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Abstract

Domain specific languages (DSLs) play a cornerstone
role in Model-Driven Software Development. The abstract
syntax of a DSL is usually defined by a metamodel, while in-
place model transformation rules provide an intuitive way
to complement metamodels with their behavioral specifica-
tions. We propose a modeling notation that extends in-place
rules with a quantitative model of time, and with mecha-
nisms that allow designers to specify action-based proper-
ties, thus facilitating the design of real-time complex sys-
tems. We present a graphical modeling tool that we have
built for visually specifying these timed behavioral specifi-
cations.

1. Introduction

Domain specific languages (DSLs) play a cornerstone
role in Model-Driven Engineering (MDE) for represent-
ing models and metamodels. DSLs are normally defined
in terms of their abstract and concrete syntaxes. The ab-
stract syntax is defined by a metamodel, which describes the
concepts of the language, the relationships between them,
and the structuring rules that constrain the combination of
model elements according to the domain rules. The con-
crete syntax specifies how the domain concepts included in
the metamodel are represented, and is usually defined by
a mapping between the metamodel and a textual or graphi-
cal notation. This metamodeling approach enables the rapid
and effective development of languages and their associated
tools (e.g., graphical or textual model editors).

Explicit and formal specification of model semantics has
not received much attention from the MDE community un-
til recently, despite the fact that this issue may produce con-
flicting results across different tools. Furthermore, the lack
of explicit behavioral semantics strongly hampers the devel-
opment of simulation and formal analysis tools [10], which
is particularly important in safety-critical real-time and em-
bedded system domains.

One way of specifying the dynamic behavior of a DSL

is by describing the evolution of the modeled artifacts along
some time model. In MDE, this can be naturally done using
model transformations supporting in-place update [2]. The
behavior of the DSL is then specified in terms of the permit-
ted actions, which are in turn modeled by the transformation
rules. However, only a few of the current approaches deal
with time-dependent behavior (see Section 3). Timeouts,
timing constraints and delays are essential concepts in these
domains, and therefore they should be explicitly modeled.
Besides, current approaches only allow users to model state-
based properties, forcing designers to unnaturally extend
their metamodels with the state of the actions that should
be observed. The need for action-based specifications has
been recently acknowledged, showing that this kind of spec-
ifications are more natural and expressive in many different
situations [5].

In this paper we propose a modeling notation that
extends in-place transformation rules with a quantitative
model of time and with mechanisms that allow designers
to specify action-based properties, thus facilitating the de-
sign of real-time complex systems. We present a graphical
modeling tool, called e-Motions [?], that we have built for
visually specifying these timed behavioral specifications.

2. Real-Time In-Place Transformations Rules

There are several approaches that propose in-place
model transformation rules to deal with the behavior of
DSLs, from textual to graphical (see [7] for a comprehen-
sive survey). This approach provides a very intuitive and
natural way to specify behavioral semantics, close to the
language of the domain expert and the right level of abstrac-
tion [3].

These transformations are composed of a set of rules.
Each rule represents a possible action of the system. Rules
are of the form / : [NAC] x LHS — RHS, where [ is
the rule’s label (its name); LHS (Left Hand-Side) and RHS
(Right Hand-Side) are model patterns that represent certain
states of the system, and NAC is a set of optional model
patterns that represent Negative Application Conditions that
forbid applying the rule if one of these patterns is found
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Figure 1. The Behavior metamodel.

in the model. The LHS and NAC patterns of a rule ex-
press its precondition, whereas its RHS represents its post-
condition. LHS and NAC patterns may include conditions.
Thus, a rule can be applied (i.e., triggered) if an occurrence
(or match) of the LHS is found in the model, and none of
the NAC patterns occurs. Generally, if several matches are
found, one of them is non-deterministically selected and ap-
plied, producing a new model where the match is substi-
tuted by the corresponding RHS (the rule realization). The
model transformation proceeds by applying the rules in a
non-deterministic order, until none is applicable [7].

