
On the Combination of Domain Specific
Modeling Languages

Antonio Vallecillo

GISUM/Atenea Research Group, Universidad de Málaga, Spain
av@lcc.uma.es

Abstract. Domain Specific Modeling Languages (DSMLs) are essential ele-
ments in Model-based Engineering. Each DSML allows capturing certain prop-
erties of the system, while abstracting other properties away. Nowadays DSMLs
are mostly used in silos to solve specific problems. However, there are many
occasions when multiple DSMLs need to be combined to design systems in a
modular way. In this paper we discuss some scenarios of use and several mech-
anisms for DSML combination. We propose a general framework for combining
DSMLs that subsumes them, based on the concept of viewpoint unification, and
its realization using model-driven techniques.

1 Introduction

Complexity is one of the major drawbacks that UML [1] currently faces. Its metamodel
of hundreds of classes and relationships between them represents a challenge for all its
stakeholders. Users have serious problems for understanding its intricate structure and
tend to use just the bit they know and feel comfortable with (around 20% according to
the latest surveys). Formalists have problems for specifying its formal semantics and
continually uncover subtle problems and ambiguities. Tool vendors find it very difficult
to implement all its features (e.g., how many tools you know that can draw multiple
clients or suppliers in a UML dependency?).

And even if UML provides a large number of concepts, they are still insufficient to
capture some of the specific aspects required for modeling particular kinds of systems.
To address this issue, UML counts on extension mechanisms for defining new modeling
languages. For example, SysML [2] extends UML to define a general-purpose modeling
language for systems engineering applications. The UML Profile for MARTE [3] pro-
vides another extension of UML for modeling real-time and embedded systems. The
problem, again, is the size and complexity of these extensions, which does not help
making them more understandable, manageable, usable or analyzable—specially when
their accidental complexity is added to the intrinsic complexity of the systems being
modeled. And then we may need to combine several of these extensions, something
whose results are neither clearly defined nor predictable...

The problem, as we see it, is not so much with UML itself (although it still has some
issues that can be resolved, UML is a very powerful and widely used modeling notation
with many supporting tools), but with its complexity—which hinders its full usability
by average system modelers.

T. Kühne et al. (Eds.): ECMFA 2010, LNCS 6138, pp. 305–320, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

306 A. Vallecillo

When looking for solutions, many people are starting to use Domain Specific Mod-
eling Languages (DSMLs). These small and focused languages are becoming common-
place for specifying systems at a high-level of abstraction, using a notation very close
to the problem domain and quite intuitive for the domain expert. A DSML provides
a language to describe a view of the system, concentrating on the elements which are
relevant to that particular view. However, the use of small DSMLs becomes a real prob-
lem when we need to compose them to specify a complete system. How to combine
DSMLs? Which mechanisms are available for composing them? How to prove the cor-
rectness and consistency of the composition?

There is a growing number of works on DSML composition, which address the
problem from different perspectives and using different combination operations: meta-
model merging [1,4,5], metamodel extension [6], template instantiation [7], language
embedding [8,9], different flavors of model inheritance [10], model and metamodel
weaving [11,12,13] (also referred to as metamodel interfacing [7]), even product-line
configuration techniques [14]. However, not all of them provide solutions to all cases,
and most of them are quite limited.

In this paper we discuss different scenarios of use, and different mechanisms for
DSML combination; the advantages they introduce, as well as their limitations. We
propose a general framework for combining DSMLs that subsumes them, based on the
concept of viewpoint unification [15] and its realization using model-driven techniques.

2 A Brief Introduction to DSMLs

When working on a large system it is unrealistic to capture all the necessary informa-
tion, constraints and decisions in a single flat specification, or even in a straightforward
hierarchical specification based on successive refinements [16]. Structuring the speci-
fication into viewpoints gives much more flexibility. A view is a representation of the
whole system from the perspective of a viewpoint. Each view focuses on the elements
relevant to that particular viewpoint, abstracting away all irrelevant details. The view
elements represent the system elements, as seen from the corresponding viewpoint.

Each viewpoint has a viewpoint language (i.e., a DSML) for describing the corre-
sponding views. Each view then is a model that conforms to the corresponding DSML
metamodel. Because the different viewpoints stress different aspects of the design, and
use different techniques for doing so, each designer (or stakeholder) will be most com-
fortable with their own style of language and notation. For example, people writing pro-
cesses and algorithms will probably think better in imperative terms (and use xUML,
BPMN or Java), while business rule experts will find more suitable a declarative lan-
guage (such as SVBR or OCL). Moreover, the models describing the separate views are
independently expressed: they are each formed from a separate set of interrelated con-
cepts, but no model element makes direct reference to terms in any other view model.

The goal of DSMLs is to allow domain experts to specify and reason about their
systems using intuitive notations, closer to the language of the problem domain, and at
the right level of abstraction. These are specific because they restrict themselves to one
particular problem domain, supporting higher-level abstractions than general-purpose
modeling languages and sacrificing generality to gain in specificity and concreteness.

On the Combination of Domain Specific Modeling Languages 307

This makes them easy to learn and to use (by the domain experts), manageable, usable
and analyzable. Furthermore, the rules of the domain are included into the language as
constraints, disallowing the specification of illegal or incorrect models of the views.

