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ABSTRACT
Reliability is an attribute that appears in all quality models,
so it is important to take it into account when developing
any kind of system. Its evaluation at latter stages of the
software development may force the re-engineering of im-
portant parts of the system, something very costly. This is
why it should be raised to the system design phase. Among
the systems where reliability is a crucial issue, some wireless
sensor network (WSN) protocols aim to extend the networks
lifetime as much as possible, so a more reliable network will
live longer. Following a model-driven engineering (MDE)
approach, we propose the use of domain specific visual lan-
guages (DSVLs) to model the reliability of systems based
on components by means of in-place behavioral rules and
by modeling how the state of the components changes. We
have developed as well a DSVL for modeling and analyzing
reliability properties of a WSN protocol based on local in-
formation, namely directional source-aware routing protocol
(DSAP).

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network
Protocols; G.3 [Probability and Statistics]: Reliability
and Life Testing

Keywords
Reliability, DSVLs, WSNs

1. INTRODUCTION
The modeling and analysis of non-functional properties is
very important when developing different kinds of systems.
Software quality assessment is often applied at system im-
plementation time, which is normally too late because the
problems arisen during implementation can force the re-
engineering of important parts of the system, which is very

costly. This is why it should be raised to the system design
phase. In this paper we focus on a non-functional property of
systems known as reliability, and we try to measure it at de-
sign time. Concretely, we analyze reliability when modeling
systems based on components by means of domain specific
visual languages (DSVLs), key parts in Model-Driven Engi-
neering (MDE) for representing models and metamodels. In
this way, we pursue the correct and complete specification
of a system by including the specification and analysis of
its reliability properties at design time. Specifically, in this
work we will focus on system reliability in the context of
wireless sensor networks (WSNs) and energy consumption.

In order to obtain reliability measures for a system, it is
necessary to be clear about what reliability is and how it
is defined. Different definitions have been given for it. For
example, the Wikipedia defines it as “the ability of a system
or component to perform its required functions under stated
conditions for a specified period of time”. In [8], Fenton
and Pfleeger say that “the accepted view of reliability is the
probability of successful operation during a given period of
time”. Musa provides in [16] a similar definition: “reliability
for software products is the probability for the software to
execute without failure for some specified time interval”. A
more general definition of reliability is given by the quality
model in ISO 9126-1 [12]. There reliability is defined as “the
capability of the software product to maintain a specified
level of performance when used under specified conditions”.
One more definition, in this case for software reliability, is
given by Wohlin et al. [26]: “the probability for failure-free
operation of a program for a specified time under a specified
set of operating conditions”.

A WSN is made up of spatially distributed sensor nodes
deployed over a certain area to monitor physical or environ-
mental conditions, such as sound, pressure, temperature,
vibration, humidity, and to cooperatively pass their data
among the nodes. The range of applications of WSNs is
large, and it includes military operations, habitat and envi-
ronmental monitoring, area surveillance or remote sensing.
Reliability is a crucial aspect in WSN applications, especially
those deployed for real-time communication, since data de-
livery should be guaranteed. For this reason, it is very im-
portant the routing protocol chosen in each circumstance.
There are many routing protocols already studied [10], which



can be classified in broad terms as fault-tolerant routing [6],
geographic routing [9] and energy aware routing [21, 22]. In
this work we focus in the last group, and concretely in the
Directional Source Aware routing Protocol (DSAP) [13] in
order to study its reliability, at design time, in the original
implementation and some variants.

The DSAP and its variants aim to extend the life of the
network as much as possible. In this sense, we are going
to model and monitor reliability in terms of the network’s
lifetime. Thus, a protocol will be more reliable than an-
other if it keeps the network working longer. This is in
accordance with the definitions of reliability given by Fen-
ton and Pfleeger [8] and Musa [16]. Throughout this paper,
we will be presenting the DSAP and some variations for
its routing. We model the DSAP and its reliability in the
domain of MDE and in-place rules based on DSVLs. For
the implementation and simulation, we use e-Motions [18],
a graphical framework and tool for defining timed behav-
ioral specifications of models. We show as well how different
kinds of reliability analysis can be carried out and perform
experiments based on realistic situations.

After this introduction, in Section 2 we present an approach
for modeling reliability of systems based on components in
design phases. In Section 3 we present a DSVL to model the
DSAP, some variants of it, and to monitor and analyze its
reliability. Sections 4 and 5 present some related work and
conclusions, respectively.

