Analyzing Rule-Based
Behavioural Semantics of Visual
Modeling Languages with Maude

José Eduardo Rivera Universidad de Malaga

Esther Guerra Universidad Carlos Ill de Madrid
Juan de Lara Universidad Autonoma de Madrid
Antonio Vallecillo Universidad de Malaga

ma T A R
M LA

> UNIVERSIDAD AUTONOMA

A motivating example

Meta-model of DSVL for production systems

Operator

pres | = = [next
rmoLt tin g fram
Nachine " " Tray .
plly tout +capaciw.:int 1o
" " +relems:int -H1
T ;
parts .|
Assembler Generator Container j Fi Part
+counterint iy
HeadG en HandleGen Head Handle Hammer

context Qperatar
itw: self from.next-=includes{self to)

context Tray
it self.capacity = 0

context Tray
itw: self.pat-=szed = self. nelems

context Tray
it self.nelems == self.capacity

o Different kinds of machines connected through trays
o Trays contain parts and can be interconnected
o Operators transfer parts between connected trays

A model of a production system
Concrete syntax

0)

to
counter capacity = 4 M
R e @ e 00

capacity = 4 capacity = 4

nelems = 0 nelems = 0
counter capacity = 4
=6 nelems =0

o Nice picture!
o ...But how does the system actually works?
o ...How can | check that it does work well?

MDE is more than Conceptual
Modeling!!!

o Current DSLs
Unanimated (mostly static)
Limited analysis capabilities

o Almost inexistent Tool Support
Simulation
Analysis
Estimation
Quality evaluation and control

o Almost inexistent proven methodologies
For neither development nor modernization

A model of a production system

0)
A

to
capacity = 4 M
counter pacity \-‘ r ﬁ ;\ " ,C?

=6 nelems = 0
capacity = 4 capacity = 4
nelems = 0 nelems = 0

counter capacity = 4

nelems = 0
Key issues:

1.

How to specify the behavioral semantics of Visual
DSLs in a precise, intuitive, yet formal way

2. How to analyze the behavior of a given system?

Whv should we? o
y | i’rc)y/_<E

capacity = 4
nelems = 0 nelems = 0

counter capacity = 4

o Animate models st ool =

Define the behavioral semantics of DSLs

so that models can be understood, manipulated and
maintained by both users and machines (i.e. Tools!)

Conduct simulations

o Analyze models
Define different semantics to a DSL (depending on
our focus: performance, deadlock-freedom,
simulation,...)
Make effective use of specific Analysis Tools

How do we do that?

o Option#1: Use a single language/notation/...
We've tried that for years... ®

o Option#2: Use different DSLs and define
“semantic bridges” between them
Each DSL is more apt for expressing some concerns

Each DSL has a precise semantics and set of
(specific and very efficient) associated tools

Bridges provide “semantic mappings” semantic
domains (and analysis tools)

How do we do that?

In-place
Transformations
Behaviar

Metamodel
(Structure)

Model Transformation (MT1) T
Rewriting Logic Petri Nets Semantic
Doemain N
[Reachabilty analvsis, i Termination, PR e
madel checking... Confluence...)

In this paper

o GT is used to specify behavioral semantics

GT semantics are then translated (encoded) into Maude
specs

Maude specs can be analyzed using the Maude tool-kit

o Benefits
Additional analysis techniques to GT specs
Intuitive representation of Maude specs

° Why?

o Graph transformation

Benefits: visual, declarative, rule-based way to specify
behavior, very close to the domain expert

Drawbacks: limited analysis capabilities in some cases
(e.qg., if dealing with attributes)

o Maude
Benefits: many formal analysis methods and tools
Drawbacks: specialized knowledge and expertise

GT for Behavioral Specifications

0)

to
counter capacity = 4 M
R e @ e 00

capacity = 4 capacity = 4

nelems = 0 nelems = 0
counter capacity = 4
=6 nelems =0

o Graph transformation rules use the concrete syntax to
express how a model can evolve through time, i.e. its
behavioral semantics