Metamodel for time-dependent behavior. Fig. 1 shows
the Behavior metamodel, which describes the main con-
cepts of our approach to model time-dependent behavior.
The novelty in this metamodel is the addition of time-
related attributes to rules (to represent duration, periodicity,
etc.), and the inclusion of the ActionExec metaclass, whose
instances represent action executions. MetamodelGD and
ClassGD metaclasses are used for defining the graphical con-
crete syntax of the DSL [1]. We provide a special kind of
object, named Clock, that represents the current global time
elapse. A unique and read-only Clock instance is provided
by the system to model time elapse through the underly-
ing platform. This allows designers to use the Clock in their
timed rules to get the current time (using its time attribute) to
model, e.g., time stamps. Of course, users can define their
own clocks to model other aspects of distributed systems
(such as distributed clocks) and specify how they individu-
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Figure 2. Mobile Phone Network metamodel.
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Figure 3. A mobile phone network example.

ally evolve. Other concepts, such as the single and double
pushout formalizations of the transformations, and the non-
injectiveness of the rules, are handled in the same way as in
common graph transformation approaches (see, e.g., [7]),
although adapted to the tree-structure of Eclipse models.

A Mobile Phone Network Example. Let us introduce
a modeling language for mobile phone networks (MPN5s),
which will serve us as the motivating example to illustrate
the main features of our approach. In this paper, we will
only deal with linear discrete time, although dense time is
also supported.

The MPN metamodel is shown in Fig. 2. A MPN is com-
posed of cell phones and antennas. Antennas provide cov-
erage to cell phones, depending on their relative distance.
A cell phone is identified by its number, and can perform
calls to other phones of its contact list. Calls are registered.
Phone attributes standbyBps and talkBps represent the battery
consumption per second while being in standby or talking,
respectively.

Fig. 3 shows a MPN example using a visual concrete
syntax. The model consists of three cell phones and one
antenna. The position of each element is dictated by its
position in the grid. All phones are initially off, and their
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Figure 4. The BatteryOff rule.

contacts are represented by arrows between them.

A possible specification of the MPNs behavior follows.
Our main aim is to illustrate the different features of our
proposal. Of course, alternative design decisions could have
been taken. The complete specification of the MPN exam-
ple can be found in [1].

Atomic actions. One natural way to model time-
dependent behavior quantitatively consists of extending the
rules with the time they consume, i.e., by assigning to each
action the time it takes. Thus, we define atomic rules as in-
place transformation rules of the form / : [NAC] x LHS 5
RHS, where ¢ expresses the duration of the action modeled
by the rule. Atomic rules can be triggered whenever an
occurrence (or match) of the LHS, and none of the NAC
patterns, is found in the model. Then, the action specified
by the rule is scheduled to be realized after # time units.
At that time, the rule is applied by performing the attribute
computations and substituting the objects in the match by
its RHS. Note that the objects in the LHS may be involved
in other actions during the time elapse, and therefore their
states may have changed in the meanwhile. The only condi-
tion for the final application of the triggered rule is that the
objects involved are still there.

Fig. 4 shows the BatteryOff atomic rule. Whenever a
phone is on and it has no battery, with this action, it is
switched off in one second.

Figure 5 shows two other atomic rules that model the
behavior of phone calls. The MakeCall rule describes the
initiation of a call from a cell phone to one of its contacts.
For this purpose, both phones must be on and have coverage
(see the condition specified in the WITH clause). The four
NAC patterns forbid the execution of the rule whenever one
of the phones is participating in another (incoming or out-
going) call. This action is modeled by a lazy rule, which is
a special kind of rule that is not forced to be immediately
applied whenever their LHS pattern occurs in the model.
Thus, we allow a phone to make calls at a non-deterministic
moment in time.

