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Abstract

Viewpoint modeling is an effective technique for specify-
ing complex software systems in terms of a set of indepen-
dent viewpoints and correspondences between them. Each
viewpoint focuses on a particular aspect of the system, ab-
stracting away from the rest of the concerns. Correspon-
dences specify the relationships between the elements in
different views, together with the constraints that guaran-
tee the consistency among these elements. However, most
Architectural Frameworks, which follow a multi-viewpoint
approach, either do not consider the explicit specificationof
correspondences, or do it in a very simplistic way. This pa-
per proposes a generic model-driven approach to the spec-
ification and realization of correspondences between view-
points. In particular, we show how correspondences can
be modeled both extensionally and intensionally, and pro-
pose the use of model transformations to connect these two
approaches. As a proof-of-concept, we show how our pro-
posal can be implemented in the context of the RM-ODP
and UML4ODP, and present a tool to support the realiza-
tion of correspondences between ODP views. This proposal
can be extended to any other Architectural Framework that
uses models to represent their views.

1. Introduction

Large-scale heterogeneous distributed systems are inher-
ently much more complex to design, specify, develop and
maintain than classical, homogeneous, centralized systems.
One way to cope with such complexity is by dividing the
design activity according to several areas of concerns, or
viewpoints, each one focusing on a specific aspect of the
system, as described in IEEE Std. 1471 [16]. Following
this standard, current architectural practices for designing
open distributed systems define several distinct viewpoints.
Examples include the viewpoints described in the “4+1”
view model [23], Viewpoints [12], OpenViews [6], Dijk-
man’s framework [7], or the growing plethora of Archi-

tectural Frameworks (AFs): the Zachman framework [42],
ArchiMate [24], the US Department of Defense Architec-
tural Framework (DoDAF), The Open Group Architectural
Framework (TOGAF), the Federal Enterprise Architecture
Framework (FEAF), or the Reference Model of Open Dis-
tributed Processing (RM-ODP), among others.

In particular, the RM-ODP is an architectural practice
jointly defined by ISO/IEC and ITU-T that provides five
generic and complementary viewpoints on the system and
its environment [18]. Each viewpoint addresses a particular
concern, and normally uses its own specific (viewpoint)lan-
guage, which is defined in terms of a set of concepts specific
for that concern, their relationships, and their well-formed
rules. Aview (or viewpoint specification, in ODP terms) is
a representation of the whole system from the perspective
of a viewpoint.

Although separately specified, developed and main-
tained to simplify reasoning about the complete system
specifications, viewpoints are not completely independent:
elements in each viewpoint need to be related to elements
in the other viewpoints in order to ensure the consistency
and completeness of the global specifications. The ques-
tions are: how can it be assured that indeedonesystem is
specified? And, how can it be assured that no views impose
contradictory requirements? The first problem concerns the
conceptualintegrationof viewpoints, while the second one
concerns theconsistencyof the viewpoints.

Most viewpoint modeling approaches to system specifi-
cation (including the IEEE 1471 standard itself and the ma-
jority of the existing AFs) do not consider correspondences
between viewpoints, or assume they are trivially based on
name equality between correspondent elements and thus
they are implicitly defined. This is a serious problem for
large-scale distributed systems in which the viewpoints are
indeed separately specified, and in which this simplistic as-
sumption does not hold. The majority of approaches that
deal with the problem of inconsistency among viewpoints
(see, e.g., [8, 9, 10, 12, 14, 37]) are also based on this over-
simplified assumption, which hinders their applicability to
many complex systems.



Making an analogy with the common 2D representation
of 3D figures, this is like drawing independently the three
orthographic views of a figure but without defining any cor-
respondence lines between them. As we all know, the con-
sistency and completeness of the specification of the 3D fig-
ure cannot be guaranteed unless the appropriate correspon-
dences between the three 2D views are described.