2. MODELING RELIABILITY IN DSVLS
2.1 Modeling Behavior
As presented in [25], we specify the dynamic behavior of
a DSVL by describing the evolution of the modeled arti-
facts along some time model. Following an MDE approach,
we achieve this by applying model transformations support-
ing in-place update. In this way, a system starts executing
in a particular state, and it evolves over time by the non-
deterministic firing of the behavioral rules.

Semantics are precisely specified by a set of behavioral rules,
each of which represents a possible action of the system.
These rules are of the form l : [NAC]∗ × LHS → RHS,
where l is the rule’s label (its name); and LHS (left-hand
side), RHS (right-hand side), and NAC (negative application
conditions) are model patterns that represent certain (sub-)
states of the system. The LHS and NAC patterns express
the precondition for the rule to be applied, whereas the RHS
one represents its postcondition, i.e., the effect of the corre-
sponding action. Thus, a rule can be applied, i.e., triggered,
if an occurrence (or match) of the LHS is found in the model
and none of its NAC patterns occurs. Generally, if several
matches are found, one of them is non-deterministically se-
lected and applied, producing a new model where the match
is substituted by the appropriate instantiation of its RHS
pattern (the rule’s realization). The model transformation
proceeds by applying the rules in a non-deterministic order,
until none is applicable.

2.2 Probabilistic Rules
In many kinds of systems, state machines are good for defin-
ing the state of their components. If these state machines

only have two states, the transition from one state always
brings to the other one. However, in the case of components
having more than one possible state, their state machines
can transit from one state to more than one other state.
Our in-place rules are triggered when there is a match of
their LHS in the system. We want to model that the trig-
gering of a rule can make the system evolve to more than
one possible state, as happens in state machines, according
to a given probability for each transition. This is specially
useful when we are interested in modeling the reliability of
systems.

Let us first introduce the concepts of mean time to failure
(MTTF) and mean time to repair (MTTR). The former rep-
resents the average from the time that a component of the
system is put into service until it first experiences failure,
while the latter is the average time that the component is
out of service before it is repaired. As explained in [17],
both times are normally modeled with exponential distri-
butions. We already presented in [24] how we are able to
apply many probabilistic distributions to our in-place rules’
internal variables and durations. In this way, to model the
MTTF of every component in our system, we only need a
very simple rule where there is a component in its LHS which
changes its state in the RHS. The duration of the rule will
follow an exponential distribution whose parameter is the
mean time to failure of the component. Figure 1 shows this
rule in a system where the components are chips. A similar
rule would be needed for modeling the MTTR.

Figure 1: ChipFailure Rule

Since we want to find a way of modeling systems whose
components can have more than two states, we introduce
in-place rules with more than one RHS. Imagine we have a
system made up of chips, where each one can be in one of
three states: fully working (fw), partially working (pw) or down

(d). When a chip is in any of the three states, it can transit
to one of the other two with a given probability (see Figure 2
for an example).

Figure 2: Transitions and probabilities

Now, to model the failure of a chip, we have to consider
that it can evolve from the fully working state to either par-

tially working or down states. Thus, the rule modeling this has



two RHSs, and it evolves to one of them according to a prob-
ability. As before, the duration of the rule is exponentially
distributed. Consequently, the rule is “twice” probabilistic:
(1) due to the probability of transitions and (2) to the expo-
nential duration. Such rule is shown in Figure 3. It is very
simple, and since the only difference among its two RHSs
is the value of the status attribute of the chip, it could be
modeled with only a RHS and an OCL if condition in that
attribute. However, this same approach can be used to cre-
ate rules whose several RHSs differ completely.

Figure 3: Rule with two RHSs

2.3 Observers
In [25] we presented the use of observers in order to spec-
ify and calculate the value of non-functional properties of
systems. An observer is an object whose purpose is to mon-
itor the execution of the system: the state of the objects, of
the actions, or both. Observers are defined by means of a
metamodel which is then merged together with the system
metamodel in a non-intrusive way. This allows to intro-
duce observers in the behavioral rules. Many non-functional
properties can be specified and monitored, such as through-
put, delays, cycle times, busy times, etc. In this work we
focus on reliability in terms of energy consumption in system
components. We go into this in next section.

3. RELIABILITY IN WSNS
In this section we apply our approach for specifying and
measuring the reliability of systems modeled with DSVLs.
Concretely, we model the structure and behavior of a routing
protocol for WSNs named DSAP.

