappers that modify the behavior of com-
ponents. They all have the same structure, with two basic operations (Received and
Deliver) that determine the way in which they operate with the component incoming
and outgoing messages. The following class specifies a general controller. This is the
most basic controller, that simply let messages go through it unmodified:

Controller

RelatedMsgIds In,RelatedMsgIds Out : PMsgID

Deliver
outq? : seq MSG [Messages from the component]
outq! : seq MSG [Messages to the environment]

outq! = outq?

Received
inq? : seq MSG [Messages from the environment]
inq! : seq MSG [Messages to the component]

inq! = inq?

Class Controller has two constants (in the Object-Z style) that determine the set of
(incoming and outgoing) message selectors that will be considered as relevant for a
particular controller. Both values are used when configuring a controller to be plugged
to a particular component, and define the component preferences. Only messages with
selectors belonging to those sets will be treated by the controller, while the rest of
messages will pass transparently through it. Operations Deliver and Received process
outgoing and incoming messages, respectively.

All controllers will be defined from this class by inheritance, renaming its operations
according to their purposes.

Mailboxes

Mailboxes have an identifier (Addr, of type ADDR), two message queues (inq and outq)
to hold incoming and outgoing messages, and a list of attached controllers (controllers).
Components send and receive messages to and from their environment using opera-
tions Send and Receive, that make also use of the operations of the controllers attached
to the mailbox, forcing messages to go sequentially through them. The system trans-
fers messages among components using their mailbox operations ExternalPut and
ExternalGet, that allow the access to the message queues from the environment side
(see next heading).



MAILBOX

�(INIT,Addr,ExternalPut,ExternalGet, Send,Receive)
Addr : ADDR [Mailbox Address]

inq, outq : seq MSG [Incoming and outgoing msg queues]
controllers : seq ↓Controller [Controllers attached]
∆
nc : N

nc = #controllers

INIT

inq = outq = controllers = 〈 〉

AddController
∆(controllers)
L? :↓Controller

controllers′ = controllersa 〈L?〉

ExternalGet
∆(outq)
m! : MSG

outq �= 〈 〉
m! = head outq
outq′ = tail outq

ExternalPut
∆(inq)
m? : MSG

m?.To = Addr ∨ (Name(m?.To) = BCST ∧ Dom(m?.To) = Dom(Addr))
inq′ = inqa 〈m?〉

BasicSend
∆(outq)
outq? : seq MSG

outq′ = outqa outq?

BasicReceive
∆(inq)
inq! : seq MSG

inq �= 〈 〉
inq! = inq
inq′ = 〈 〉

Send =̂ [ nc > 0 ]∧ ((o9i = 1 . . nc • controllers(i).Deliver) o
9 BasicSend)

[]
[ nc = 0 ]∧ BasicSend

Receive =̂ [ nc = 0 ]∧ BasicReceive
[]

[ nc > 0 ]∧(BasicReceive o
9

(o9i = 1 . . nc • controllers(nc − i + 1).Received))



Components

In this section we will give a very simple specification of the components, just con-
sidering their relevant aspects to our model. A component has a set with the names
of methods it implements, specified by a constant (Methods), and a mailbox to com-
municate with other components. Operation Wrap is used to attach a controller to the
mailbox of a component. The two history invariants force the component to read its
mailbox from time to time, and to reply messages requesting information about its
methods.

Component

Methods : P SERVICE

mbox : MAILBOX

INIT =̂ mbox.INIT

Wrap =̂ mbox.AddController

�(�event = mbox.Receive)
∀ f : Methods •

�(∃m : MSG | m ∈ ran mbox.inq ∧ m.Selector = (?, f ) ⇒
�(∃ r : MSG | r ∈ ran mbox.outq ∧ r.Selector = (Re:?, f )))

Finally, communication among components is achieved at the system level, using
their mailboxes:

System

components : P ↓Component

∀ c1, c2 : components • c1.mbox.Addr �= c2.mbox.Addr

. . .