There are basically two approaches to model correspon-
dences between the views of a system: extensional and in-
tensional.Extensionalapproaches model correspondences
between the particular elements of the views, similarly to
what is done for 2D representation of 3D figures. However,
in large systems the number of correspondences jeopardizes
their proper design, management and maintenance: the sys-
tem designer cannot deal with (or even properly define and
visualize) thousands of correspondences.Intensionalap-
proaches define correspondences as relations between types
of model elements, i.e., between viewpoint elements and
not between view elements. However, this approach may
hinder the understandability and operability of the speci-
fications produced: for typical users of the specification,
correspondences are easier to use, visualize and understand
when they are drawn as relationships between individual el-
ements in the views, instead of being expressed as formulae.

This paper examines a generic model-driven proposal
to explicitly specify correspondences between viewpoints,
reviews the possible approaches, and proposes the use of
model transformations to connect the intensional and ex-
tensional specification of correspondences. In addition, we
discuss two different and complementary ways to model ex-
tensional correspondences between views, in case they are
represented as UML models: using classes and using de-
pendencies. Each one is more apt for a particular task.

Traditionally, AFs have not formally dealt with corre-
spondences. The RM-ODP is one of the few architectural
frameworks that consider their explicit definition, and for
which modeling tool support currently exists [30]. Thus,
the work presented in this paper has been carried out in the
context of the RM-ODP and UML4ODP. To validate our
proposal and to serve as a proof-of-concept of our ideas,
we show here how the existing modeling tool has been ex-
tended to support the specification of correspondences. It
is also important to note that this proposal is not restricted
to ODP: it can be easily applied in any other AF that uses
models to represent its views.

After this introduction, Section 2 presents the concepts
related to viewpoint correspondences and the way they are
defined in RM-ODP. Then, Section 3 proposes the speci-
fication of viewpoints, views and correspondences using a
metamodeling approach. Section 4 presents some relevant
related work in this area. The details of our approach are
introduced in Section 5. Finally, Section 6 compiles our
conclusions and outlines some future work.

2. Viewpoint Correspondences

The most general approach to viewpoint consistency is
based on the definition of correspondences between view-
point elements. Historically, correspondences have not been
handled by multi-viewpoint architectural frameworks. A
well-known exception is the RM-ODP standard, that pro-
vides a precise conceptual framework and includes corre-
spondences as first class citizens. The forthcoming standard
IEEE and ISO/IEC 42010 [21], which is expected to update
the current IEEE Std. 1471, will also include the notion cor-
respondence between viewpoints, in a similar fashion to that
of ODP.

In ODP, acorrespondenceis a statement by which some
terms or other linguistic constructs in the specification ofa
viewpoint are associated with (e.g., describe the same enti-
ties as) terms or constructs in the specification of a second
viewpoint. Correspondences do not form part of any one of
the viewpoints, but provide statements that relate the vari-
ous viewpoint specifications—expressing their semantic re-
lationships [25]. Hence, we could initially say that a proper
system specification consists of a set of viewpoint specifica-
tions, together with a set of correspondences between them.

Some correspondences are required in all ODP speci-
fications; these are calledrequired correspondences. If
the correspondence is not valid in all instances in which the
concepts related occur, the specification is not a valid ODP
specification. Examples ofrequired correspondencesare
defined in [18] between pairs of viewpoints. For example,
the next two correspondences are defined for all the existing
elements in the computational and engineering viewpoints:

C1. Each computational object that is not a binding object
corresponds to a set of one or more basic engineering
objects (and any channels which connect them). All
the basic engineering objects in the set correspond only
to that computational object.

C2. Where transparencies that replicate objects are in-
volved, each computational interface of the objects be-
ing replicated corresponds to a set of engineering in-
terfaces, one for each of the basic engineering objects
resulting from the replication. Each of these engineer-
ing interfaces corresponds only to the original compu-
tational interface.

These correspondences are stated within the specific
context of ODP. For the sake of simplicity we will not
describe in detail the ODP concepts involved in these
correspondences. The interested reader can consult Part
3 of RM-ODP [18], the Enterprise Language [20] and
UML4ODP [19] for the complete set of correspondences
between pairs of viewpoints defined by the RM-ODP. In any
case, we want to emphasize the fact that these required cor-
respondences establish certain constraints oneveryinstance
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Figure 1. Example of a Bank specification

of particular types of elements, as mentioned above, e.g.,
computational objects, engineering interfaces, etc.

