
Obligations and Delegation in the ODP Enterprise Language

Peter F. Linington
University of Kent
Canterbury, UK

Email: P.F.Linington@kent.ac.uk

Hiroshi Miyazaki
Fujitsu
Japan

Email: miyazaki.hir-02@jp.fujitsu.com

Antonio Vallecillo
University of Malaga

Malaga, Spain
Email: av@lcc.uma.es

Abstract—The ODP Enterprise Language is used to describe
the organizational objectives and policies that apply to the
system to be specified. It also captures constraints associated
with the environment in which the system is to be used.
Because the enterprise specification is concerned more with
organizational issues than technical details of the system,
there is considerable emphasis in the language design on
obligations and norms, rather than on the declaration of some
single rigidly required behaviour. This leads to a requirement
for specification techniques that encompass a wide range of
behaviour and then identify which behaviour should occur and
how exceptions are to be handled; this is more challenging
than computational specification, where the specification is
essentially a recognizer for correct behaviour and does not
define what is to happen if there are violations.

This paper describes work currently in progress within the
International Organization for Standardization (ISO) to extend
the Enterprise Language so that it is able to express more
directly the necessary obligations and other deontic concepts,
such as permissions and prohibitions. The approach being
taken is to introduce a new kind of object that reifies the
deontic constraints and thereby simplifies the description of
the behaviour expected.

Once the basic concepts are in place, they can be used
to define a wide range of organizational matters, such as
delegation rules and the way communities respond dynamically
to changes in their structure.

Keywords-open distributed processing; enterprise language;
obligations;

I. INTRODUCTION

The Enterprise Language [1] was first introduced in the
Reference Model for Open Distributed Processing (RM-
ODP) [2]–[6], and forms a key part of the toolkit for the
specification of ODP Systems. Separating the organizational
objectives, policies and environmental constraints into a
separate viewpoint capturing the business processes to be
supported creates a firm foundation both for the detailed
design of a new system and for the evolution of an existing
system. It simplifies system management and reduces the
risk of unintended changes being introduced during subse-
quent maintenance.

However, concentrating on what the system ought to
do brings us into the realm of deontic logic. This has
a long history, dating back to the seminal work of von
Wright [7]; a good recent introduction can be found in [8].
Starting from deontic logic allows us to deal with norms

and expectations, or more specifically with obligations to
perform specified behaviour, permissions to perform such
behaviour and prohibitions of behaviour that might other-
wise be feasible. There is a subtle shift going on here. We
are moving from a style of specification where the testing
of correctness is based on whether the next action taken is
always as specified to a somewhat looser assessment regime
in which sets of obligations must eventually be discharged
but where a participant needing to do so may be juggling
many potentially conflicting constraints. There is a shift from
concentration purely on behaviour towards concern with
system state and the future behaviour that this implies.

However, standard deontic logic has a number of prob-
lems. One of these is that its formulae state properties of
the system as a whole. It therefore becomes necessary that
in a conformant system, an obligation for something to
happen implies a permission for it to happen. In an enterprise
specification we need to associate deontic constraints with
specific objects which act as agents, and which may need
to obtain permissions in order to discharge obligations they
have undertaken. Something less restrictive is required.

We need, therefore, to be able to deal with the sets of
obligations, permissions and prohibitions associated with
the various objects in the specification and how these sets
evolve, but to be able to express the goal seeking behaviour
of the various participants acting as agents. This is done here
by representing each deontic assertion by a token object.
These objects are held by the parties involved and holding
one controls their behaviour. These tokens can also be passed
from one party to another. The idea of handling this problem
by introducing a reification of the deontic constraints was
first suggested as a direction for developing the enterprise
language in [9] in 2003 and activity to incorporate it into
the ISO standards started in 2007. It is now well advanced.

This paper describes the work that has taken place since
then within the International Organization for Standardiza-
tion (ISO) to allow system specifiers to deal with these
issues. It aims to explain the approach taken and the way
in which the existing enterprise language is being extended
to accommodate it. Further work on concrete notations and
formalisms is now ongoing.

The paper is organized as follows. A brief reminder of
the nature of the enterprise language is given in section II.