Transfer =̂
∧

c1, c2 : components •
(c1.mbox.ExternalGet o

9 c2.mbox.ExternalPut)

INTERFACES

Components being black boxes, the way to describe their behavior is through their
interfaces. Traditional object-oriented interfaces contain only information about the
incoming messages. However, in component-based models it is important to consider
outgoing messages too; without them it is not possible to check the compatibility
between two components, since we do not only need to know the services the component
implements, but also the services it requests to other components.

In the following definitions we will just consider the message selectors for specifying
the interfaces. This provides the flexibility required to express the dynamic changes
and the evolution of components in open and independently extensible systems.
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Figure 1 The interfaces of a component and a controller.

Mailbox Interface

The interface of a mailbox is determined by two set functions, Inputs and Outputs, that
contain the messages that have ever been received or transmitted through the mailbox:

Inputs,Outputs : MAILBOX → PMSG

∀mb : MAILBOX •
Inputs(mb) = {m : MSG | −�(m ∈ ran mb.inq)}
Outputs(mb) = {m : MSG | −�(m ∈ ran mb.outq)}

With them, the interface of a mailbox mb is defined by a pair of functions (I and O),
obtained from the previous ones by simply ‘projecting’ the selectors of the messages:

I,O : MAILBOX → PMsgID

∀mb : MAILBOX •
I(mb) = {m : MSG | m ∈ Inputs(mb) • m.Selector}
O(mb) = {m : MSG | m ∈ Outputs(mb) • m.Selector}

Controller Interfaces

Controllers offer two interfaces (see figure 1): one to the component (given by IC and
OC) and one to the environment (given by IE and OE). They are defined similarly to
mailbox interfaces:

IE,OE, IC,OC :↓Controller → PMsgID

∀L :↓Controller •
IE(L) = {m : MSG | −�(m ∈ ran L.Received.inq?) • m.Selector}
OE(L) = {m : MSG | −�(m ∈ ran L.Deliver.outq!) • m.Selector}
IC(L) = {m : MSG | −�(m ∈ ran L.Deliver.outq?) • m.Selector}
OC(L) = {m : MSG | −�(m ∈ ran L.Received.inq!) • m.Selector}

Component Interface

With the previous definitions, the interface of a component can be specified as the set
of message selectors that will ever be sent or received through its mailbox (figure 1):



I,O :↓Component → PMsgID

∀C :↓Component •
let related == ∪C.mbox.nc

i=1 C.mbox.controllers(i).RelatedMsgIds In •
O(C) = {s : MsgID | �(s ∈ O(C.mbox))}
I(C) = {s : MsgID | � (s ∈ I(C.mbox) ∩ (({?, !} × C.Methods) ∪ related))}

These functions are monotonic, in the sense that if a message selector ever belongs
to an interface set, then it belongs to it from that moment on. Using temporal logic
provides a nice way of reasoning about asynchronous message interfaces, since it does
not only allow to account for the messages that have gone through a mailbox (which
constitute the usual semantics for message passing systems [1]), but also to consider
the messages that will eventually go in or out through it.

Wrapping

So far we have talked about wrapping components with controllers when attaching a
controller to their mailboxes. We can now formally state it:

Theorem 1 Let C:↓Component be a component, and L :↓Controller a controller. Then

I(C.mbox) ⊆ OC(L),O(C.mbox) ⊆ IC(L), I(C.mbox′) = IE(L),O(C.mbox′) = OE(L)

where C.mbox and C.mbox′ represent C’s mailbox before and after attaching L to it,
respectively.

Proofs have not been included for space reasons. However, they are all based on
standard Z reasoning mechanisms, and most of them are straightforward consequences
of the previous definitions and Object-Z operators laws. In particular, theorem 1 can be
easily proved using induction over the number of controllers attached to the component.