3.1 The DSAP
The Directional Source Aware routing Protocol (DSAP) [20]
was designed for low-power fixed wireless topologies and
based on local information where each node only knows
about its neighbors information. It has several advantages
over other routing protocols, including incorporating power
considerations and having no routing table [20]. Each node
has a unique ID, which gives how far, in terms of number
of nodes, the node is from the network perimeter in each
direction. For example, the ID of the node numbered 43 in
the WSN in Figure 4 is (3, 3, 4, 4, 6, 5, 5, 3). This means that
there are three nodes (42, 41, 40) to the edge in direction 0
(left), three nodes (32, 21, 10) in direction 1 (up-left), etc.
Consequently, the ID is a vector with as many components
as neighbors have the nodes in the network – 8 in our case.

When transmitting a packet, each node contains informa-
tion about its neighbors’ IDs and the ID of the packet’s

Figure 4: 100 nodes WSN net

target node. In order to choose which neighbor a packet is
forwarded to, the Directional Value (DV) is used. The DV
of each neighbor is calculated by taking their IDs and sub-
tracting them from the destination node’s ID. Let us imagine
that node 22 wants to send a packet to node 77. The original
DSAP can be seen as a two-step routing protocol.

First, the source’s and target’s IDs are subtracted. The re-
sult in our case is (2, 2, 2, 2, 7, 7, 7, 2)− (7, 7, 7, 2, 2, 2, 2, 2) =
(−5,−5,−5, 0, 5, 5, 5, 0). This obtained vector indicates which
neighbors the packet can be forwarded to: those with a non-
positive number are discarded. In this way, the packet will
not be sent to nodes in directions 0 (left – 21), 1 (up-left
– 11), 2 (up – 12) and 3 (up-right – 13). Second, the ID
of those candidate neighbors to receive the packet is sub-
tracted from the destination node’s ID. The absolute values
of the components in each resulting vector are added, which
gives us the DV, and the neighbor with the smallest result
is chosen. If there are more than one with the same value,
one of them is randomly selected. In our case, the DVs for
the nodes numbered 23, 33, 32 and 31 are, respectively, 28,
26, 28 and 32. As it was obvious, node 33 is closer to the
destination and is the one chosen.

Variants. There have been some new routing methods pro-
posed for improving the DSAP in order to extend the sensor
network lifetime, such as the power aware routing [19]. How-
ever, in every proposed routing, the neighbor node which
has the most power and shortest path is chosen most of the
time. This causes the energy in the same nodes to be de-
pleted, and creates an unbalanced power dissipation in the
network. Besides, since the protocol always tries to forward
the packet to a neighbor closer to the destination, some of
the nodes in the network will stay untouched, whereas they
could be chosen as an alternative path to prolong the overall
network lifetime.

In this paper we select some protocols already proposed and
consider a variant of the power-aware DSAP. Furthermore,
we consider all possible directions from a given node, even if
in the original DSAP the substraction of the source node’s
ID and target node’s ID gives a negative number in a given
direction. In this way we try to consider all possible paths
and extend the network’s lifetime as much as possible.



3.2 Modeling the DSAP and its Variants
In this section we present how to model the DSAP and its
variants and their reliability in terms of energy consumption,
and explain how they could be extended and made more
real with the approach presented in Section 2. We follow
an MDE approach and propose the specification of a DSVL
for the high-level modeling and analysis of the protocols, in
terms of behavioral rules, in the design phases. We show
how once we model the original DSAP, modeling each of its
variants is trivial.

3.2.1 Defining the Metamodels
The first step is to define a metamodel for the DSAP in
WSNs, which describes their static structure. Our proposed
metamodel is the simple one shown in Figure 5(a). Accord-
ing to it, a WSN is composed of a set of Nodes. Each Node

has an identifier given by an integer (id – 0, 1, 2 and so on).
Another identifier, which gives the position of the node in
the network according to what was explained in Section 3.1,
is kept in the edges attribute. It is a sequence with n com-
ponents in a n-neighbors network. The remaining energy is
kept in eng. The attribute named target contains the edges of
the target(s) node(s) and pckts contains the number of pack-
ets that a node currently contains. These two attributes
work like this: if there are no packets in a node, target is
an empty sequence; if there is one packet, target contains
a sequence with n components (in a n-neighbors network);
if there are more than one packet, target contains a vector
with n ∗ pckts components, where the first n components
represent the edges of the target node of the packet that
arrived first, and so on. Attributes incoming and outgoing

contain the total number of incoming and outgoing packets
in the node, and alive is a boolean stating if the energy of the
node is above 0 (alive=true) or not (alive=false). If a node is
not alive, it can neither receive messages nor forward them.
As for the references, every node has a link (nghbs) to each
neighbor and another link only to the neighbors which are
alive (posNghbs).