Finally, we should recall that defining a DSML involves at least three aspects: the do-
main concepts and rules (abstract syntax); the notation used to represent these
concepts—let it be textual or graphical (concrete syntax); and the semantics of the lan-
guage. The abstract syntax of a DSML is normally defined by a metamodel, which
describes the concepts of the language, the relationships between them, and the struc-
turing rules that constrain the model elements and their combinations in order to respect
the domain rules. The concrete syntax of a DSML provides a realization of the abstract
syntax of a metamodel as a mapping between the metamodel concepts and their textual
or graphical representation. A language can have several concrete syntaxes. Finally,
a DSML may have different kinds of semantics, depending on the aspects we want
to emphasize. Thus, we can have structural semantics (describing what correct mod-
els produced with this DSML actually mean), behavioral semantics (how they behave
along some time model), etc. [17]

3 Mechanisms for Combining DSMLs

The fact that each view provides only a partial specification for the system, requires
mechanisms for combining DSMLs (and also their corresponding models) to be put in
place. It is essential to observe that the combination of DSMLs should yield another
Modeling Language (although not “Domain Specific” any more!), able to represent a
metamodel for the “unified” models that provide a reconciled, integrated and virtual
representations of the separate views of a system specification.

The following questions need to be answered: How can such a combined Modeling
Language be built? How does it relate back to the individual DSMLs (and associated
tools)? How to construct its metamodel? And its concrete syntax? How to define its
semantics? These are the questions that we will try to answer here.

Note that such a combined Modeling Language (and its associated metamodel) can
become too complex to be usable by modelers, and will not normally be presented to
any user. Same as it happens with the output of a program compiler, which produces
an executable model by combining information about the program itself, the execution
platform, the hardware architecture, etc. The resulting model, which is in binary form, is
not for human consumption; users only deal with specific views of it: the functionality,
the configuration files, the information about the dynamic libraries, the deployment in-
formation, etc. Compiler and associated tools make the appropriate connections. Other
tools, such as symbolic debuggers, can use parts of these models to provide the user
with new views of the system at a high level, for instance during program execution.

The final goal is that tools can construct part or all of such a unified model where they
need to manipulate information from more than one viewpoint, or to extract information
from it. In this way, the user will normally work with the individual DSMLs, and leave
the combining tools to build the unified models as needed.

For the combination of two or more DSMLs (and their associated metamodels and
models) we need to address three main issues: (1) how to describe the correspondences

308 A. Vallecillo

between the concepts of the languages (i.e., at the metamodel level) and between the
elements in each view (i.e., at model level); (2) how to “integrate” the models that
represent the views into a global workable model (using the views and their correspon-
dences); and (3) how to relate the unified model with the original views, so that the
original views can be extracted from the unified model. The first problem deals with
Relating the individual views; the second one with their Synthesis; and the last one
with the Analysis of the unified model.

3.1 Relating Models: Correspondences

Dividing a system specification into a set of views provides a powerful mechanism
for achieving the required level of abstraction, simplicity and modularity. However, the
specifications must be a coherent description of a single target system. It is therefore
essential that the views be linked, and this is done by establishing a set of correspon-
dences between them. Correspondences do not form part of any one of the DSMLs, but
provide statements that relate the various different views—expressing their semantic
relationships [16]. Hence, a proper system specification consists of a set of viewpoint
specifications, each one expressed in a viewpoint DSML, together with a set of corre-
spondences between them.

The majority of the existing proposals for viewpoint modeling do not consider cor-
respondences between viewpoints, or assume they are trivially based on name equality
between correspondent elements, and implicitly defined. In fact, most proposals and
tools for merging models (including UML 2) take a simplistic approach to matching
based on names: if the same name appears in two views, they are assumed to represent
two aspects of the same object. However, if the models are to be developed by separate
teams, it is not safe to assume they share a single namespace, or that name assignments
are unique. It is also often the case that the correspondences are not simply one-to-one;
the relationships between elements will generally be more complex.

Several authors have proposed different approaches to express correspondences, spe-
cially when views are expressed as UML models, using different alternatives: from OCL
constraints to UML abstraction dependencies (see [18] for a discussion about some of
these approaches). Other proposals use model weaving techniques for relating the el-
ements of different views, defining ad-hoc correspondence metamodels [19], general-
purpose model weaving notations and tools [12,13] or even bi-directional model trans-
formation languages such as QVT.

Correspondences need normally be specified at two levels, depending on whether
they relate metamodel or model elements. In the first case, correspondences determine
the relationships that should exist between concepts of the two DSMLs to be combined.
For example, if we are combining class diagrams with statecharts, a correspondence
between the two language metamodels can specify that every UML class should be re-
lated to one or more statecharts (the ones that define the behavior of the instances of
that class). But then, instances of such correspondences (called correspondence links)
should be specified at the model level, identifying which are the individual statecharts
that should be related to a particular class. Making an analogy with programming lan-
guages, you need to define first how the grammars of the two languages can be related,
and then how two individual programs are related using such relations.

On the Combination of Domain Specific Modeling Languages 309

There are also situations where establishing correspondences becomes a difficult
task, and cannot be automated. For example, a complex structure in one model can
express a concept that is expressed by another complex structure in another model, but
there is no obvious mapping for the individual elements even though the structures as a
whole are similar. Correspondences between non-structural elements (e.g., constraints
or pieces of behavior) are not trivial, either. A very illustrative introduction to the nature
of correspondences and their associated problems and limitations can be found in [16].

It is also worth noting that, given two
M1

A'

B'

M2

A''

B''

«correspondence»
c2

«correspondence»
c1

2

1

1

2

Fig. 1. Correspondences between two models

models, there are many different ways of
relating their elements. An example of
the correspondence between two mod-
els (that may represent different view-
points, or different views) is depicted in
Fig. 1. Depending on the constraints de-
fined by the individual correspondences,
the specifications can be “consistent” or
not. The key question here is the mean-

ing of consistency. We will come back to this later in Sect. 4. So far we would only like
the reader to consider if the system specification shown in Fig. 1 is consistent w.r.t. the
two defined correspondences (c1 and c2) or not.