In general, correspondences are key elements of any
multi-viewpoint AF. Consequently, we need to count on
approaches to specify and realize them, supported by the
appropriate tools. This is precisely the main aim of this
paper. Furthermore, correspondences can also be used for
other purposes, e.g., change management in multi-view sys-
tems [4, 11, 15]. Change management implies consistent
evolution of system specifications: if a view is modified for
any reason (e.g., change of some business rules or some
QoS requirements), several changes may need to be per-
formed in other views in order to maintain the overall view-
point consistency. In this context, correspondences act as
“binds” that link together the related elements, transform-
ing them if a change occurs in any of them, i.e., propagat-
ing the changes to maintain consistency. This is something
our approach is also expected to provide with the appro-
priate connection to model synchronization tools such as
reSynch [33].

3. Viewpoint, Views and Correspondences

Based on our previous work [32], in this section we for-
mulate the specification of viewpoints, views and corre-
spondences from a metamodeling approach, in order to be

able to tackle some of the problems related to their specifi-
cation. Metamodeling is intended as a common technique
for defining the abstract syntax of models and the interre-
lationships between model elements. A model is an ab-
straction of a system from a given perspective, and a meta-
model is yet another abstraction, describing properties of
the model itself. A model is said toconform toits meta-
modelin an analogous way a program conforms to the pro-
gramming language in which it is written, or a XML docu-
ment conforms to an XML schema [5, 34]. In this context,
a view is an abstraction of a software system, highlighting
properties of the model itself. Correspondence specification
between viewpoints is yet an another abstraction, tracing re-
lations between viewpoint elements. Thus, the natural way
to define viewpoint languages in this scenario is by using
metamodels, and then views (i.e., viewpoint specifications)
are just models that conform to these metamodels.

A running example. In order to illustrate our proposal
we will use here a simple example of a multi-view speci-
fication in the context of the RM-ODP. It models a bank-
ing application, which manages accounts owned by cus-
tomers. Branches store this information. A head office is
a kind of branch with special functionality (not described
here for simplicity). The basic information of the system is
described in the Information Viewpoint specification. The
Computational Viewpoint focuses on the functionality of
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the system, whereas the Engineering Viewpoint deals with
how this functionality is distributed. A first step consistsof
building all these views. Fig. 1 shows three models, one for
each of these three views, using the UML Profiles defined
by the UML4ODP standard [19].

The way to specify correspondences is by using models,
too, which conform to the appropriate metamodels. Such
correspondence metamodels can be defined using for in-
stance the approach defined in UML4ODP shown in Fig. 2,
OCL constraints [7, 26], or Model Transformation lan-
guages to define viewpoint correspondences as model trans-
formations (e.g., using QVT [28, 31]). See Section 4 for a
more detailed description of these approaches.

From a modeling perspective we can see that initial ap-
proaches (including, e.g., the Zachman framework, IEEE
Std. 1471 and most Enterprise AFs: TOGAF, DoDAF,
FEAF, etc.) define that a multi-viewpoint specification con-
sists of a set of views of the system, each one expressed as
a model that conforms to the metamodel of its associated
viewpoint.

Although the relationships (i.e., correspondences) be-
tween the views are sometimes mentioned, these ap-
proaches define neither precise concepts and mechanisms
for specifying correspondences, nor notations for modeling
them. In this sense, correspondences areimplicitly defined
in these approaches. Other proposals, such as those men-
tioned in Section 4, or the new IEEE and ISO/IEC 42010
propose the explicit specification of correspondences be-
tween viewpoints. However, this approach does not permit
the specification of the required correspondences, which de-
scribe the well-formed rules that the set of correspondences
between elements of views should obey. Therefore, this
justifies the following definition of multi-viewpoint system
specification [32]:

Definition 1 A Multi-Viewpoint System Specificationcon-
sists of a set of views V= {V1, . . . , Vn}, a set of corre-
spondences C= {C(1,2), C(1,3), . . . , C(n−1,n)} between the
views, and a set of rules R= {r1, . . . , rk} that describe the
constraints that the correspondences of C should fulfil in
order for a specification to be well-formed. Each view Vi is
a model that conforms to a metamodelMi (the viewpoint
language). Correspondences are also models, and C(i,j)

conforms to a correspondence metamodelC1. Rules are
expressed as constraints on the correspondence elements,
using any constraint language (e.g., OCL).