In section III, we set the scene by introducing an example
that is based on an e-store selling physical goods, which
it has delivered to its customers. Then in section IV the
new language concepts are introduced and the basic rules
for manipulating them explained, Following this, we look,
in section V, at the ways the changes in the allocation
of obligations can themselves be subject to the same kind
of controls, and, in section VI, at how this can be used
to express processes like delegation. Section VII looks
at the way these mechanisms can be nested. Further, in
section VIII we look at the way exceptional events may
lead to reallocation of tokens and thus of responsibilities.
Finally, we say a little about related work in section IX and
then, in section X there are conclusions and an indication
of how the work is to to be progressed.

II. THE ENTERPRISE LANGUAGE

The enterprise language [1] is used to specify the view
of a system seen by the owners and policy makers oper-
ating within the business environment it serves. The aim
is to establish constraints and objectives as a basis for the
specification of the system itself.

The language expresses groupings of interested parties
and the behaviour they are expected to engage in. It provides
for the expression of general design constraints and for
mutable policies, such as security or commercial policies,
in a way that allows changes in organizational objectives to
be expressed and so to be used to guide evolution of the
supporting systems and their infrastructure.

The main structuring tool in the language is the concept of
a community. This expresses the way a group of abstract ob-
jects representing different players comes together to achieve
some objective. Communities are expressed in terms of their
type, also known as a contract, that expresses behaviour in
terms of a set of participating community roles. These roles
are filled, in a particular community, by specific enterprise
objects which are then each constrained to conform to the
behaviour defined for their role.

Roles are typed, and objects filling them must be compat-
ible with (that is, subtypes of) these types. Rules can also
be expressed to constrain role-filling at the instance level,
supporting properties such as static or dynamic separation
of duties. In simple communities, roles are filled when the
community is instantiated, but more complex situations can
be expressed by including definitions of role filling or re-
placement of community members as part of the community
behaviour.

The enterprise language also includes concepts for de-
scribing chains of accountability and responsibility so that
the basis for system actions can be traced back to the legally
accountable principals concerned. Doing so helps to bridge
the gap between business and technical processes.

More background to the style of and motivation for the
features of the language can be found in [10].

To be of practical use, an abstract language like this
needs to be supported by an easily accessible concrete
notation. In UML4ODP [16], representations of all the ODP
viewpoint languages are defined in a way that makes them
easily accessible to architects and designers who are already
familiar with UML-based tools.

III. A PURCHASING SCENARIO

As an example of the type of situation to be met with,
consider the Modern Oil Store, an online retailer specializing
in high quality olive oil. At the beginning of the season,
the company makes agreements with a number of primary
producers for the supply of their best quality oil. Customers
order via the web and the supplier arranges with one of their
pool of carriers to deliver the goods direct from the producer.
The customer provides credit details with the order, but
payment is only due on delivery.

Consider the central piece of this behaviour, starting with
a customer order and ending with payment for the goods.
This sequence of events is shown in a very simplified form
in figure 1.

This starts with an order event, which can only happen if
the customer has not been blacklisted. The result of the order
is that the supplier is obliged to make the oil available to the
customer and the customer is obliged to pay upon delivery.
When payment is by credit card, the customer gives the
supplier, as part of the order, permission to take the required
payment. Once the order has been received, the supplier
instructs a carrier to transfer the oil and the producer to make
it available. Each of these action leaves the subcontractors
with obligations to do their part and the supplier with

customer producersupplier carrier

order1: 

OK10: 

OK14: 

OK5: 

OK8: 

OK2: 
instruct3: 

instruct4: 

OK12: 
charge13: 

pickup7: 

OK6: 

deliver9: 

report11: 

Figure 1. A purchase of olive oil.