In the following, CL will denote the component obtained by wrapping component C
with controller L, and the composition of two controllers will be denoted by CL1�L2 ==(
CL1

)L2
.

Operation� is not commutative or associative in general, although we will say that
two properties L1 and L2 are independent if the composition of their controllers L1

and L2 is commutative, i.e. ∀C :↓Component • (C)L1�L2 = (C)L2�L1 . We can also
define the composition of more than two controllers:

(C)L1�...�Ln ==
(
(C)L1�...�Ln−1

)Ln
.

Internal message passing inside a controller

The following four functions determine the internal message passing inside a controller
(fig. 2):

In2Component, In2Environment : MsgID �→ PMsgID
Out2Component,Out2Environment : MsgID �→ PMsgID

dom In2Component = dom In2Environment = RelatedMsgIds In
dom Out2Component = dom Out2Environment = RelatedMsgIds Out
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Figure 2 Internal message passing inside a controller.

With them it is possible to relate the set of outputs of a controller L to the set of its
inputs, expressing the former in terms of the latter:

OC(L) =
(
IE(L) \ L.RelatedMsgIds In

)
∪ [O1]

In2Component(| IE(L) ∩ L.RelatedMsgIds In |) ∪
Out2Component(| IC(L) ∩ L.RelatedMsgIds Out |)

OE(L) =
(
IC(L) \ L.RelatedMsgIds Out

)
∪ [O2]

Out2Environment(| IC(L) ∩ L.RelatedMsgIds Out |) ∪
In2Environment(| IE(L) ∩ L.RelatedMsgIds In |)

COMPATIBILITY AND REPLACEABILITY

There are two important concepts when building up applications from components
and managing their evolution: compatibility and replaceability. Compatibility ensures
interface matching between components, that is, that exchanged methods between them
can be understood by each other. Replaceability deals with the ability of a component
to substitute another without forcing the application to evolve.

In this section those concepts will be defined more precisely but, before we start, we
need to restrict the functions that determine the interface of a component with regard
to the targets and originators of the messages:

I From,O To :↓Component × PADDR → PMsgID

∀C :↓Component,X : PADDR •
I From(C,X) = I(C) ∩ {m : MSG | m.From ∈ X • m.Selector}
O To(C,X) = O(C) ∩ {m : MSG | m.To ∈ X • m.Selector}

We also need to select the output messages that are produced for a given input
message. For each component C and a set of (input) message selectors, the following
function O For returns the set of selectors that the component outputs to implement
them:

O For :↓Component × PMsgID → PMsgID

∀C :↓Component,M,N : PMsgID •
O For(C,M) ⊆ O(C)
O For(C, I(C)) = O(C)
M ⊆ N ⇒ O For(C,M) ⊆ O For(C,N)



In particular, O For(C,�) is the set of message selectors that a component sends by
its own initiative. Finally, we can also combine both interface restrictions and define:

O For To :↓Component × PMsgID × PADDR → PMsgID

∀C :↓Component,M : PMsgID,X : PADDR •
O For To(C,M,X) = O For(C,M) ∩ O To(C,X)

Another important interface restriction has to do with the messages that request
information about the methods implemented by a component. We knew from the
second history invariant of class Component that components should reply to those
messages. Having this into account we can concentrate only in the messages that
request method invocations, and therefore define:

Invocations == {s : MsgID | Decorator(s) ∈ {!,Re:!}}

Based on this set, the following function restricts the message selectors:

� : PMsgID → PMsgID

∀ S : PMsgID • S� = S ∩ Invocations

Equivalence and Compatibility

We are now in a position to define the concepts of equivalence (∼=) and compatibility
(�) of components:

∼= :↓Component ↔↓Component

∀ c1, c2 :↓Component • c1
∼= c2 ⇔ I(c1)� = I(c2)� ∧ O(c1)� = O(c2)�

� :↓Component ↔↓Component

∀ c1, c2 :↓Component • c1 � c2 ⇔
O To(c1, c2.mbox.Addr)� ⊆ I From(c2, c1.mbox.Addr)�

O To(c2, c1.mbox.Addr)� ⊆ I From(c1, c2.mbox.Addr)�

Informally speaking, two components are said to be equivalent if they have the same
interface, and compatible if their interfaces match, i.e. all the messages they send to
each other are understood by the receiver.