The problem now is to endow the system specifier with
notations and tools to express the views, the correspon-
dences and the well-formed rules on them.

1In this paper we assume that all correspondences conform to the same
metamodelC, instead of having independent metamodelsC(i,j) for each
correspondence. We believe this is a realistic restrictionfrom a practical
point of view.

4. Previous Works on Correspondences

Originally, none of the viewpoint-based modeling ap-
proaches defined a language or notation to represent cor-
respondences. As mentioned above, relationships between
viewpoints were either ignored or briefly mentioned (as it
happens, e.g., in the IEEE Std. 1471, the Zachman frame-
work, or most AFs), or implicitly defined using the names
of the related elements (e.g., [8, 9, 10, 12, 14, 37]). The
problem is that without explicitly representing correspon-
dences we cannot reason about them, nor properly tackle
the integration and consistency issues mentioned above.

Another interesting issue is that the majority of these
approaches assume that we can build an underlying meta-
model containing all the views, in order to deal with the
problem of inconsistency among viewpoints. However, this
is not normally true. From a theoretical perspective, the
use of a common global metamodel greatly helps maintain-
ing the coherence and conceptual integration among view-
point elements. However, the definition of such an under-
lying metamodel presents some problems. Firstly, should
the metamodel consist of the intersection or of the union
of all viewpoints elements? Some proposals (e.g., Archi-
Mate [24]) use the first approach (i.e., the intersection),
while others, e.g., Dijkman [7] or Grosse-Rhode [14], use
the second. Both approaches have serious problems with
the extensibility and expressiveness of the basic elements
of the global metamodel (not to mention complexity of the
second approach—think for instance of the UML 2 meta-
model). Secondly, defining a common metamodel can be
feasible if the granularity and level of abstraction of the
viewpoints is similar and not arbitrarily different, something
which cannot be guaranteed in complex AFs such as Zach-
mann, or those that allow nested levels of abstraction, such
as RM-ODP. Finally, the viewpoints may have very differ-
ent formal semantics, which greatly complicates the defini-
tion of the common underlying metamodel. Basically, we
conclude that a common metamodel is feasible if the view-
points are (semantically) tightly coupled, but rather artificial
if they are loosely coupled or describe the system at very
different levels of abstraction or of granularity.

Several authors have recognized the independence of the
individual viewpoints, and proposed different approaches
to explicitly express correspondences between viewpoint
elements for addressing viewpoint consistency checking.
Some of the proposals, e.g. [6, 12, 14, 24, 37], highlight
the need to explicitly define and establish these correspon-
dences but do not represent them as independent entities.
Rather, they form part of the logical framework they define
for checking the consistency of viewpoint specifications.

Other authors explicitly represent correspondences, spe-
cially when viewpoint specifications are expressed as UML
models, using different alternatives. We will distinguishbe-
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Figure 2. Correspondence metamodel [19]

tween extensional and intensional approaches.
Extensional approachesdefine correspondences be-

tween individual view elements, and are usually the natural
way in which correspondences are drawn. For instance, if
views are expressed as UML models, the UML 2 language
definesabstraction dependencies, possibly constrained by
OCL statements, as the natural mechanism to model a re-
lationship that relates two elements or sets of elements that
represent the same concept at different levels of abstraction
or from different viewpoints [27]. This approach works well
for relating individual elements in two views. However, it
does not allow simultaneously relatingsetsof elements in
each viewpoint, something required in some situations.

An alternative approach to represent correspondences
has been defined by ISO/IEC and ITU-T in the con-
text of the UML4ODP standardization project [19]. The
UML4ODP correspondence metamodel is shown in Fig. 2.

In this approach, acorrespondence specificationis com-
posed of a set of correspondencerules and a set of corre-
spondencelinks. It describes consistency relationships be-
tween terms belonging to two specifications based on dif-
ferent viewpoints. In ODP, aterm is a linguistic construct
which may be used to refer to an entity. The reference may
be to any kind of entity including a model of an entity or
another linguistic construct. When a correspondence rule
and a correspondence link are related, this means that the
constraint in the correspondence rule must be enforced by
the set of terms referenced by the correspondence link.