EnterpriseObject

Artefact

CommunityObject

ConditionalAction

PolicyDeclaration

DeonticToken

CommunityRole

Actor

ActiveEO

InterfaceRole

Action

Community

Behaviour

Communit

yBehaviour

ActionRole

Objective

Resource

Embargo

Contract

Burden Permit

Role

rolefiller0..1

0..*

0..*

rolefiller

0..1

0..*

owner

1

1..*

behaviour1..*

0..*

fulfiler

1..*

refinement

0..1

refiner 0..*

1 0..*

abstraction0..1

refinement

1

composite

0..*

component

0..*
1

0..*

1..*

rolefiller 0..1

rolefiller 0..*
0..*

refersTo

1

0..*

0..*

specifier

1

refersTo

0..*

0..*

identifier 0..1

behaviour 1

refersTo
0..*

0..*

0..*

member 0..*

0..1

1

1

1

Figure 2. The ODP Enterprise Community Concepts.

obligations to pay for these services and to monitor the
correct performance of them by the subcontractors.

The eventual delivery of the oil discharges the supplier’s
obligation to the customer and the completion of payment
discharges the customers obligation to pay. This action also
cancels the permission for the supplier to draw upon the
customers funds.

IV. EXTENDING THE LANGUAGE

The central structuring concept in the original enterprise
language is the community. A community is a configuration
of enterprise objects which is formed to achieve a given
objective. A community contract is the template from which
a community is instantiated, and defines its objective and the
behaviour that is to be undertaken to achieve this objective.
A number of roles are defined as formal parameters of
this contract, which are each filled by one of the various
enterprise objects that have come together to form the
community. When an enterprise object fills a community
role, its behaviour is constrained by that role, as stated in
the contract. In our example, the whole olive oil business
can be modelled as a community, with roles for customer,
supplier, provider and carrier, each filled by an appropriate
object to describe a particular transaction.

In a more abstract description, any community can be seen
as a whole, forming a single object, which is then called a
community object. Such an object can then itself fill roles

in some larger-scale communities, resulting in a hierarchical
structure of arbitrary depth. Thus an engineer can play a
role in a project team, which can then play a role in a
development department which is itself in an organization,
forming part of an industry sector, and so on. At each stage,
a nesting of communities involved can be seen.

Figure 2 and figure 3 show some of the key concepts for
expressing this community structure. They also introduce
some of the new concepts that control the performance of
the community behaviour.

The key extension to the conceptual framework for the
enterprise language is the introduction of a new type of
enterprise object, called a deontic token. A token has no
independent behaviour of its own, but is associated with,
or carried by, an enterprise object which does itself display
behaviour. The fact that an active enterprise object carries a
token modifies the object’s behaviour in some way. Note
that we introduce specific names for these token objects
to distinguish them from the deontic constraint they carry;
thus, for example, a burden is a token object carrying an
obligation; a burden can therefore be manipulated as an
object whilst an obligation cannot. There are three common
cases defined; the token may be:

• a burden, representing an obligation. The active ob-
ject carrying a burden must attempt to discharge it
either directly, by performing the specified behaviour,
or indirectly by performing behaviour that results in



SpeechAct

EnterpriseObject

DeonticToken

Authorisation Commitment

Prescription

TokenGroup

Declaration

Permission

Delegation

Prohibition

Party

Evaluation

Obligation

Embargo

ActiveEO

Principal

BurdenPermit

Action

Agent

Rule

{context Authorisation inv:

self.handledTokens−>any(o

clIsTypeOf(Permit)}

{context Commitment inv:

self.handledTokens−>any(

oclIsTypeOf(Burden))} createdRule

1..*

creator

0..1

handledTokens 0..1

0..*

token 1..*

0..*

component

0..*

composite
0..*

accountableParty 1..*

0..*

0..*

1

0..*

1

1

0..*

1

0..*

1

0..*

controllingToken 0..*

owner 1

Figure 3. The ODP Enterprise Accountability Concepts.

some other object taking possession of the token and
performing the behaviour that actually satisfies the
obligation.

• a permit, which, when held by an object, makes it
able to perform some specified piece of behaviour. An
object is obliged not to perform the behaviour unless it
already holds the required permit.

• an embargo, which, if held, inhibits its holder from
performing the specified behaviour.

It should be noted here that these token objects represent
modelling constraints, so the association of a token with
an active object is part of the description of the situation
being modelled, and so is not something a misbehaving
object can deny; how this constraint is then policed in an
implementation is to be decided later, and is not of concern
here.