Relation ∼= is an equivalence relation and� is commutative.
With this definitions it is obvious to prove that attaching to a component a controller

that does not modify any message produces an equivalent component to the original
one:

Theorem 2 Let C:↓Component be a component, L : Controller a controller of class
Controller (that does not modify messages), and C′ the resulting component of wrapping
C with L. Then C and C′ are equivalent, i.e. C′ ∼= C.

The previous definitions also allow us to get rid of the particular implementations of the
components when specifying applications. In our model, an application is defined as



parallel composition of equivalent classes of components (modulo ∼=), in which their
components are pairwise compatible.

For simplicity, in the rest of the paper we will identify applications by the addresses
of the mailboxes of their constituent components, and therefore define: Application ==

PADDR.

Replaceability

From the point of view of the developer of a controller L, it is very interesting to be able
to prove properties about the behavior of the component obtained by wrapping a given
component C with L. In this sense we talk about replaceability of components, that
deals with the level of backwards-compatibility between two versions of a component.
More precisely,

� :↓Component ↔↓Component

∀ c1, c2 :↓Component • c1 � c2 ⇔
I(c1)� ⊆ I(c2)� ∧ O For(c2, I(c1))� = O(c1)�

If c1 � c2 we say that component c1 is replaceable by c2, or that c2 is backwards
compatible with c1. In other words, we are asking c2 to understand and implement all
methods that c1 implements, and that c2’s outputs when implementing them are the
same as c1’s. Relation � defines a partial order, modulo ∼=.

Analogously, we can define relative replaceability with regard to the components
of a given application A as:

� : Application → (↓Component ↔↓Component)

∀ c1, c2 :↓Component,A : Application • c1 �A c2 ⇔
I From(c1,A)� ⊆ I From(c2,A)�

O For(c2, I From(c1,A))� = O For(c1, I From(c1,A))�

In this case we are asking c2 to implement all methods that c1 admits from the
components of application A, and that the outputs of both c1 and c2 are the same when
implementing them. We also can weaken this definition a little, and talk about relative
weak replaceability:

� : Application → (↓Component ↔↓Component)

∀ c1, c2 :↓Component,A : Application • c1 �A c2 ⇔
I From(c1,A)� ⊆ I From(c2,A)�

O For To(c2, I From(c1,A),A)� = O For To(c1, I From(c1,A),A)�

We are allowing here c2 to use methods from other components outside applica-
tion A when implementing the methods requested by A’s components, although the
responses to them should be the same as c1’s. The difference we have introduced is
that new components may have to ‘join’ application A when weakly replacing one of
its components, since c2 may requests services not implemented by any of A’s compo-
nents (for instance, this happens quite often in the PC world: replacing a product may
force us to either upgrade others or to install new ones).



The four relations can be ordered in the following way:

∀ c1, c2 :↓Component,A :Application •
(c1

∼= c2) ⇒ (c1�c2) ⇒ (c1�A c2) ⇒ (c1�A c2)

BUILDING CONTROLLERS

One of the most important goals of any engineering discipline is the production of
methods and processes for the reliable and automated construction of products, let they
be bridges, buildings, cars, or whichever entities the discipline deals with. Accordingly,
we cannot stop at defining the controllers; we would like to have a methodology for their
systematic construction too. This methodology should allow their guided specification,
together with the derivation from their formal specifications of a set of interesting
outcomes:

(a) In the first place, the possibility of reasoning about the behavior of the modified
components, in terms of their interfaces.