In UML4ODP, a correspondence rule is expressed by a
constraint that must be enforced by a set of terms belong-
ing to two specifications from different viewpoints. A cor-
respondence link is established between two specifications
from different viewpoints. Each end of the correspondence
link is called acorrespondence endpoint, which is com-
posed of terms involved in the consistency relationship.

One of the major benefits of this way of modeling cor-
respondences is that it combines the abilities of previous
approaches: allowing not only to establish correspondences
that express simple relationships (e.g., traces) between mul-
tiple elements, but also to express correspondences which
need to be modeled as constraints between the sets of re-

lated elements (to achieve, e.g., consistency management
and synchronization enforcement).

This approach is not free from drawbacks, however. For
example, it is not so natural for modeling required corre-
spondences, which define constraints (i.e., rules) that theset
of correspondences that comprise the specification should
fulfil. In addition, the fact that it works at model level ham-
pers the easy and rapid definition of correspondences be-
tween particular types of objects, e.g., betweenall compu-
tational and engineering objects. Finally, this approach does
not scale well. As soon as the number of elements in a sys-
tem specification is high (which is normally the case), the
number of correspondences that have to be specified and
maintained grows exponentially. And this makes the com-
plete system specifications hard to specify, understand, and
maintain.

Intensional approachesare usually defined as relations
between types of model elements, i.e., between viewpoint
(or metamodel) elements and not between individual view
elements. In other words, if we consider that a view is a
model and a viewpoint is the metamodel for that view, in-
tensional approaches relate elements at metamodel level.

This approach has been proposed by several authors for
relating concepts from different viewpoint at the metalevel
(as initially suggested by Akehurst [2, 3] using relations de-
fined in OCL). Dijkman [7] also used relations and con-
sistency rules in his framework for preserving consistency
among viewpoints.

The fact that change propagations can be considered par-
ticular cases of model transformations suggests the use of
model transformation languages as a good solution to the
problem of representing viewpoint correspondences, at least
at metamodel level. As explained in Section 3, in a pre-
vious work [31] we explored the use of QVT for defining
viewpoint correspondences as model transformations. The
main benefit of this approach is that it allows checking pair-
wise consistency between related viewpoints using standard
mechanisms and tools.As drawbacks, QVT is not free of se-
mantic problems [36].

Intensional approaches work very well, for instance,
when every object of a certain type in a given view is re-
lated to another object in another view (i.e., when relations
can be defined at viewpoint, or metamodel, level). How-
ever, there are cases in which correspondences need to be
established between particular objects of a specification (as
it happens when the user defines the specific objects in one
view that should be replicated in another view, see e.g., re-
quired correspondenceC2 above). The problem is that at
the metalevel it is not that simple and elegant to determine
which particular objects should be related.

Another problem (probably the most critical one) with
the intensional specification of correspondences is related
to the learnability, usability and maintainability of the spec-
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Figure 3. Overview of the multi-viewpoint specification pro cess

ifications produced. For typical users of the specification,
it is easier to use and understand when correspondences are
drawn between individual elements in the views, instead of
by a set of model transformation rules. For instance, in the
ODP context, given an object in a computational view, we
would like to know which are the enterprise policies in the
enterprise view that constraint its behavior. Similarly, given
an enterprise policy we can be interested in identifying the
elements in the rest of the views that are affected by that
policy. Therefore, it is important that correspondences can
be established between specific model elements, too.

Furthermore, there are many situations in which cor-
respondences can not be specified as model transforma-
tions because they are not functions—rather, they are just
data mappings between related elements but without any
transformation or change propagation mechanism defined
between them. In this latter case, model weaving tech-
niques [1] can be more appropriate than model transforma-
tions for expressing correspondences.

In summary, neither of the two individual approaches
(intensional and extensional) is free from problems. We
need to count on both for expressing correspondences. And
we cannot forget about the need to model the well-formed
rules on the set of correspondences [32].