3.2 Viewpoint Synthesis

Some authors have proposed a number of techniques for combining (meta)models. They
can be basically grouped in three categories, which are discussed in this section.
Metamodel Extension. One possible approach to DSML combination consists of ex-
tending one language (the pivot) with the concepts of the other (the extension). These
new elements were not originally present, but some of them may make references to ex-
isting ones. There are several situations where such an extensibility mechanism is useful
and essential, e.g., in the case of hierarchies of metamodels or to modularly endow a
language with features not originally present.

An extensionOf relation between the two language metamodels was formally in-
troduced in [6]. It subsumes previous proposals for implementing different flavors of
model inheritance [10] or template instantiation [7].

Given two metamodels1 Mi andMe that conform to thesamereferencemodel (ormeta-
metamodel)M and that represent the initial metamodel and the extension (Me), and given
a correspondence mapping ε : Mi → Mi ∪ Me that defines how elements in the initial
metamodel are mapped to elements in the union model (the one that contains all elements
of both metamodels), the authors in [6] show how to compute the synthesized metamodel
Mi ⊕ε Me with the “duplicate-free union” of the two metamodels being combined.

Here, the relationship between the metamodels is accomplished by a user-defined
specification ε of the correspondences between the elements that should be “unified”.

This approach to DSML composition is effective when we want to re-use an exist-
ing DSML and complement it with another (that can be reused, too), and the relation

1 Metamodels are models too, so most of the definitions of this paper apply equally to models.

310 A. Vallecillo

between the two is complementary (the extending language complements the other) and
conservative (the extensions are compatible with the pivot language’s concepts and do
not break its semantics). Aspect-oriented modeling approaches could fit into this cate-
gory, since they allow extending models with new properties. Other languages provide
extension mechanisms for facilitating this task (e.g., UML Profiles allow extending the
UML metamodel to incorporate new features).

Another benefit of this approach is that the concrete syntax of the resulting DSML
can be easily defined (see, e.g., [20]), and the combined semantics can be defined as
well (at least in theory), because the extensions have to be conservative [4].

One disadvantage of this approach is its limited use, only for conservative extensions
of a language and not for combining DSMLs in general. In addition, combining sep-
arate extensions is not a trivial task: although each one can be conservative w.r.t. the
pivot language, the consistency of the extensions compositions is not guaranteed (two
extensions may impose contradictory conditions on the global combined model).
Metamodel Merge. Model merge is a more powerful composition operation that does
not assume an unbalanced combination, but tries to combine peer languages. For ex-
ample, UML 2 defines an operation, package merge, that takes the contents of two
packages (models or metamodels) and produces a new package that combines their
contents [1]. Package merge was partially inspired by two specification combination
mechanisms offered in Catalysis: “and” and “join” [4]. However, both differ substan-
tially from package merge: The “and” operation is for use with subtyping, while the
“join” operation allows a specification to impose additional preconditions to those de-
fined in another view [21]. The problem, as it stands today, is that the current definition
of this UML operation is neither precise nor sound, and it does not consider possi-
ble conflicts between the structural constraints of the metamodels that are merged. As
a result, it may break the well-formed rules of any of the languages it combines [4].
Besides, the solution adopted in UML 2 is too simplistic: elements are merged based
on name matching and the resulting extended elements have all the properties of the
elements they merge (we shall see that this becomes a problem, too).

MetaGME [7] enables Metamodel Merge through the use of three types of class
inheritance and a special Class Equivalence operator, used to show a full union between
two classes. The unioned classes cease to exist as distinct metamodel elements, instead
fusing into a single class. The union process is very similar to merging classes through
Package Merge, except that the operation takes place at the class level instead of the
package (or metamodel) level, and the two merged classes do not need to have the same
name because of the use of the Class Equivalence operator.

Pottinger and Bernstein proposed in [5] a more general approach to model merging,
using user-defined correspondences between the views. They presented an algorithm
that, given the two models and a set of user-defined correspondences between them,
provides a merged model which is the duplicate-free union of the two models with
respect to the set of correspondences. The authors identify different kinds of possible
conflicts, some of which may be resolvable, others are not in general. Their approach
subsumes previous works from the database and semantic web communities on generic
model merging, database view integration and ontology merging, by generalizing these
approaches and providing a unified algorithm.

On the Combination of Domain Specific Modeling Languages 311

Although trying to compute the duplicate-free union of two metamodels by merging
them could a priori be an excellent solution for DSML combination, it does not work
in all cases. Merges have to be meaningful from an architectural (and methodological)
point of view: not always the metamodels of two languages are amenable to merging
because their underlying semantics are different and incompatible. Think for instance of
two languages for describing behavior, one based on synchronous interactions and the
other on asynchronous interactions. You can relatively easily relate their metamodels
using correspondences, but you cannot easily merge them into a single unified meta-
model. A similar situation happens if you try to merge a Class and E/R notations into
one single unified language. Or think of combining Java and COBOL programs into the
same language. Or programs written in my two favorite DSLs: LATEX and Excel...