(a) WSN Metamodel. (b) Obs Metamodel.

Figure 5: Metamodels

With the metamodel described we can already define behav-
ioral rules for the functional behavior of the DSAP. Never-
theless, let us first introduce the Observers metamodel in
order to be able to introduce observers in the rules and
monitor reliability properties. It is presented in Figure 5(b).
There are two observers, named RelOb and RndmOb. The for-
mer keeps the number of packets that arrive to the network
(incoming) and those that reach their target node (completed).

It also contains two sequences, death and time, that store the
identifier of the nodes which die and the time they die. The
latter observer is used to randomly select nodes from and to
which packets are sent.

3.2.2 Defining the Behavior
Here we define the behavior of the DSAP for 8-neighbors
WSNs as that presented in Figure 4. Modeling the behavior
for a n-neighbors WSNs is trivial. We want to carry out
two different analysis, one modeling the reality and another
one for a more specific study. In the former, packets arrive
at nodes randomly selected and their target node is also
random. In the latter, packets are always sent from node 22
to node 77 (Figure 4).

To take into account the energy of the nodes and the size of
the packets, we use a simple radio model described in [13]. In
such model, the radio dissipates Eelec = 50nJ/bit to run the
transmitter or receiver circuitry and Eamp = 100pJ/bit/m2

for the transmit amplifier to achieve an acceptable Eb/N0

(see Figure 6 and Table 1) [11]. To transmit a k -bit message
a distance d meters using this radio model, the radio expends
ETx(k, d) = ETx−elec(k)+ETx−amp(k, d) = Eelec∗k+Eamp∗
k∗d2. To receive this message, the radio expends: ERx(k) =
ERx−elec(k) = Eelec ∗ k.

Figure 6: First-order radio model (from [19])

Table 1: Radio Characteristic (from [11])

Operation Energy Dissipated

Transmitter Electronics (ETx−elec) 50nJ/bit
Receiver Electronics (ERx−elec)
(ETx−elec = ERx−elec = Eelec)

Transmit Amplifier (Eamp) 100pJ/bit/m2

We assume as well that the distance between the wireless
nodes is equal to each other and all data packets contain
the same number of bits. The parameters are the following:
distance d = 0.5m and number of bits transmitted k =
512bits. In short, every node dissipates 25612.8 nJ in the
transmission of a packet and 25600 nJ in its reception. We
suppose that every packet starts with an energy of 1000000
nJ .

Our initial model is the network composed of 100 nodes
shown in Figure 4. There are also a RelOb and a RndmOb



observers. We have a rule named CalculateRandom where it
is decided the source and target nodes for the next incom-
ing packet. Their ids are kept in the observer’s attributes r1

and r2. Rule PacketArrival (Figure 7) uses the values in such
attributes to model the arrival of the packet. It arrives to
node n0, while its target is node n1 (LHS). Notice the cor-
responding update of the necessary attributes in the rule’s
RHS.

Figure 7: PacketArrival Rule

Rule PacketForwarding (Figure 8) models the forwarding of a
packet to the alive neighbor with the lowest DV. The OCL
condition in the LHS checks that node n0 has a packet and n1

is a neighbor with positive energy and the lowest DV. That
expression uses a helper, named dv, which deals with the
calculation of the DV and is: context Sequence::dv(s1 : Se-
quence, s2 : Sequence): Integer body: self -> iterate(i ; acc :
Sequence = Sequence{} | acc->append(i.abs()))->sum(). In
the rule’s RHS, the attributes of the nodes are modified with
the updating of the energy, the number of packets contained,
incoming and outgoing packets, etc. The RelOb observer up-
dates its completed attribute when n1 is the target node of
the packet being forwarded.