In general, a token identifies the authority placing the
constraint and the behaviour influenced by the constraint,
indicating which roles or specific objects are being con-
strained. Note that the fact that the object affected can be
identified either implicitly or explicitly implies that a token

may be held initially by an object that is not constrained by
it, but later passed on to another object that, because it is
identified in the token, becomes constrained when receiving
it (see section V).

In fact, the actual definitions are rather more precise than
the brief statements given above. We need to specify not just
that an active object is involved in some behaviour, but to
state how it is to be involved, which requires the specifica-
tion of its action-roles. The concept of a role is a very broad
one, applicable to any situation where a number of objects
enter into a configuration in distinct ways. Community-roles
were introduced above, but here we need to be concerned
not with community-roles, but with action-roles, which are
associated with a different aspect of configuration. When
an interaction type is defined, we are generally interested
in expressing how a number of objects come together to
exchange information, and each participant is expected to
send or receive some specific items. In other words, each
object performs a different action-role, and the action-role
expresses what information the role-filling object supplies
to or derives from the interaction. Thus, for example, two



objects may perform client and server roles in an interaction,
and these action-roles make it clear, in this case, where the
initiative lies.

This ability to associate properties of an interaction with
its action-roles is particularly important in the enterprise
language because interactions often involve more than two
participants. Pieces of negotiation between three or four
enterprise objects may, for example, be expressed as a single
abstract interaction, and the contributions expected from
each object will depend on the action-roles they are filling.

So, when we speak of an object’s being obliged to perform
some behaviour as a result of carrying a burden, we actually
mean that the constraint expressed by the burden applies to
its ability to perform a stated action-role in the behaviour;
involvement in some other action-role will not do. For
example, an object may carry a burden to make a payment.
It is obvious that this means it is obliged to provide the
money in a payment behaviour, and that its being involved
in the right type of interaction, but in such a way that means
it receives the required sum of money, will not do.

In addition to the idea of tokens, two further definitions
are added to express the way these tokens are related to
the specification of community behaviour. This behaviour is
itself expressed by the recursive composition of actions or
sub-behaviours, so a subtype of action, called a conditional
action, is introduced to allow the specifier to declare which
actions are constrained by the set of available tokens. This
makes it possible to see immediately whether a particular
piece of behaviour may depend on the set of tokens held
by its participants, and so simplifies the analysis of the
behaviour.

The other new concept is needed to indicate whether an
action will modify the set of tokens held. This is again a
subtype of action, and is called a speech act. This name was
chosen by analogy with the linguistic concept of speech act,
introduced by Austin [11] and developed by Searle [12];
they were motivated by the need to explain how actions
like promises or wagers intrinsically change the state of
the world, which is clearly relevant to the problem we are
solving here.

Finally, another construct is introduced to allow groups of
tokens to be manipulated as a whole; we will return to this
in section VI.

Let us now return to the scenario outlined in figure 1
to see how these concepts are used. We will examine the
performance of individual actions in the specification, but
in practice it is expected that much of the detail will be
captured in the specification of the corresponding action
types so that the statement of the business process is still
as simple and uncluttered as in the earlier figure. The type
definitions will be expressed in terms of the action roles
involved, which will be bound to particular objects when
the action is instantiated (that is to say, performed).

All the actions in this example are speech acts, in that

Figure 4. Effects of the order action.

they all modify at least some tokens. In this example, we
assume that only some of the actions are conditional; this is
a design choice.

The order action is performed first. This is a conditional
action, because, although we are assuming that any party
could attempt to act as a customer, there are still precon-
ditions to be applied; some potential customers might have
been placed on a blacklist, and this is modelled by their
carrying an embargo prohibiting their performance of the
order action in the role of customer. A customer is also
expected to make available a permit for it to be charged
on delivery (this is provided before the order action, rather
than as a side-effect of it, because of the specific choices
the customer needs to make in preparing it).

Order is a speech act, because performing it creates a
number of tokens. First, the customer who initiated the ac-
tion is left holding a burden expressing its obligation to make
payment when the requested oil is delivered. The customer
will also need to provide a permit giving permission for
charges to be made, which is transfered to the supplier by the
action. When the supplier accepts the order, completing the
action, it is left holding a burden for the obligation to deliver
the oil, as well as the charging permit that the customer
provided. The way this action changes the sets of tokens
held is illustrated in figure 4.