Furthermore, merging models usually implies carrying forward all the properties of
all merged model elements. In other words, model merge only allows injection relation-
ships between the models being merged and the resulting model. For example, in UML
an element resulting from the merge must not be any less capable than it was prior to
the merge. This means, among other things, that the resulting navigability, multiplicity,
visibility, etc. of a receiving model element will not be reduced as a result of a package
merge [1]. Then, if you consider again the models in Fig. 1, merging the classes accord-
ing to the correspondences leads to inconsistent cardinality constraints. Does this mean
that these two models cannot represent views of the same system? Probably they can
(see, e.g., Fig. 3, whose orthographic views M1 and M2 have the same constraints), but
the problem is that package (or model) merge is not the right combination operator for
integrating them.
Language Embedding. An alternative approach to building a DSML from scratch is
to inherit the infrastructure of some other language, tailoring it in special ways to the
domain of interest. This is called language embedding [8,9]. In this way, the embed-
ded language can reuse the syntax of the host language, its module system, existing
libraries, associated tools, etc. The embedding is normally defined in terms of a map-
ping function that describes how the guest language concepts are encoded in terms of
the host language concepts. Furthermore, in case of host languages with precise seman-
tics, the embedding mapping can serve to provide translational semantics to the guest
language (i.e., the semantics of the guest language concepts is defined in terms of the
interpretation of the translated concepts in the host language).

In other words, if MMg and MMh are the language metamodels of the guest and
host languages, the embedding is a mapping ε : MMg → MMh . Normally, such a map-
ping is not explicitly defined anywhere, and there is no explicit trace between the two
languages—losing therefore the connection with the concrete syntax and tools associ-
ated to the original DSML.

Of course, the host language should be expressive (and malleable) enough to repre-
sent the concepts of the guest. Usually, functional languages such as Haskell or Scala,
or formal-based languages such as Maude have proved to be good hosts.

UML has been used as the host language for a wide range of DSMLs. UML is
very expressive, well-know and it counts on tool support—well, mainly model edi-
tors. In fact, UML was originally created to combine (by hosting) the original Booch,
OMT and OOSE methods and notations, incorporating slightly modified versions of

312 A. Vallecillo

languages such as Harel’s Statechart notation [22], or ITU-T’s Message Sequence Charts
(MSC) [23]. Thus, UML defines a global metamodel with all the original notations it
combines (for use cases, class diagrams, state charts, sequence charts, etc.).

From a theoretical perspective, the use of the host language metamodel can help
maintaining the coherence and conceptual integration among the viewpoints elements.
However, this approach presents some problems from a practical point of view. Firstly,
in many occasions it means re-defining the original languages to integrate them into
the host language metamodel, something which normally hampers the use of existing
editors and analysis tools for the original languages (e.g., the tools available for Harel’s
Statecharts or for ITU-T’s Message Sequence Charts are not easily accessible from
UML). Secondly, some of the adaptations have respected the original semantics of the
languages, but others had to suffer some modifications or severe cuts (e.g., Statecharts
in UML 1). Thirdly, the relationship between the elements of the different languages is
not obvious in general, and gets usually blurred—mainly because of the intricate nature
of the global metamodel, and because in many cases it is built without mechanisms for
expressing the correspondences between the viewpoints. Finally, language embedding
may force to ask users to stop using their domain specific notations, small and concise
languages and specific tools, and to start using a (probably more) complex language (at
least, far more expressive).

In general, a common Modeling Language that accommodates all DSMLs is feasible
if the number of viewpoints is small and semantically consistent, and if as user you are
happy to forget about the individual DSMLs and their associated tools. But it is rather
artificial if the DSMLs are loosely coupled or describe the system at very different levels
of abstraction/granularity.

Embedding and extensions. In many occasions, host languages also count on exten-
sion mechanisms for facilitating the embeddings2. For example, UML counts on Pro-
files to help defining/hosting new languages. UML Profiles also allow users to define
the embedding function explicitly, indicating which UML metaclasses are extended.

Another example is WebDSL [24], a textual DSML for developing dynamic Web
Applications that incorporates different languages for expressing the concerns involved
in any Web system. WebDSL is is extensible, so new languages can be added as plugins
to cope with new concerns. No explicit embedding mappings ε between the guests and
host language are defined, though.

Embedding languages in this way is not free from problems, either. Let us mention
the most significant issues that we have found when working with UML profiles, al-
though they are generic to this kind of approaches. First, well-defined UML profiles can-
not break the semantics of UML (at least, in theory); however, they can
easily introduce semantic inconsistencies between each other when two or more, inde-
pendently defined, are applied together (e.g., see the problems of combining SysML and
MARTE profiles in [25]). Second, the use of UML as a modeling notation introduces
some restrictions and limitations, which may force design choices sometimes unnatural
when modeling certain domain concepts; for example, SysML models Requirements by

2 In these cases, extending a language can also be seen as a form of embedding. The difference is
usually a matter of degree, and from where we look at it: from the host side (that gets extended)
or from the guest side (that gets embedded).

On the Combination of Domain Specific Modeling Languages 313

extending UML classifiers, a decision which can be considered (at least) arguable. Fi-
nally, the complexity of the UML metamodel does not help when looking for elements
that can represent the domain concepts. In our previous experience with UML profiles
to model languages such as WebML [26] or the RM-ODP viewpoint languages [19], we
found that some times we had too many choices (e.g., it was difficult to decide whether
some concepts had to be represented by UML classes or by UML components, because
their differences are quite subtle), while in other occasions we could not find any UML
element to represent what we wanted (e.g., expressing ODP policies was not a trivial
task). There is also the issue of the concrete syntax: adopting UML graphical notation
is a suitable choice when the embedded language does not have its own concrete syntax
(such as UML4ODP or SysML) because many people are familiarized with UML boxes
and lines, and the learning curve is small; but the results obtained when trying to mimic
other concrete syntaxes are not good, basically due to the reduced facilities of UML Pro-
files for adopting new graphical notations [26]. Worse than that, what we have found is
a recurrent undesirable situation when modelers embed DSMLs into UML. Since the
frontier between the embedded and the host language disappears, users start making use
of many UML concepts that were not part of their original DSMLs, producing models
that are correct w.r.t. the UML metamodel, but incorrect w.r.t. their original languages.