To model some of the variants of the DSAP, we only need to
change the OCL condition in the PacketForwarding rule’s LHS.
For example, we can model the Power-DSAP with power-
aware routing [20]. It selects the paths according to the ratio
of the directional value and the power available at the neigh-
boring nodes. The OCL condition would be this: n.pckts > 0
and n.posNghbs -> forAll(i | Sequence{1,2,3,4,5,6,7,8}.dv(n1.
edges, n.target -> subSequence (1,8)) / n1.eng <= Sequence{
1,2,3,4,5,6,7,8}.dv(i.edges, n.target -> subSequence(1,8)) /
i.eng). We have developed another variant, where the rout-
ing selects the path according to the ratio of the DV, the
power remaining at the neighboring nodes and it also takes
into account the packets contained at the neighboring nodes
and the power they will spend in forwarding them. The
OCL condition of the PacketForwarding rule’s LHS would be
the following: n.pckts > 0 and n.posNghbs -> forAll(i | Se-
quence{1,2,3,4,5,6,7,8}.dv(n1.edges, n.target -> subSequence
(1,8)) / (n1.eng - n1.pckts* 25612.8) <= Sequence{1,2,3,4,5,
6,7,8}.dv(i.edges, n.target -> subSequence(1,8)) / (i.eng -
i.pckts*25612.8)).

Regarding the rules’ duration, notice that we have estab-
lished that a new packet arrives every time unit and nodes

Figure 8: PacketForwarding Rule

forward packets (as long as they have any) every time unit
too. To make the model more realistic, these times should
have followed some probabilistic distribution, something that
we are able to model as we already presented in [24]. How-
ever, to make the simulations the least random possible, we
decided to set these times as 1 in order to compare the dif-
ferent protocols in the different simulations in a fair way.

The complete specification of the DSAP can be consulted
at [2]. It contains for example a rule to keep in the RelOb a
list with the death nodes and the time they die.

Extensions to the DSAP. In order to make the model-
ing and simulations more realistic and according to real-life
situations, we can add a few rules for that purpose. In real-
life WSNs, nodes consume energy when they are in stand-
by. The failure of nodes can also be modeled, with rules
similar to those in Figures 1 and 3. We have not had this
into account in the workshop paper due to space limitations,
nor have the works presented in [13, 20, 19]. However, in
this extended version we run experiments where we model
power consumption of nodes in stand-by and also the death
of nodes due to other circumstances. Likewise, we can model
the repair of nodes which run out of energy or simply break.

3.3 Reliability Analysis
Once we have the specifications of the protocols modeled
in e-Motions, we are able to simulate them and analyze
their results. These specifications are automatically trans-
formed to a domain with well-defined semantics, namely
Real-Time Maude [?], by means of ATL [?] transformations.
We show results with a 100-nodes and 8-neighbors network,
such as the one evaluated in [19], and with a 12-nodes and
4-neighbors network, like the case study used in [13].

3.3.1 100-nodes and 8-neighbors network



As we mentioned in Section 3.2.2, we want to carry out two
different analysis. In one of them, the source and target
nodes of packets are chosen randomly, while in the other
packets always go from node 22 to node 77 (Figure 4). The
first one models more accurately the reality, while the sec-
ond one allows us to focus on nodes 22 and 77 and their
neighbours. For both kinds of analyses, we have run three
protocols: (1) the original DSAP [13], (2) the power-aware
DSAP [19] and (3) a new variant that also takes into ac-
count the packets that still need to be processed in each
node apart from the remaining energy. Let us call the last
one power-aware DSAP v2. Recall that in the three proto-
cols we consider all the neighboring nodes as candidate nodes
to forward a packet and not only those whose subtraction
with the target node is positive.

Random Arrivals

In these simulations, the RndmOb observer deals with the
random selection of the source and target nodes for every
packet. We are interested in knowing the lifetime of the
network in each protocol. For that, we consider that the
network dies when a node consumes all its energy. So we
will measure the reliability in terms of the time the network
has been alive and the number of packets completed (those
that reached their destination) within that time.

Figure 9: Results with random arrivals

As we already knew from other works [20, 19], and as we can
see in the simulation results shown in Figure 9, the power-
aware DSAP is more reliable than the original DSAP. Be-
sides, it turns out that it is also more reliable than the new
developed protocol that also takes into account the packets
that still need to be processed in the nodes.

Fixed Arrivals

We have made these simulations stop when all the energy in
the nodes around 22 or 77 is consumed, so that no packet
can reach its destination (77). We have made node 22 not
to consume any energy when forwarding packets and node
77 when it receives packets. Otherwise, the energy in these
nodes would be consumed very soon.