5. Our approach

Assuming that views are expressed as UML models, our
solution uses QVT Relations for intensionally specifying
correspondences; UML dependencies for modeling them
extensionally; and OCL for specifying the well-formed
rules on the set of extensional correspondences. Fig. 3 sum-
marizes the specification and transformation process from
intensional to extensional specifications. Some of the steps
(those marked with gears) are fully automated. Activities
marked with a little stick figure represent actions that count
with tool support, but need to be performed by human actors
(the designers or software architects specifying the system).
All these steps are discussed next.

Note that this approach is conceived for those frame-
works whose viewpoint languages and relationships among
their respective elements are described in terms of meta-
models. Although most current architectural frameworks
are not described in this way (many can be considered
just asconceptualframeworks), this is not, however, a too
strong assumption because of the increasing interest to-
day in model-driven approaches. Thus, different organi-
zations and groups are trying to “metamodel” their pro-
posals, or at least to provide some kind of abstract syntax
(e.g., the MODAF Meta-Model, M3 [38]). Some of them
also provide concrete syntaxes, e.g., ISO’s UML Profile
for ODP [19], UML4ODP, or the OMG’s UML Profile for
DoDAF and MODAF, UPDM [29].

Modeling correspondences intensionally with QVT.
MOF QVT (Query/View/Transformation) [28] is the
OMG’s standard for specifying MOF model queries, views
and transformations. QVT defines three different (but
closely related) languages for specifying transformations
using declarative and imperative styles. Black-box imple-
mentations of operations can also be used to allow reuse of
existing algorithms or domain-specific libraries in certain
model transformations.

QVT Relations is a language to write declarative speci-
fications of the relationships between MOF models. In [31]
we showed how QVT can be used for defining viewpoint
correspondences in the context of the RM-ODP, using QVT
relations for specifying correspondences between elements
at metamodel level (and hence relating all instances of par-
ticular viewpoint concepts). In this way, therequiredcorre-
spondences that RM-ODP (or any other architectural frame-
work) defines can be easily expressed with this approach,
e.g., that every engineering object must be related to one
computational object, etc.

We also showed [31] that QVT can also be used for
specifying correspondences between specific view elements
(e.g., between particular objects, types, templates, or ac-
tions). For instance, the following QVT relation specifies
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IC-BranchCorrespondence

<<CorrespondenceLink>>

endPoint1 = Branch

endPoint2 = Branch

{sameName=
let entity1 = self.extensionCorrespondenceLink.endpoint1 in
let entity2 = self.extensionCorrespondenceLink.endpoint2 in
entity2.name = entity1.name
}

Figure 4. Example of a UML4ODP correspon-
dence specification

a correspondence which establishes thatBranch instances
in the Computational view should be related toBranch ob-
jects in the Information view.

relation IC-BranchCorrespondence {

domain iv iBranch:Class {name=“Branch”}
domain cv cBranch:Component {name=“Branch”}
when {

iBranch.stereotypedBy(”IV Object”) and
cBranch.stereotypedBy(”CV Object”)

}

}

Although we showed that this approach to specify cor-
respondence is feasible, we also learnt that it cannot be
of practical use in general. Specifying correspondences
between view elements in particular systems is a cumber-
some task, not to mention the intrinsic difficulty involved in
the tasks of understanding, visualizing and maintaining the
QVT relations (compare this QVT relation with the equiv-
alent correspondence described using the UML4ODP pro-
file, which is shown in Fig. 4).

Extensional specification of correspondences.As we
mentioned above, probably the most expressive way to
specify correspondences in an extensional manner is by us-
ing an approach similar to that of the UML4ODP, in which
correspondence links are represented by classes that contain
all the required information about the correspondence.

An example of a correspondence specification using the
UML4ODP notation is depicted in Fig. 4. It shows the
same correspondence that was used to illustrate the use
of QVT for modelling correspondences between view el-
ements. It establishes thatBranch instances in the Com-
putational view should be related toBranch objects in the
Information view. In particular, they should have the same
name in our example.

The problem, again, is that defining correspondences ex-
tensionally in this way is too complex and cumbersome be-
cause the number of correspondences can grow exponen-
tially as the number of model elements increases. Moreover,
UML4ODP correspondences provide all the expressiveness
required, but are hard to manage in a visual way.