The key question, as we mentioned at the beginning, is whether users should know
about this combined Modeling Language at all, or should the tools be responsible for
converting the models written in the original DSMLs, back and forth to the integrated
model written in the global language. In this way, the user will normally work with the
individual DSMLs, and leave the combining tools to build the unified models as needed.
Probably in this scenario is where the full potential of UML could be better exploited.

3.3 Analysis of the Integrated Models

Independently from how the synthesized model has been built, there should be a way
to extract the views from the integrated model. Although not so much discussed in
the MDE community, this is a well known problem in databases, a part of the data
integration problem [27]. This is the problem of combining data residing at different
sources, and providing the user with a unified view of the data. In this approach, the
user queries over the global schema have to be reformulated in terms of a set of queries
over the sources.

One of the current limitations of language embedding is that there is no trace back
to the original language that has been embedded. Basically, more than “combining” the
languages, they are re-defined from scratch using the metamodel of the host language,
and with no explicit backward connections to the original DSMLs. This is for instance
the case of UML with statecharts or MSCs. The situation is not better with languages
defined using UML Profiles: although the embedding mapping ε is explicitly defined,
the reverse projection is not.

Furthermore, what happens with the tools (editors, analyzers, etc.) of the individual
views? It is important to have access to the tools available for individual DSMLs from
the combined DSML environment. It is not clear how this can be achieved using lan-
guage embedding mechanisms. This is another reason for being the tools, and not the
users, the ones that should combine their models into an integrated Modeling Language.

314 A. Vallecillo

4 Viewpoint Unification

Our proposal for DSML combination builds on the idea of viewpoint unification, orig-
inally proposed by Boiten, Derrick, Bowman and Steen for studying the consistency
between viewpoint-based specifications [15]. In that work, a set of viewpoints is con-
sidered to be consistent if there exists at least one “implementation” that satisfies all the
views. This is equivalent to check that the views do not impose contradictory require-
ments on the system. A detailed study of the formal basis for viewpoint unification
mechanisms can be found in [15]. Here we extend that notion in order to deal as well
with the correspondences between the viewpoints, and with the explicit representation
of the relations between the unified model and the views.

Fig. 2. A unified model

The idea consists in considering that the DSMLs to combine provide a set of view-
point languages to describe one system, and hence the models written according to
these DSMLs represent the system views (as proposed in RM-ODP [28] or in [29]).
Because all viewpoints correspond to the same system, and will eventually be realized
by one implementation, there must be a way to combine them. Intuitively, the way to
combine the languages is by providing a new language and a set of mappings between
the new language and the viewpoint languages (Fig. 2), with the additional property
that the mappings respect the constraints imposed by the correspondences.

The more general process to create the metamodel of the new language MG and
the mappings t1, . . . , tn is based on the unification of the viewpoint languages meta-
models. The mappings capture the relations between the unified metamodel and the
individual viewpoints metamodels, acting as projections of MG [29]. The consistency
of the specification is guaranteed by the fact that the mappings should respect the cor-
respondences between the viewpoints: two projections of the same system over two
different viewpoints must be related by the correspondences in a consistent way.

Definition 1 (Model Unification). Given a set of models M1,M2, . . . ,Mn , and a set
of correspondences between them cij = C (Mi ,Mj) ⊆ P(Mi) × P(Mj), a unification
is a new model MG and a set of functions ti : MG → Mi (projections) that respect the
set correspondences, i.e., C (ti(MG), tj (MG))) ⊆ C (Mi ,Mj).

In case of combining DSMLs by unification, models M1,M2, . . . ,Mn are the meta-
models of the languages to combine, and MG is the metamodel of the unified language.

On the Combination of Domain Specific Modeling Languages 315

The form of unification depends on the DSMLs to be combined, the correspondences
defined between them, and the different relations that can be defined between the uni-
fication and the views. For example, the metamodel MG of the unified language could
be defined by applying model extension or model merge operations on the metamod-
els of the viewpoint languages (in those cases where this makes sense). Or we could
use the metamodel of an existing language as global metamodel MG (this is language
embedding). Alternatively, unification offers further options such as defining an ad-hoc
metamodel (neither the duplicate-free union nor an existing language metamodel) for
combining particular DSMLs, as we shall see below.

We can also identify different kinds of mappings, depending on the sort of rela-
tionship between the unified metamodel and each viewpoint metamodel—we should
allow to relate them in different ways. In some proposals, the mappings are defined be-
tween the viewpoint languages and the unified model, and they are called development
relations [15]. They represent the inverse mappings of our projections. For instance
we can have refinement relations, abstractions, equivalences and relations which can
broadly be classified as implementations. These different kinds of relations are best dis-
tinguished by their basic properties. Refinements are reflexive and transitive (i.e., a pre-
order); abstractions are the dual of refinements; equivalences are reflexive, symmetric
and transitive; and implementation relations only need to be reflexive [15]. Transitivity
is a very expensive property, but crucial for enabling incremental development of speci-
fications towards realizations. Implementation relations are the most common relations,
they just establish correspondences between the unified metamodel and the viewpoint
metamodels. For example, consider a requirements specification of the system written
using OMG’s Business Motivation Model (BMM) notation and a functional specifica-
tion using LOTOS (ISO/IEC 880). A unified model may be expressed in a completely
different notation, and related to the former by a logical satisfaction relation, and to the
latter by a behavioral conformance relation.