In Figure 10 we can see the time at which the energy in each
node around node 22 is consumed for each protocol. Let
us focus first in the original DSAP. Since it does not take
into account the remaining energy in the nodes, it always
follows the shortest path to the destination. This is why
it always uses node 33 from 22 to send packets to node 77

Figure 10: Results with fixed arrivals

at the beginning. This makes the energy in node 33 to be
consumed quickly, in time 22. Then, the protocol forwards
packets to nodes 23 and 32 from 22 because they are at the
same distance from the destination. The energy at both
nodes is consumed almost at the same time, at times 61 and
63, respectively. The same happens then with nodes 13 and
31, and later with nodes 12 and 21. The last node to run
out of energy is the 11. The number of packets that reach
node 77 are 87.

In the other two protocols, the energy consumption in the
nodes is much more uniform, since they take into account
the remaining energy at nodes. In the power-aware DSAP,
the energy consumption is slightly more uniform than in the
power-aware DSAP v2, and the packets completed are 128,
while in the latter protocol they are 123.

From the three analyzed protocols, the power-aware DSAP
already presented in [20, 19] is the most reliable both with
random and fixed arrivals.

3.3.2 12-nodes and 4-neighbors network
In this section we make experiments with the 12-nodes and
4-neighbors network shown in Figure 11. These experiments
are more realistic since we consider power consumption of
nodes in stand-by and failure of nodes due to other circum-
stances apart from energy depletion. In fact, WSNs can be
deployed in many and different environments, so there are
different causes that can make nodes die. For example, an-
imals could try to eat them, or they could be damaged due
to environmental conditions.

Figure 11: 12 nodes WSN net

The chart in Figure 12 displays three different executions in
such network:

• The blue one (Power-DSAP) is an execution with the
Power-DSAP [13]. Recall that every node dissipates
25612.8 nJ in the transmission of a packet and 25600
nJ in its reception.



Figure 12: Death of nodes along time

• The red one (Power-DSAP SB consumption) uses the
Power-DSAP and it also considers the power consump-
tion of nodes in stand-by. Concretely, every node con-
sumes 3000 nJ every unit of time. The rule used to
model this is the simple one shown in Fig. 13.

Figure 13: Power consumption in stand-by

• The green one (Power-DSAP exp death) applies the
Power-DSAP and it also considers the failure in nodes
due to other circumstances than the energy depletion.
Such failure follows an exponential distribution of mean
200 units of time. This concept of “random” failure or
death is the same as the mean time to failure pre-
sented in Section 2.2. To model such death, the rule
shown in Fig. 14 has been used, which follows the pat-
tern presented in Fig. 1. Note that the RelOb observer
has a new attribute, eng, apart from those shown in
Fig. 5(b). It is of type Sequence and we use it to store
the remaining energy in nodes when they die.

The X axis of the chart shows the simulation time, while the
Y axis indicates the number of nodes alive. It can be seen as
well the concrete nodes that die (indicated by the numbers
on the lines). In the case of the Power-DSAP exp death, it is
indicated between brackets the energy available in the nodes
when they die. In the three cases, packets arrive at random
nodes, and their destination is also random. Let us analyze
each of the three cases.

In the Power-DSAP, the first node (number 4) dies due to
energy depletion in time 82. From that moment, several
nodes die, until node number 6 does in time 98. From that
moment, the nodes alive are 0, 3, 8 and 11, which cannot ex-
change packets among them, so there is not packet flow any

Figure 14: Death due to random circumstances

longer. That is the reason why no more nodes die from time
98. The number of packets that arrive to their destination
is 83.

In the Power-DSAP with power consumption of nodes in
stand-by, the first node (number 9) dies due to energy de-
pletion in time 71. It happens earlier in simulation time than
in the previous case due to energy consumption in stand-by.
From that moment, several nodes (10, 7, 2, 6, 1 and 4) run
out of energy until time 82. At that point, only nodes 0,
3, 5, 8 and 11 are alive. They cannot exchange packets be-
tween them because they are not directly connected. This
is why they die later in time: the remaining energy in those
nodes from unit of time 82 is depleted only due to power
consumption in stand-by, being no packet flow any longer.
The last node to die is number 11 in time 146. 75 packets
arrive to their destination in this case.