In our proposal we make use of UML 2abstraction de-
pendencies[27] to provide an alternative representation of
correspondence links. We have defined a UML profile for
modeling correspondences, that uses UML dependencies
(stereotyped≪CorrespondenceLink≫) to represent them.
UML dependencies are easier to draw and visualize, more
intuitive than correspondence classes (as in UML4ODP) or
OCL expressions, and provide the functionality required to
define correspondence between views in most cases. Fig. 5
shows how the correspondences between the different views
of the banking application example are specified with our
approach. Compare this diagram with the equivalent rep-
resentation of the correspondences using 11 UML4ODP
≪CorrespondenceLink≫ classes, something harder to un-
derstand and to manage.

In addition, in the case of the RM-ODP this notation can
be easily (and automatically) transformed into the more ex-
pressive UML4ODP correspondences, therefore providing
UML4ODP users with a more usable notation for express-
ing their correspondences. To connect this new profile with
the UML4ODP profile, we have developed a set of model
transformations. These model transformations have been
defined in both directions, so that users can specify their
correspondences using UML≪CorrespondenceLink≫ de-
pendencies, which are transformed into UML4ODP corre-
spondence links, and vice-versa. One of the benefits of this
approach is that it can work for any architectural framework
whose models can be expressed in UML, or using UML
profiles. Notice that correspondences can be defined be-
tween sets of elements in each related viewpoint. Although
in theory UML 2 dependencies allow multiple cardinality in
both ends [27, 7.3.12], this is often not supported by most
UML modeling tools.

Finally, we already mentioned that one potential use of
correspondences is to propagate changes in evolution sce-
narios. To address this additional issue, we can make use of
the fact that dependencies are directed relations, and thatthe
client of the dependency “depends” on the supplier. This
establishes a semantic relationship between them that can
indicate which one should change if the correspondence en-
forces a modification for one of them. UML dependencies
can be endowed with a constraint that establishes the re-
lationship that must hold between the elements related by
the correspondence (i.e., the correspondence rule). The fact
that most of these relationships are common and reusable
has allowed us to characterize them and build a tool that
can help synchronize general UML models using this kind
of correspondences [33].

Transforming QVT relations into extensional corre-
spondences. We also need to provide a mapping between
the intensional and extensional specifications of correspon-
dences, so that users can derive the initial set of extensional
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Figure 5. The Bank Specification With Correspondences.

correspondences from the intentional ones (which normally
capture just the set of required correspondences for a par-
ticular architectural framework).

The way to relate the intensional and extensional speci-
fications is based on the use of QVT Trace classes. In the
context of the Relations Language, associated to each QVT
relation there exists aTrace classin the QVT Core lan-
guage [28]. The trace class contains a property correspond-
ing to each object node in the pattern of each domain of the
relation. Instances of these classes (calledtrace instances)
are created during the execution of a transformation so that
relationships between models that are created by the exe-
cution can be stored. In fact, a trace instance represents the
linkage between models established by a transformation ex-
ecution. QVT mentions that these instances may be used to
aid in propagating incremental updates to a source model
into a target model without re-executing the entire transfor-
mation. But, in our jargon, they also provide the extensional
specifications of the set of correspondences defined by an
intensional QVT specification.

QVT mentions that traces between model elements in-
volved in a transformation are created implicitly in the Re-
lations language, and that it is in the Core language that
all trace classes are explicitly defined as MOF models, and
trace instance creation and deletion is defined in the same
way as the creation and deletion of any other object. How-

ever, the traces associated to a Relations transformation can
also be made persistent, as some of the QVT implementa-
tions allow. With them, a model transformation that trans-
forms QVT trace instances into, e.g., UML4ODP corre-
spondence links can be easily defined. In this way, inten-
sional specifications of correspondences can be transformed
into their corresponding extensional specifications.

We are currently using Medini QVT [17], one of the few
implementations of QVT Relations that supports the cre-
ation of persistent traces. Our tool invokes the Medini QVT
engine to generate the traces, and then converts them into
extensional correspondence links.