Our approach to DSML combination

Fig. 3. Orthographic views of a 3D object

subsumes previous approaches (see Sect.
5), and allows a wider range of possi-
ble combinations. For example, consider
again the models in Fig. 1. Merging them
was not possible because the merge op-
erator finds inconsistencies between the
cardinality constraints of the classes to
merge. However, consider the orthogra-
phic representation of a 3D object shown
in Fig. 3, whose views M1 and M2
present similar correspondences to the
classes in Fig. 1, but for which a com-
bined model is possible (shown as the
Implementation).

In fact, the two models shown in Fig. 1 admit one unification, given by a model MG
with two classes A and B related by an association whose cardinality is 2 in both ends,
plus two projections T1 and T2—see Fig. 4.

316 A. Vallecillo

The first projection T1 transforms each pair of A instances of MG related to a pair
of B instances into one single A’ instance, and transforms B instances into B’ without
modifying them. The second projection T2 does the analogous transformation with B”
and A” instances, respectively. This represents, for instance, a system in which both A
and B elements are replicated. View M1 abstracts away the replication of A elements,
while View M2 does the same for B elements.

Of course, the unification is only

MG

A B

M1

A'

B'

M2

A''

B''

22

«correspondence»
c2

«correspondence»
c1

2

1

1

2

T2T1

Fig. 4. The Unified Model for Fig. 1

possible if correspondences c1 and c2
are one-to-many and many-to-one, re-
spectively. Otherwise the unification is
not possible: suppose that correspon-
dence c1 was one-to-one, i.e., it im-
posed that every A’ instance should be
related to exactly one A” instance. In
this case, there is no implementation
possible for the system and therefore
the multi-viewpoint specification
becomes inconsistent.

5 Discussion

Relationship with previous approaches. Our proposed unification can be seen as a
generalization of previous approaches to DSML combination, discussed in Sect. 3.
In model extension and model merge, the unified metamodel MG is nothing but the
duplicate-free union of the viewpoint metamodels. The development relations in these
cases coincide with injection mappings defined by these two approaches (e.g., ε in case
of model extension), and the projections ti are just the inverse of these injections. One
of the benefits of our approach is that we request that the projection mappings are ex-
plicitly defined. One of the benefits of the model extension and model merge approaches
is that they provide mechanisms and algorithms for building the unified model (in those
situations in which they can be applied), because the unified model coincides with the
combined model they construct—sometimes called the least developed unification [15].

Language embedding is also a particular case of our approach, in which the meta-
model MG is an existing one. Users normally define the development mappings that
describe how the DSMLs concepts are encoded as MG elements. In our case, we ex-
plicitly ask to specify the inverse projections ti too, to be able to trace back to the
original languages and to automatically obtain the views from the unified model.

We are of course conscious that the synthesis process cannot always be fully auto-
mated, as we have tried to illustrate with the simplistic example shown in 4. There are,
however, other occasions in which such a combined model can be synthesized from the
views, as it happens when model extension or model merge approaches are possible.
But in these cases the projections are easy to define, because they are nothing but the
inverse of the development mappings.

Realizing the Mappings. The advent of MDE has provided a set of appropriate mech-
anisms and tools for specifying and implementing both the viewpoint correspondences

On the Combination of Domain Specific Modeling Languages 317

and the ti projections. For instance, model weaving [12] is a technology that can be
very useful to implement model extension and model merging, as described in [11,13].
More importantly, model transformations can play a key role for realizing the mappings
so that they can be automated. In the best case we will be able to define bidirectional
model transformations that allow the mappings to work in both directions.

In a typical application scenario, a user will be confronted with two DSMLs that have
to be combined. The first step is to define the correspondences between their metamod-
els using model weaving techniques. Then the user should investigate whether model
extension or model merge can produce a satisfactory and consistent unified metamodel
(in case the projections of the duplicated-free union of the two languages metamodels
respect the correspondences constraints). If so, implementing the algorithms described
in [6] or in [5] using model transformations is the solution. Once defined, the projections
from the unified metamodel to the views should be defined in terms of model transfor-
mations, to be able to perform automatic analysis (these projections are basically the
inverse of the development mappings defined by the algorithms).

Alternatively, the user may consider embedding the languages into an existing lan-
guage, if none of the issues we have identified in Sect. 3.2 represent a serious problem
for her. In this case the development relations are just the embedding mappings, which
can be implemented in terms of model transformations, too (see, e.g., [30,31,32,33]).
Apart from the intrinsic problems of defining the mappings and the projections (which
are not normally difficult from a conceptual point of view but rather cumbersome from
a technical perspective), special care should be taken for making sure that the corre-
spondences constraints are respected by the projections.

Finally, in case none of the previous approaches offers a neat solution, the user might
consider specifying an ad-hoc language for hosting the combination. As major benefits,
the relationships between the combined DSMLs and the unified language can be of
different types, and implemented as model transformations (in both directions: devel-
opment and projections) that will fit the particular requirements of the individual lan-
guages. The main problem is the complexity involved in defining the unified language
so that it represents the consistent “least development unification” of the DSMLs to
combine. The good news is that this new language has to be defined only once for every
combination of languages.