Once a call is initiated, the user can pick up the phone
to start a talk (Zalk rule) or just ignore it (modeled by the
MissedCall rule, which can be found in [1]). If the phone
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Figure 5. The MakeCall and Tulk atomic rules.

is picked up, a conversation will take place for talkTime time
units. The value of the talkTime variable (in the variables
box at the bottom of the rule specification) is defined as a
pseudo-random value (random(100)). The context of a vari-
able is the rule in which it is defined. Rule variables provide
the mechanism to define values that are used in several parts
of the rule. Variables are computed when rules are trig-
gered, and do not change their values until they are finally
applied — unlike object attributes, whose values are com-
puted either when the rule is triggered, in case of attributes
appearing in LHS and NACs patterns, or when the rule is
realized, if they appear in the RHS pattern of the rule. At
the end of the talk, the call is registered in both phones (as
a dialed call in phone p1 and as a received call in phone p2)
including the duration of the call (talkTime) and its starting
time. In this example, we consider that the starting time of a
received call is the moment at which the phone is picked up.
Note the use of the Clock’s time attribute in the RHS pattern
of the rule, which refers to the moment of the finalization
of the rule, since attributes appearing in the rule’s RHS are
computed at that time.

Periodicity. Another essential aspect for modeling time-
dependent behavior is periodicity. Atomic rules admit a pa-
rameter that specifies an amount of time after which the ac-
tion is periodically triggered (if the rule’s precondition still
holds). Normal atomic rules are triggered at the beginning
of the period, while lazy rules can be executed at any time
within the period (only once per period).

Fig. 6 shows the Coverage rule, which specifies the way
in which coverage changes. Coverage is updated every ten



El Coverage @1

S 10

T Nact [ LHs E RHS

aZ((X) "g a((/\)) Dg a((/\)) DE a((/&))

coverage = if {a.distance{p) = 1007
a2.distance(p) < _ then 0 else 5 - (a.distance{p).div(z0))
a.distanceip) Ll Ealial endif

WITH

Figure 6. The Coverage atomic rule.

seconds (see the loop icon in the header of the Coverage
rule). Each cell phone is covered by its closest antenna: as
specified in its NAC pattern, the rule cannot be applied if
there exists another antenna which is closer to the phone.
The Manhattan distance between the two objects is com-
puted by the following helper (OCL operation):

context Antenna :: distance(p : Phone) : Integer
body : (xPos—p.xPos).abs()+(yPos—p.yPos).abs()

Action executions. In standard in-place transformation
approaches, model patterns (LHSs, RHSs and NACs) are
defined in terms of system states. This is a strong limitation
in those situations in which we need to refer to actions cur-
rently executing, or to those that have been executed in the
past. For example, we can be interested in knowing whether
an object is currently engaged in a given action (e.g., in or-
der not to allow it to perform another), or in reasoning about
the performed actions so far (e.g., to be able to search for
undesirable action occurrences or invalid sequences of ac-
tion executions). In general, the inability of being able to
model and deal with action occurrences hinders the speci-
fication of many useful action properties, unless some un-
natural changes are introduced in the system model — such
as extending the system state with information about the ac-
tions currently happening (cf. [5]).

In order to be able to model both state-based and action-
based properties, we have extended model patterns with ac-
tion executions that model action occurrences. These action
executions represent atomic rule executions that are cur-
rently happening or that were previously performed (using
its past attribute). Action executions specify the action type
(i.e., the name of the atomic rule), its identifier, its starting
and ending times, and the set of objects involved in the ac-
tion. These objects are specified by object mappings, which
are sets of pairs (o — r). Each pair identifies the object that
participates in the action (o) and (one of) the roles it plays in
the rule (r). For instance, the MakeCall rule (Fig. 5) defines
three roles: two phones (p1 and p2) and one call (c). We can
also leave unspecified the type of the rule and the role of
an object, to represent any rule instantiation or object role,
respectively.
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Figure 7. The OffinTalk atomic rule.

Exceptions. Action executions can also be used for in-
terrupting atomic actions. In our approach, atomic actions
are triggered if their preconditions (LHS and not NACs) are
met, and their effects take place once they finish (after their
corresponding duration). Nothing is assumed about what
happens while the action is being executed. However, there
are situations in which we want to make sure that something
happens (or does not happen) during the action execution.
Thus, we can add new rules that model action cancelations
by deleting their corresponding action executions, i.e., by
including them in a rule’s LHS pattern but not in its RHS
pattern. Their effects are defined by the RHS pattern.