Once the supplier holds a burden, it must decide how best
to satisfy it. It cannot, in this case, discharge the obligation
directly because it has neither its own stocks of olive oil nor
any direct access to the customer. It therefore approaches
its goal of providing the oil by having its subcontractors
perform each of these two subgoals as separate steps; first,
it asks one of the providers to make the required quantity
of oil available, and then it asks a suitable carrier to collect
this consignment and deliver it to the customer.

The two actions with which the supplier instructs the
producer and the carrier are similar. They are not conditional



Figure 5. Effects of the instruct action involving the producer.

actions, because we have chosen not to model explicit access
control between the supplier and its subcontractors. If the
instructions are successful, each leaves the subcontractor
with a burden to carry them out and the supplier with a
burden to pay for these services. The burden to supply the
goods remains with the supplier, but the actions instructing
the subcontractors have left the supplier with an expectation
that that this burden will be discharged; the supplier must
continue to monitor the situation to see that this in fact
happens (see figure 5, which shows the supplier interacting
with the producer to set up the first subgoal).

When the goods are delivered and this is reported to the
supplier, the burden to supply them is discharged. Thus the
reporting speech act performed by the carrier deletes the
corresponding tokens held by the supplier and the carrier

Figure 6. Effects of the report action.

(see figure 6). The burden on the producer was deleted when
the pickup action was performed.

Finally, the supplier performs the speech act of charging
the customer. This is a conditional action because it can only
be performed if the supplier has the necessary permit, which
is destroyed as a side effect of its use in the charging action.
This action also satisfies and deletes the payment obligation
on the customer (see figure 7).

Figure 7. Effects of the charge action.

Note that we have taken a conservative approach here in
making the carrier’s report explicit and linking the discharge
of the supplier’s burden to it. Other styles of specification
are possible if a trusted carrier, such as a national postal
service, is used; we could then omit the report and consider
the obligation to be discharged when the carrier is instructed
to perform the delivery. However, there would then need
to be some separate definition of exceptions and their
processing to cover situations where the shipment is lost
(see section VIII).

V. THE PASSING OF TOKENS

So far we have looked at the simple case where a
burden is created associated with one object, which then
holds it until the object’s behaviour causes the burden to
be discharged and so to cease to exist. However, in more
complex situations, a token may be passed from object to
object.

Since passing a token is itself an interaction, it can, in turn,
be controlled by other tokens. Thus there can be tokens that
represent the obligation to pass a token, a permission to do
so, or a prohibition to prevent it being done. This can lead
to the following patterns.

• A source of authority responsible for access control in a
system is a factory for permits and itself holds permits
allowing it to transfer the permits it creates to any of
the other objects in its security domain.

• an object holds an obligation to perform some action A,
but needs a permit in order to perform this action. It can



attempt to fulfil its obligation in one of two different
ways:

1) it can attempt to acquire the necessary permit to
do A from some authority and then perform the
action; or

2) it can attempt to acquire a permit that will allow
it to pass the burden to an object which has, or
can more easily obtain, a permit to perform the
action A.

In the example above, we described subcontracting in
terms of a speech act that created new burdens for the tasks
being assigned to the subcontractors, but it would also have
been possible to imagine a different way of describing the
business in which the supplier acted as a broker, and passed
on the burden to supply oil completely to another supplier
who would become responsible for the remainder of the
process. This would require that the supplier should have
any necessary permits to pass the burden on. It could either
have obtained these permits previously, or it could obtain
them dynamically as a result of a negotiation triggered by
this particular order.

VI. DELEGATION

From these elements, it is possible to construct descrip-
tions of a wide range of mechanisms for the control and
management of enterprise systems. One of these is the
specification of a framework for delegation. Delegation can
take many forms, and using deontic tokens to express it
allows us to distinguish the different variants.

The basic motivation for delegation by some party to
another is that the delegator can take on broader respon-
sibility, with greater reliability, if they involve others in
helping to perform their duties. Delegation involves passing-
on to others responsibility for some tasks, together with
permissions to use the resources necessary to carry them
out. The recipients usually already have some obligation to
accept and act on the delegation.