What happens with the concrete syntax? In our proposal, users do not need to use the
combined language and thus there is no need to provide a concrete syntax for it. In case
of model extension, some authors have proposed a way to combine the concrete syntax
as well [20]. But in general this is a difficult issue because of the semantic implications
of symbols: usually every symbol conveys an associated meaning. For instance, a box is
associated to a classifier in UML; a stick figure is an actor, etc. There is no major problem
when the concepts of the combined languages are kept separated, or just extended, but
not mixed. But when the concepts are mingled in the combined language the situation
becomes more complex, and trying to use the icons of one or the other language may
introduce semantic problems to the reader of the combined diagrams. And if we try to
choose a different notation for the combined language, the users might get completely
confused with the new notation.

318 A. Vallecillo

In language embedding we get the opposite problem because users tend to focus
more on the host language notation—the embedded language symbols usually become
(inconized) annotations to the host language symbols. But the look-and-feel of the re-
sulting diagrams resembles too much the host language notation, and thus the benefits
of working with domain specific languages melt away. However, this might not be a
problem but an advantage when the embedded language does not have any associated
concrete syntax, as we explained before.
What happens with the semantics? There have been different proposals for the com-
positional definition of the semantics of DSMLs using diverse formalisms, see, e.g.,
Refs. [34,35,36,37]. These works are usually valid when the relation between the view-
points and the unified metamodel are basically injections. But in general combining the
semantics of the languages is not a trivial task and deserves its own line of research—
specially when we allow different kinds of relations between the unified metamodel
and each viewpoint metamodel. In an unification context, the semantics of the indi-
vidual DSMLs and the unified language are preserved. Model transformations provide
here the semantic brigdes that allow mapping ones into the others. Furthermore, model
transformations can serve to define the (translational) semantics of those languages that
do not count on an explicit definition of their semantics, as mentioned in Sect. 3.2.

6 Conclusions and Future Work

In this paper we have discussed and analyzed the most common techniques for DSML
combination, and classified them in three main categories according to the operations
they use: model extension, model merge and language embedding. These techniques
are useful in some circumstances, but rather limited in others. Then we have proposed a
more general framework for combining DSMLs that subsumes them, based on the con-
cept of viewpoint unification, and its realization using model-driven techniques. The
framework has allowed us to put these combination techniques in context, and formu-
late them in similar terms. In fact, they all represent different ways to find a global
metamodel that can host the languages to combine. But these approaches have similar
problems, too. Firstly, none of them specifies in an explicit way the traces back to the
original notations that permit making use of the tools available for these languages. Sec-
ondly, they allow only one kind of relationship between the languages to combine and
the global metamodel (basically, injection). The first problem is solved in our proposal
by requesting the explicit specification of the mappings from the global metamodel
to the languages metamodels. The second problem is the one that imposes stronger
limitations on existing approaches for combining DSMLs because it forces the global
metamodel elements to incorporate all the capabilities of the individual views, and to re-
spect the constraints defined by both the viewpoints and the correspondences. We have
introduced a simple example that shows that such limitation is too restrictive, and nor-
mally unrealistic for composing rich DSMLs. Our approach overcomes this limitation
by allowing different kinds of relations between the viewpoint languages and the global
metamodel (abstractions, refinements, implementations, etc.) and also by checking the
consistency of the specifications using the projections of the global metamodel.

On the Combination of Domain Specific Modeling Languages 319

We are currently working on the unification of the viewpoint languages defined by
some multi-view proposals, such as UWE [38] and the RM-ODP [28]. This is the con-
text in which the work presented here has been developed, based on our experiences
and findings when combining these languages. Although there are still many issues to
resolve, we have tried to show how the MDE technologies can significantly help in
combining DSMLs by formulating the problem in terms models and relations (transfor-
mations) between them.

Acknowledgements. We would like to thank José E. Rivera, Francisco Durán and Jordi
Cabot for their comments on a previous version of this paper, and to the anonymous
referees for their insightful comments and suggestions. This work has been partially
supported by Spanish Research Projects TIN2008-03107 and P07-TIC-03184.

References

1. OMG: Unified Modeling Language 2.1.1 Superstructure Specification. OMG, Needham
(MA), USA, OMG doc. formal/07-02-05 (2007)

2. OMG: Systems Modeling Language. OMG, Needham (MA), USA (2008)
3. OMG: UML Profile for MARTE: Modeling and Analysis of Real-Time and Embedded sys-

tems. OMG, Needham (MA), USA (2009)
4. Zito, A., Diskin, Z., Dingel, J.: Package merge in UML 2: Practice vs. theory? In: Nierstrasz,

O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 185–199.
Springer, Heidelberg (2006)

5. Bernstein, P.A., Pottinger, R.A.: Merging models based on given correspondences. In: VLDB
2003, Berlin, Germany pp. 862–873 (2003)

6. Barbero, M., Jouault, F., Gray, J., Bézivin, J.: A practical approach to model extension. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA. LNCS, vol. 4530, pp. 32–42.
Springer, Heidelberg (2007)

7. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. In: Proc. of the 6th
Workshop on Domain Specific Modeling at OOPSLA 2006, pp. 123–139 (2006)

8. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv. 28(4) (1996)
9. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic embedding of DSLs. In: Proc.

of GPCE 2008, Nashville, TN, pp. 137–148. ACM, New York (2008)
10. Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., Maroti, M.: On metamodel composition.