(b) We also need a description language (CDL) in which controllers can be defined,
selected and configured by developers to build up their applications by attaching them
to existing components. There should be a method in place to derive the expression in
CDL of a controller right from its formal specification.

(c) And finally, the formal language used to specify controllers should allow the easy
derivation of their implementations.

In this section we will discuss about the guided construction of the controller spec-
ifications and the second of the outcomes, i.e. the derivation of formal results. With
regard to the other two outcomes, CDL is an interface textual language similar to other
existing IDLs, but adapted to deal with controllers; the way the controllers are specified
in Object-Z allows their interfaces to be easily written down in CDL. And regarding the
derivation of code from the specifications, one of the major benefits of using a variant
of Z is that this process (called refinement in Z terminology) is well documented and
understood [15, 19].

Specifying Controllers

Since all controllers have the same structure, their specification obeys a general scheme:

AnyController

�(INIT,Deliver,Received, ...)
Controller[Deliver/D,Received/R]

Constants

State variables

INIT =̂ [ ... ]



Configuration and Private operations . . .

Public operations:
Received
inq?, inq! : seq MSG

. . .

Deliver
outq?, outq! : seq MSG

. . .

There is a common process for building the class of a given controller:

(1) First, it should inherit class Controller and hide operations Deliver and Received
in order to override them.

(2) Apart from the constants in class Controller, the constants of this class should
represent the configuration parameters that depend on the user preferences, and whose
value will be determined when instantiating the class, that is, when attaching the
controller to a component.

(3) The state variables will hold the structures and variables used by the controller
when accomplishing its task, and will be initialized in the INIT operation.

(4) Configuration operations are those that allow the user to dynamically consult or
modify the controller state variables.

(5) Private operations are those auxiliary operations used by the controller for speci-
fying its public operations Deliver and Received.

Deriving Formal Results

One of the goals of our work is to provide developers of controllers with a formal
tool to specify the effects of wrapping components with them and to characterize the
applications for which the new components can replace the old ones. This section
shows the sort of results that can be obtained using our formal framework and how to
achieve them. In particular, once we have the Object-Z specification of a controller L,
we can study the degree of replaceability between the original component and the one
obtained by wrapping it with L. The following process shows how to do it:

(1) Characterize the range of the functions that determine the internal behavior of the
controller, namely In2Component, In2Environment, Out2Component and Out2Envi-
ronment, in terms of the original component incoming and outgoing message sets I(C)
and O(C).

(2) Characterize the sets IE(L) and IC(L) that describe the incoming messages that the
controller deals with, using the functions obtained in the previous step.

(3) Characterize the sets of outgoing messages OE(L) and OC(L) using the previous
results and the expressions [O1] and [O2].

(4) Obtain the interface of the modified component, applying theorem 1 to the ex-
pression of the interfaces of the controller in terms of the interface of the original
component.



(5) And finally, restrict the sets of message selectors obtained and apply the definitions
of equivalence and replaceability given in the previous section.

For example, applying the previous steps to the Object-Z specifications of the con-
trollers of the three properties mentioned at the beginning of this paper, we can deter-
mine the degree of replaceability of the components obtained after wrapping a compo-
nent with them. More precisely, if C:↓Component is a component, I : Independence,
S :SelfProtection and A :Adaptability are the controllers implementing the properties
of Independence, Self-Protection and Adaptability, and CI , CS and CA are the result-
ing components after wrapping C with them, respectively, the following results can be
proved:

(a) C and CI are equivalent, i.e. CI ∼= C.

(b) C and CS are equivalent, i.e. CS ∼= C.

(c) C is weakly replaceable by CA with regard to the components of any application
A, i.e. ∀A : Application • C �A CA.