In the Power-DSAP that considers the death of nodes due
to other circumstances apart from energy depletion, the first
node (number 3) dies in time 8. When it dies, its energy is
948787.2 nJ , so it dies due to a random circumstance. The
same happens with nodes 0 and 8, which also die quite early
in time. Having three nodes less already in time 53, the
remaining nodes have to work more. This causes the energy
of node 6 to be depleted in time 55, and the energy in nodes
1, 5, 10 and 11 to be depleted in times 59, 60, 64 and 65,
respectively. From unit of time 65, the only nodes alive are



2, 4, 7 and 9. Their energy is not consumed anymore since
they cannot exchange packets, so all of them die due to other
circumstances. The last one to do it, is node 9 in time 493.
The number of packets that arrive to their destination is 51.

With these experiments we have shown that we are able to
model and simulate real-life scenarios that were not consid-
ered in the papers that dealt with the DSAP [13, 20, 19].
The values chosen for quantity of energy consumption per
time unit and the distribution followed for the failure of
nodes due to random circumstances could have been differ-
ent depending on the network. In any case, our experiments
serve as proof of concept for our approach.

4. RELATED WORK
As we do, the work in [15] presents by means of an MDE
approach a DSVL to model WSNs. According to their ap-
proach, the WSN models described are then to be trans-
lated to WSNs domain specific textual languages by means
of model-to-model and model-to-text transformations, in or-
der to later simulate them. In this way, they only describe
the static structure for WSNs, but not its dynamics. In
fact, they add behavioral elements in the static models. In
our approach we include the simulation and reliability anal-
ysis of the networks. As far as we are concerned, our work
is the first that proposes an approach to model and simu-
late WSNs using high-level DSVLs. Furthermore, no other
work has previously presented the use of several RHSs based
on probabilities in transformation rules, which allows us to
model systems in a more realistic way.

The works in [13, 20, 19] present and describe the DSAP
and also compare some of its variants in terms of network
lifetime. However, in none of these works it is mentioned the
way the protocols are implemented, although we believe it is
in a lower level than ours, nor the platform or program used
to simulate them. They have not taken into account either
real-life scenarios where power consumption in stand-by or
death of nodes due to random circumstances are considered.
Some other works have also studied the reliability in WSNs,
such as the one presented in [1], where they do consider the
failure probability of each sensor. Their algorithm considers
different types of topologies for the network, while the DSAP
and variants only consider local information, and is imple-
mented using dynamic programming to compute reliability.
The RPAR protocol [4] is also a power-aware routing pro-
tocol for WSNs that tries to maximize the network lifetime
by dynamically adapting packets forwarding.

Regarding the way we have considered reliability in WSNs
in this work, there are similarities and differences when com-
pared to other works. For example, the authors in [1] define
reliability of a WSN cluster as the probability that “a min-
imum aggregate rate of information can be delivered to the
sink node”. In many works [14, 3, 7], reliability in WSNs has
to do with link reliability, this is, reliability between sensor
nodes. Thus, probabilities of successfully sending/receiving
packets for every pair of connected nodes have to be given.
From such probabilities, the overall network reliability is cal-
culated. In [5], the authors relate reliability to the percent-
age of data expected to arrive at the sink nodes. They also
consider that nodes may run out of energy, may be damaged
or stolen, as we do. The authors in [23] relate reliability to

the success of every individual packet transmission. Accord-
ing to them, such reliability depends on the distance and the
power dissipation in transmissions. Consequently, they try
to minimize the power consumption, as our implemented
protocol does. In other works, the authors speak about re-
liability in WSNs but do not give a concrete definition for
it. As an example, the authors in [4] do not explicitly state
the way they define reliability, although the reader can de-
duce that it is related to the number of deadlines missed and
energy consumption.

5. CONCLUSIONS
In this paper we have presented an MDE approach to per-
form a high-level modeling of the reliability in systems based
on components by describing how the state of their compo-
nents can vary. We have introduced the use of several RHSs
in transformation rules for describing the behavior of com-
ponents in terms of their reliability. We have also presented
how we can easily model the DSAP for WSNs and some vari-
ants by simply realizing small changes in the rules. By using
observers we have been able to monitor and analyze the re-
liability of the protocols in terms of energy consumption in
nodes. Furthermore, we have described how we extend the
modeling of the protocols by including some behavioral rules
that allow more precise and realistic simulations by model-
ing energy consumption of nodes in stand-by or how nodes
fail due to random circumstances.
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