In: Proc. of CCA 2001, pp. 756–760 (2001)
11. Estublier, J., Vega, G., Ionita, A.D.: Composing domain-specific languages for wide-scope

software engineering applications. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 69–83. Springer, Heidelberg (2005)

12. Didonet Del Fabro, M., Jouault, F.: Model transformation and weaving in the AMMA plat-
form. In: GTTSE 2005. LNCS, vol. 4143, pp. 71–77. Springer, Heidelberg (2005)

13. Bézivin, J., Bouzitouna, S., Didonet Del Fabro, M., Gervais, M.P., Jouault, F., Kolovos, D.,
Kurtev, I., Paige, R.F.: A canonical scheme for model composition. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 346–360. Springer, Heidelberg (2006)

14. White, J., et al.: Improving domain-specific language reuse with software product line tech-
niques. IEEE Software 26(4), 47–53 (2009)

15. Bowman, H., Steen, M., Boiten, E.A., Derrick, J.: A formal framework for viewpoint consis-
tency. Formal Methods in System Design 21(2), 111–166 (2002)

16. Linington, P.: Black Cats and Coloured Birds What do Viewpoint Correspondences Do? In:
Proc. of WODPEC 2007, Maryland, USA (2007)

17. Clark, T., Sammut, P., Willans, J.: Applied Metamodelling, 2nd edn., Ceteva (2004)

320 A. Vallecillo

18. Romero, J.R., Jaén, J.I., Vallecillo, A.: Realizing correspondences in multi-viewpoint spec-
ifications. In: Proc. of EDOC 2009, Auckland, NZ, pp. 163–172. IEEE Computer Society,
Los Alamitos (2009)

19. ISO/IEC: Information technology – Open distributed processing – Use of UML for ODP
system specifications. ISO and ITU-T, ISO/IEC IS 19793, ITU-T X.906 (2008)

20. Pedro, L., Risoldi, M., Buchs, D., Barroca, B., Amaral, V.: Composing visual syntax for
domain specific languages. In: Proc. of HCI 2009, San Diego, CA. LNCS, vol. 5611, pp.
889–898. Springer, Heidelberg (2009)

21. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML. In: The
Catalysis Approach, Addison-Wesley, Reading (1999)

22. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Computer Pro-
gramming 8, 231–274 (1987)

23. ITU-T Recommendation Z.120: Message Sequence Charts (1994)
24. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: WebDSL: A Domain-Specific Lan-

guage for Dynamic Web Applications. In: Mielke, N., Zimmermann, O. (eds.) Companion
to OOPSLA 2008, pp. 779–780. ACM, New York (2008), http://webdsl.org

25. Espinoza, H., Cancila, D., Selic, B., Gérard, S.: A practical approach to model extension.
In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp.
98–113. Springer, Heidelberg (2009)

26. Moreno, N., Fraternali, P., Vallecillo, A.: WebML Modelling in UML. IET Software 1(3),
67–80 (2007)

27. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002, pp. 233–
246 (2002)

28. ISO/IEC: RM-ODP. Reference Model for Open Distributed Processing. ISO and ITU-T,
Geneva, Switzerland, ISO/IEC 10746, ITU-T Rec. X.901-X.904 (1997)

29. Atkinson, C., Stoll, D.: Orthographic modeling environment. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 93–96. Springer, Heidelberg (2008)

30. Abouzahra, A., Bézivin, J., Didonet Del Fabro, M., Jouault, F.: A practical approach to bridg-
ing domain specific languages with UML profiles. In: Best Practices for Model Driven Soft-
ware Development Workshop at OOPSLA (2005)

31. Bézivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.: Bridging the MS/DSL tools and the
Eclipse modeling framework. In: Proc. of the International Workshop on Software Factories
at OOPSLA (2005)

32. Wimmer, M., Schauerhuber, A., Strommer, M., Schwinger, W., Kappel, G.: A semi-
automatic approach for bridging DSLs with UML. In: Proc. of 7th Workshop on Domain-
Specific Modeling at OOPSLA (2007)

33. Brambilla, M., Fraternali, P., Tisi, M.: A transformation framework to bridge Domain Spe-
cific Languages to MDA. In: Chaudron, M.R.V. (ed.) Models in Software Engineering.
LNCS, vol. 5421, pp. 167–180. Springer, Heidelberg (2009)

34. Chen, K.: et al.: Semantic anchoring with model transformations. In: Hartman, A., Kreische,
D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

35. Ruscio, D.D., Jouault, F., Kurtev, I., Bézivin, J., Pierantonio, A.: Extending AMMA for
supporting dynamic semantics specifications of DSLs. Technical Report 06.02, Laboratoire
d’Informatique de Nantes-Atlantique (LINA), Nantes, France (2006)

36. Doh, K.G., Mosses, P.D.: Composing programming languages by combining action-
semantics modules. Sci. Comput. Program. 47(1), 3–36 (2003)

37. Pedro, L., Amaral, V., Buchs, D.: Foundations for a Domain Specific Modeling Language
prototyping environment: A compositional approach. In: Proc. of the DSM workshop at
OOPSLA 2008, Nashville, TN, pp. 26–33 (2008)

38. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering: An Approach
Based on Standards. In: Web Engineering: Modelling and Implementing Web Applications.
Human-Computer Interaction Series, vol. 12, pp. 157–191. Springer, Heidelberg (2008)

http://webdsl.org

	On the Combination of Domain Specific Modeling Languages
	Introduction
	A Brief Introduction to DSMLs
	Mechanisms for Combining DSMLs
	Relating Models: Correspondences
	Viewpoint Synthesis
	Analysis of the Integrated Models

	Viewpoint Unification
	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