It is clear that this process involved the passing of permits,
burdens and embargos, but a complete description of a
delegation scheme needs to state:

• what permits the delegator needs in order to allow it to
pass burdens and permits to the delegatee;

• what additional burdens the delegatee is given in conse-
quence of the delegation, in order to allow the delegator
to revoke the delegation when necessary and recover
associated resources;

• whether or not the delegator can still exercise the
permits that have been delegated; in other words, are
permits passed or cloned, and is there an embargo that
prevents the delegator from exploiting cloned permits
while the delegation is in effect;

• what burdens the delegation places on the delegator to
monitor and control the activities of the delegatee;

• how the tokens passed during delegations are organized
into groups and whether the delegatee can perform
further delegation of either the whole group of tokens
received or of some subset of it.

The example given above has already illustrated a number
of these features in the behaviour of the supplier’s sub-
contractors. This situation involves a fairly loose flavour
of delegation, without many shared resources. Delegation
within a single organization is likely to be based on greater
sharing of resources and more complex pre-existing rules of
procedure.

Consider, for example, a service manager who is in
charge of a team of customer service engineers. The service
manager is responsible for solving customer problems but
may not have the technical qualifications, and hence the
permissions, to carry out servicing. When new engineers
join the team, the manager validates their credentials and
passes them permits to perform service actions and to access
customer account records. The manage is able to distribute
a group of tokens, only some of which he could himself use.
He also passes the burden to obey departmental procedures
and to satisfy particular customer issues. The engineers
accept a burden to act on the manager’s instructions when
they are appointed.

VII. TOKENS, DOMAINS AND COMMUNITIES

There are two possible styles in which enterprise systems
can be specified, depending on the default situation expected.
This can be illustrated, for example, by considering how
permissions are checked in an access control system. Either
actions are allowed by default and specific prohibitions
expressed, or actions are forbidden by default and some then
explicitly permitted. This decision is made independently for
each action, so that, for example, a document read action
may be allowed by default and specific accessors blocked,
while a write action might be prohibited unless explicitly
allowed. The decision on which of these styles to apply
is taken by the controlling authority, which establishes the
policy for its domain of responsible. Nested domains can
each have their own local policy.

In general, we can identify a hierarchical structure of
domains representing the way authority is derived, and in the
enterprise language this is mirrored by a hierarchy of com-
munities. Real specifications will generally just declare their
assumptions about the local sources of authority, rather than
attempting to trace them back through the broad abstract
communities that might in principle represent the social
and legal structures underpinning concepts of ownership and
corporate governance. However, such a structure could, in
an ideal world, be codified.

Once a source of authority has been identified, this can
delegate control of a specific subset of its resources to
smaller-scale domains, and in each of these domains the
local authority can decide whether the default assumption



is of permission or prohibition. However, this freedom may
be constrained by obligations applied when control of the
resources is delegated; for example, a sub-domain controller
may be constrained to exercise positive authentication to
comply with some broader policy.

So far we have described how the behaviour of an object
is modified by the tokens it holds. This can be expressed as
a direct association of the tokens with an object instance,
or a level of indirection can be used. One important case
arises in defining the behaviour of communities, where
expected behaviour is expressed in terms of the way the
community roles interact and these requirements are then
reflected in the observable behaviour of the objects filling
those roles. One of the jobs a community specification has
to do is to show how a community farms out the burdens it
holds to its members, and so the behavioural specification
can be simplified by associating burdens with roles and
then defining the filling of a role as extending any token
associations with that role so that the tokens are implicitly
associated with the objects filling the roles (see figure 8).

Figure 8. Associating tokens with a role.

It would, of course, be possible to define this in terms
of the explicit passing of tokens from the community to its
members when it is formed or when a new member enters
into a role. However, doing so would add a great deal of
additional detail to the specification which can be avoided
if the implicit extension of the role associations is used.