Intuitively, these results are based on the way those controllers work. In the first
place, a controller of the property of Independence may change the target components
of the messages, but not their selectors. A Self-Protection controller does not change
the interface of the component since it just generates the answers to messages when they
are not received. However, an Adaptability controller either extends the functionality
provided by the component, or ‘translates’ its outgoing messages in order to make them
compatible with the components in its environment. Extension of functionality does
not jeopardizes backwards compatibility since it is just an extension, but translation is
achieved through the use of translators, independent components which need to join
in the application if not already included in it.

RELATED WORK

With regard to the formal aspects of our contribution, they can be related to two
main areas of research: the specification of first-class entities that reflectively modify
the behavior of components, and the notions of compatibility and replaceability of
components. Comparison between our model and other component platforms for open
and distributed systems is outside the scope of this paper, and can be found in [17].

In the first place, the meta-entities of most of the reflective models (meta-actors,
filters, wrappers, etc.) are usually defined as language extensions and implemented
using the base language. Thus, they are determined by several special syntactic con-
structs and their associated semantics. Some of them, like the Composition Filters [5],
have very simple semantics since those filters have no state and cannot accept mes-
sages. On the contrary, the Actors model has rather complicated semantics [3] based
in λ-calculus, and specifying non-trivial meta-actors (like the Real-Time Synchroniz-
ers [14] or the Communicators [16]) is a complex task as claimed by their own authors.
Moreover, there seems to be no easy way to generalize those specifications to pro-
duce the specifications of general meta-actors. On the other hand, other models like
LayOM [6] or the Message Filters [10], sit in between but few of them have actually



defined their semantics. And in all cases, the meta-entities used in most of the reflective
architectures lack of uniform structure and definition. Our contribution follows a dif-
ferent approach, using a formal notation for specifying the meta-components and their
behavior in a standard and uniform way, and independently from any (object-oriented)
base language. This has great advantages in terms of productivity as reuse is fostered,
and also eases the problems of formal reasoning about them.

Regarding the concepts of compatibility and replaceability of components, we have
limited ourselves to the syntactic level, i.e. to interfaces defined in terms of the com-
ponent methods, without extending them with constraints [12] or protocols [20]. Our
definitions are more in the style of [9], where incoming and outgoing messages are
also used for defining the interface of objects, and the notion of ‘environment’ is in-
troduced. However, both the objects and the environment can block messages in their
model, and the internal state transitions of an object are also taken into account, while in
our model components are black boxes and therefore we cannot consider their internal
state. Besides, we have also introduced the use of temporal logic for reasoning about
the component interfaces instead of using traces; this greatly simplifies the definitions
and the proofs of many of the results.

Finally, process algebras like π-calculus and other formal notations like CHAM are
also used by some authors for specifying their connectors. In our case, benefits of Z and
Object-Z overcome their limitations (weak support for reasoning about concurrency and
dynamic behavior of systems) since our work is primarily focused on the specification
of the model entities, and not so much on their concurrent behavior; this is why we did
not even use any mixture of static and dynamic formal notations as other authors do
(e.g. [7]).

CONCLUSIONS

The increasing use of open and distributed systems for the development of applications,
together with the increasing needs of a global component marketplace, are changing
the way software is developed nowadays. Reusability and late composition are two
driving forces towards the separation of the computational and interoperational aspects
of components, forcing ODS-specific requirements to be incorporated into user ap-
plications in an modular and independent manner [4]. The present work focuses on
this topic, providing a formal framework built around a component model that uses
modular, independent, composible controllers to modify the behavior of components
according to the user requirements and other context-specific concerns. More general
than the meta-objects of [2, 5, 10], and more specific than aspects [11], controllers not
only deal with the interaction between components, but also with the enforcement of
properties over them. In this paper we have shown how the framework can be used to
specify them, reason about their behavior and characterize the degree of replaceability
obtained when wrapping components with controllers.

Having a methodology and a formal framework to reason about reusable components
and controllers is a further step towards the goal of having engineering processes for
developing software applications from reusable entities, still far from becoming a
reality, but close enough to actively pursue it.
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