Expressing well-formed rules. As mentioned before, we
need to declare well-formed rules that establish valid con-
straints between all the element instances involved in the
multi-view specification. These rules permit declaring re-
quired correspondences by customizing the correspondence
metamodel to each specific system, imposing constraints on
its instances. In general, most ODP specifications will need
to apply just a set of some predefined rules, like those de-
fined by RM-ODP [18] (examples of these areC1 andC2
previously described in Section 2), and a set of user-defined
statements for the ODP system being modeled.

The OCL language seems to be a very suitable alterna-
tive for expressing well-formed rules, specially if viewpoint
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metamodels are MOF-conformant. OCL 2.0 is now aligned
with MOF, and it counts with tool support. Examples of
well-formed rules defined using OCL in the case of ODP
and UML4ODP can be found in [32].

Putting All Pieces Together with Tool Support. An im-
portant issue for the adoption of any architectural approach
is the availability of tools to support the development, stor-
age, presentation, analysis, improvement and evolution of
architecture representations. As with architecture method-
ologies, architecture tools to support the architectural devel-
opment process are still emerging. As a response to these
needs, we have developed of an integrated tool to provide
support to our proposal in the context of the UML4ODP ini-
tiative, which is publicly available [30]. This tool has been
recently accepted by MagicDraw and is one of the plugins
currently available to download from the MagicDraw site,
too.

This tool provides several interesting functionality to
UML4ODP modelers. Firstly, it allows users to draw their
models and validate their ODP specifications, i.e., check
that they conform to the RM-ODP standard, and that the
individual views are consistently specified.

Secondly, the tool provides full support to the correspon-
dence specification process shown in Fig. 3. Thus, users can
transform the intensional specifications of correspondences
to their corresponding extensional specifications (expressed
as UML4ODP correspondence links), using the Medini
QVT as mentioned above for generating the traces, and
then we transform them into UML4ODP correspondence
links. These are in turn transformed into the corresponding
UML dependencies stereotyped≪CorrespondenceLink≫.
Thus, users can specify, visualize and manage the corre-
spondences between the view elements using any of the ap-
proaches discussed here, while the tool keeps them in synch.

6. Conclusion and Future Work

This paper addresses the problem of providing precise
specifications of correspondences between viewpoints. We
have discussed how correspondences can be specified in
several ways, and the pros and cons of each approach. Our
proposal tries to combine the different approaches, using
model transformations to obtain ones from the others.

We have presented our proposal as a generic model-
driven proposal to describe multi-viewpoint specifications,
including the explicit specification and transformation of
correspondences between viewpoints. Although the study
case and the tool presented here have been implemented
in the context of the RM-ODP, we believe that our ap-
proach can be easily adopted by the rest of the multi-
viewpoint AFs, especially in those that use models to rep-
resent their views: TOGAF, DoDAF, FEAF, etc. Further-

more, the revision of IEEE Std. 1471, currently undertaken
by ISO and IEEE and that will produce the new Interna-
tional Standard ISO/IEC 42010, already contemplates cor-
respondences, and the work presented here is aligned with
it.

As part of our future plans, we expect to extend this
proposal and its supporting tool in the context of model
synchronization and configuration management to realize,
e.g., version control and change traceability and visibility
of viewpoint and correspondence specifications. An in-
teresting experiment has been conducted in the context of
UWE models already, which have showed that propagating
changes using UML dependencies annotated with different
kinds of synchronization constraints is possible [33]. We
plan to extend our dependencies with this kind of informa-
tion, being able to connect our tool with thereSynch syn-
chronizer and therefore provide full support for viewpoint
synchronization of ODP views.

Another issue that needs to be further studied is the
reverse transformation process, from extensional to inten-
sional specifications of correspondences. Usually inten-
sional correspondences are defined as relations between
typesof model elements, and this is done only once for
every architectural framework. However, there are situa-
tions in which the user wants to start the process by spec-
ifying correspondences in an extensional way. The ques-
tion here is how to transform these extensional specifica-
tions into intensional ones. In this context, we are working
on the use of the so-calledmodel transformation by example
approach [39], so that intensional specifications can be built
from extensional ones, either from scratch [40, 41, 13, 22]
or using an approach that allows a refinement of the inten-
sional specifications when a change in the extensional set of
correspondences happens [35].
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