Consider, for instance, the OffInTalk atomic rule in
Fig. 7, which models the behavior of a phone when it is
switched off in the middle of a conversation. The OffInTalk
rule is applied whenever two phones are having a talk (we
explicitly specify that the call c is participating in the Talk
action with the c role) and at least one of the phones is found
to be off. In this case, the Talk action is canceled and the call
registered in both phones.

Ongoing actions. We also count on rules to model ac-
tions that are continuously progressing. Think for instance
of an action that models the consumption of a phone battery,
whose level decreases continuously along time.

Ongoing rules model this kind of behavior. They do not
have any a-priori duration time: they progress with time
while the rule preconditions (LHS and not NACs) hold, or
until the time limit of the action is reached (defined by the
maxDuration attribute, see Fig. 1). Fig. 8 shows the StandBy-
BatteryConsumption ongoing rule. It models battery con-
sumption when the phone is in standby (i.e., it is not talk-
ing). In this case, the battery power is decreased in stand-
byBps units per second. Note the use of the action execution
element instead of a simple Call object. In this way we do
not need to differentiate between incoming and outgoing
calls, thus covering both cases since the role of phone p in
rule Talk (caller or callee) is not specified. To explicitly iden-
tify the state of a phone that has run out of battery (in order
not to decrease the battery power below zero, for instance),
we limit the duration of the rule (after the < symbol) not
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to exceed the battery power. Analogously, we can define
a similar rule that updates the amount of battery while the
phone is talking (see [1] for additional examples).

3 Related Work

There are several approaches that propose in-place
model transformations to deal with the behavior of DSLs,
from textual to graphical (see [7] for a comprehensive sur-
vey). However, none of these works includes a quantitative
model of time. When time is needed, it is usually modeled
by adding some kind of clocks to the DSL’s metamodel.
These clocks are handled in the same way as common ob-
jects, which forces designers to modify the DSL metamodel
to include time aspects. Furthermore, this does not con-
strain designers from unwillingly defining time-inconsistent
sequences of states. This kind of approach is followed
in [4], where graph transformation systems are provided
with a model of time by representing logical clocks as
distinguished node attributes. This work, based on time
environment-relationship (TER) nets (an approach to mod-
eling time in high-level Petri nets), does not extend the base
formalism but specializes it (as its predecessor), and enables
the incorporation of the theoretical results of graph trans-
formation. The verification of the system time-consistency
is achieved by introducing several semantic choices and a
global monotonicity theorem, which provides conditions for
the existence of time-ordered transformation sequences.

A recent work [9] proposes to complement graph gram-
mar rules with the Discrete EVent system Specification
(DEVS) formalism to model time-dependent behavior. Al-
though this has the benefit of allowing modular designs,
this approach requires specialized knowledge and expertise
about the DEVS formalism, something that may hinder its
usability by the average DSL designer. Furthermore, they
do not provide analysis capabilities: system evaluation is
accomplished through simulation.

In our previous work [8] we showed how some timed be-
havioral specifications can be supported, adding duration to
in-place rules. Here, we have extended our previous pro-
posal in numerous ways to include variables, ongoing ac-
tions, periodicity, and lazy execution modes.

4 Conclusions

In this paper we extend in-place rules with a quantita-
tive model of time and with mechanisms that allow de-
signers to specify action properties, easing the design of
real-time complex systems. This proposal enables decou-
pling time information from the structural aspects of DSLs
(i.e., their metamodels). Our proposal also supports a way
to model action executions, attribute computations, ordered
collections, and OCL expressions. We have also presented
a graphical modeling tool (called e-Motions) aimed at visu-
ally specifying these timed rules. The precise semantics of
the language, which will appear somewhere else, is defined
by a mapping to Real-Time Maude [6, 10]. This mapping
makes the specifications amenable to simulation and differ-
ent kinds of formal analyses.
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