Associating tokens with roles does, however, raise some
additional questions. What is the status of tokens associated
with roles that are not currently filled by any object? This
is not a particular problem for permissions or prohibitions,
as interactions expected of an empty role cannot happen.
Obligations, on the other hand, do present a problem. If
the community assigns one of its burdens to an empty role,

that obligation will not be discharged. We must therefore
define the association of tokens with roles so that they are
still present in a more abstract view as being held by the
community.

This also provides a starting point for the definition of how
tokens should be handled when an object ceases to fill a role,
either because it leaves the community or because it ceases
to exist. Basically, tokens will revert to the community in
these circumstances.

VIII. EXCEPTIONAL CIRCUMSTANCES

This section looks further at the handling of deontic tokens
when exceptions occur. These may arise because an object
leaves (or is ejected from) some community. What happens,
for example, if one of the carriers involved in the olive oil
business fails suddenly? It becomes insolvent and as a result
ceases to fill its role in the supply community. Suppose it
was currently involved in a transaction and had received
instructions to collect a batch of oil and deliver it to a
customer. The producer had discharged their obligation by
making the oil available to the carrier, but the other parties
all held tokens related to their various roles.

The exception may be triggered either by the failing
carrier issuing a notification of the event, or, if it fails
silently, by the supplier observing some timeout. It will
do this because it is still holding a burden obliging it to
monitor the correct performance of the carrier’s duties. In
either case, the obligation to the customer reverts to the
community as not being handled at a more detailed level,
and a rule is triggered which re-assigns it to the supplier. The
supplier will then reissue instructions to the producer and to
a different carrier, so that the order is filled. Other rules may
also be triggered, including the issue of some recompense
to the customer for the delay.

The supplier will also initiate a separate thread of activity
in which it seeks to recover the undelivered goods from
the carrier and to make any applicable claim for breach
of contract. Note that this is an area where behaviour is
likely to be expressed as interactions involving more than
two parties; dispute resolution will often involve abstract
interactions involving all the parties involved, together with
some adjudicator.

In general, exception handling may be expected to revoke
existing token and to issue new ones, either to compensate
for failed activity or to seek redress for the damage done.
This may be a refinement of some recovery mechanism
defined in a general community contract used as a basis
for defining the current community.

IX. RELATIONSHIP TO OTHER WORK

The prime aim of this paper has been to raise awareness
of the activities taking place within the standardization bod-
ies. The high level of consensus building and consultation
involved in formal standardization takes time, and so many



related ideas have been put forward since this work began
within ISO in 2007.

As we indicated in the introduction, approaches based on
standard deontic logic are somewhat brittle, lacking the abil-
ity to localize constraints by associating them with specific
agents acting in particular roles. Within these limitations,
much work has been done to categorize different kinds of
obligation, and [13] gives a well reasoned example.

Research within a service oriented structure has addressed
issues of agency, and [14] gives a typical example. This work
lacks the expressive power of the approach presented here
because the deontic constraints are not fully reified, which
also makes it harder to express specifications in a notation
that is already familiar to practitioners; contrast this with
the approach here of mapping enterprise concepts to UML
standardized in UML4ODP [16].

The closest parallel to the approach taken here is in
Belnap’s [15] work on STIT (for ”see to it that”) logic and
his associated approach to the modelling of obligations. This
work inspired our analysis, although it is difficult to take as a
complete basis if we are to retain an object based approach,
and so the similarities at a detailed level are limited.

X. CONCLUSIONS AND FUTURE WORK

This paper has introduced an approach to enterprise
specification based on the reification of deontic constraints.
The work to add support for this technique to the ODP
standards is being carried out in two closely related projects.

The first project is concerned with the addition of the new
concepts and rules to the Enterprise Language standard, ISO
15414 [1]. This work is now well under way, and has reached
the key stage of issuing the draft of the updated text for
ballot by the national members who are represented in the
relevant subcommittee — ISO/IEC JTC1 SC7 on Software
and Systems Engineering. This draft will need to progress
through at least two rounds of balloting before becoming a
standard.

In addition to the specific mechanisms described so far,
the draft is also expected to contain some non-normative
material on the way deontic properties can be formalized.
This takes us beyond the use of simple labelled transition
systems towards frame-based representations and it is im-
portant that potential tool-builders should be aware of the
possibilities available.

The second project builds upon the first; while the enter-
prise language provides an abstract conceptual framework,
real specifications need to be expressed in a concrete no-
tation. In ODP, one such representation is defined in the
standard ISO 19793 on Use of UML for ODP System
Specifications [16], and the second project will update this
standard to make it capable of expressing the new concepts.
Clearly, it has not been possible to progress very far on
notational matters until the abstract framework is stable, so
the two projects were deliberately staggered, with serious

work on the second starting only now that the details of the
abstract language are gaining acceptance.

It is quite common for an abstract specification language
to be supported by more than one representation. The
enterprise language is no exception, and the work in ISO
is looking at the support of the same set of concepts using
more than one style. The focus here is on the support of the
abstract concepts in BPMN, as representing a commonly use
style for business process specification.

If all goes according to plan, this activity is expected to
result in published standards in some two to three years, and
it is hoped that research on supporting prototype tools will
also be carried out during this period.

ACKNOWLEDGMENT

The authors would like to acknowledge the contribution
made to the development of ODP by a very large number
of experts around the world over many years. However, the
responsibility for any errors in the current work rests with
the authors alone.

The authors would also like to thank the anonymous
referees for their detailed and helpful comments on the first
version of this paper.

REFERENCES

[1] ISO/IEC IS 15414, Information Technology — Open Dis-
tributed Processing — Enterprise Language, 2006, also pub-
lished as ITU-T Recommendation X.911.

[2] ISO/IEC IS 10746-1, Information Technology — Open Dis-
tributed Processing — Reference Model: Overview, 1998, also
published as ITU-T Recommendation X.901.

[3] ISO/IEC IS 10746-2, Information Technology — Open Dis-
tributed Processing — Reference Model: Foundations, 2010,
also published as ITU-T Recommendation X.902.

[4] ISO/IEC IS 10746-3, Information Technology — Open Dis-
tributed Processing — Reference Model: Architecture, 2010,
also published as ITU-T Recommendation X.903.

[5] ISO/IEC IS 10746-4, Information Technology — Open Dis-
tributed Processing — Reference Model: Architectural Se-
mantics, 1998, also published as ITU-T Recommendation
X.904.

[6] P. F. Linington, Z. Milosevic, A. Tanaka, and A. Vallecillo,
Building Enterprise Systems with ODP — An Introduction to
Open Distributed Processing. Chapman & Hall/CRC Press,
2012.

[7] G. H. von Wright, “Deontic Logic,” Mind, vol. 60, pp. 1–15,
1951.

[8] D. Rönnedal, An Introduction to Deontic Logic. CreateSpace,
2010.

[9] P. F. Linington and S. Neal, “Using policies in the checking
of business to business contracts,” in Proc. 4th IEEE Int.
Work. on Policies for Distributed Systems and Networks
(POLICY’03). Lake Como, Italy: IEEE Computer Society,
Jun. 2003, pp. 207–218.



[10] P. F. Linington, Z. Milosevic, and K. Raymond, “Policies in
Communities: Extending the ODP Enterprise Viewpoint,” in
Proc. 2nd Int. Enterprise Distributed Object Computing Work.
(EDOC’98), San Diego, USA, Nov. 1998, pp. 14–24.

[11] J. L. Austin, How to Do Things With Words. Harvard
University Press, 1962, 2nd edition, 1975.

[12] J. Searle, Speech Acts. Cambridge University Press, 1969.

[13] G. Governatori and A. Rotolo, “A conceptually rich model
of business process compliance,” in Proc. 7th Asia-Pacific
Conference on Conceptual Modelling. Australian Computer
Society, 2010, pp. 3–12.

[14] M. P. Singh, A. K. Chopra, and N. Desai, “Commitment-
based service-oriented architecture,” Computer, vol. 42,
no. 11, pp. 72–79, Nov. 2009.

[15] N. D. Belnap, M. Perloff, and M. Ming Xu, Facing the
Future: Agents and Choices in Our Indeterminist World.
Oxford University Press, 2001.

[16] ISO/IEC IS 19793, Information Technology — Open Dis-
tributed Processing — Use of UML for ODP System Spec-
ifications, 2008, also published as ITU-T Recommendation
X.906.