Graph transformation
Graph transformation rules

I:[NAC] x LHS — RHS

assemble -
i LHS RHS ?
57 o L 0
i Chyg === = |
ATTRIBUTE CONDITION: ATTRIBUTE COMPUTATION:

. t2.nelems < t2.capacity i tl.nelems = tl.nelems-2
R — i nelems = 2nelems+1)

o LHS: pre-conditions (including attribute conditions)
o RHS: post-conditions (including attribute computacions)
o NAC: additional negative application condition

Graph transformation
Graph transformation rules

I:[NAC] x LHS — RHS

moveQOperator
b

' ATT. CONDITION: ,
 t4.nelems < t4.capacity |

Graph transformation
Derivation

While some rule is applicable do:
Find a morphism from the LHS to the host graph

NACs and attribute conditions must be satisfied as well

Substitute the match by the RHS
Elements in the LHS and not in the RHS are deleted
Elements in the RHS and not in the LHS are created

Calculate attribute computations

There are two main algebraic formalizations of GT-:
DPO (double pushout) and SPO (single pushout)

The chosen semantics will affect the Maude
equivalent representation

Graph constraints

JPartOverflow

JContainer ~ —3Parts [o |

ATTRIBUTE CONDITION:

O.nelems > O.capacity
-

o A graph constraint is made of a set of graphs related
through morphisms

o It demands the existence or absence of a certain graph
structure in a model

o We use graph constraints to express model properties
to be analyzed in an intuitive way

° Introduction to Maude

o It support equational logic and rewriting logic specification
and programming of systems

o A system is axiomatized by an equational theory describing
its states and a collection of rewrite rules

mod BANK is
class Account | balance : Int .
_ class Deposit | account : Oid, amount : Int .
o Rule syntax. vars NM:nat.vars AD: Oid.
crl [I] : t => t’ if Cond crl [deposi] -
< A : Account | balance : N >
< D : Deposit | account : A, amount : M >
=> < A : Account | balance : N+ M >
if (M>0)
endm

From graph transformation to Maude
Encoding models

o Nodes represented by objects
o Attributes and edges represented by object attributes

ProductionSystem {
op <11 : Tray | parts : empty,

next : ‘t3, prev : empty,
min : empty, mout : empty,
from/_fto ||| > capacity : 4, nelems : 0 >
el <43 : Tray | parts : empty,
capacity =4 capacity = 4 next : empty, prev : ‘12,
nelems =0 nelems =20 min : empty, mout : empty,
capacity : 4, nelems : 0 >
< ‘op : Operator | from : ‘t1, to : 13 >

}
o Meta-models — a sort for each element (e.g. @Class)

From graph transformation to Maude

. [

Encoding LHS of rules
moveOperator crl [MoveOperator] :
/LHS _____ 0 p\ ProductionSystem {

: g <T1:Tray| SFS@T1 >
frm 0 <T2:Tray | SFS@T2 >

'\ r '\ r ; < OP : Operator |
i I[jl> from : T1,

[p* to: T2, SFS@OP >
] B t4 <T3:Tray |
§ '\ r ;\ r g next : (T4, NEXT@T3),
S parts : (P, PARTS@T3),
SFS@T3 >
<T4:Tray |
_ _ prev : (T3, NEXT@T4),
(graph constraints expressing capacity : CAPT@T4,
model properties are nelems : NEL@T4,
transformed in the same way) SFS@T4 >

<P: XPart| SFS@P >
OBJSET }

From graph transformation to Maude

® .
Encoding RHS of rules
moveOperator
(T T Due. 0 %) => ProductionSystem {
: . O | . :
LH% i RHS: i t25 <T1:Tray | SFS@T1 >
- fro i | <T2:Tray | SFS@T2 >
| t1 t2 v : y
RV R rag'_f'_fg < OP : Qperator |
0 I[jl> from : T3,
[P = § to : T4, SPS@OP >
! B t4 ? t3 t4 <T3:Tray|
; -\ r;\ r g g next : (T4, NEXT@T3),
(S|t) ‘—“—‘/ parts : (P, PARTS@T3),
SFS@T3 >
<T4:Tray |

prev : (T3, NEXT@T4),
capacity : CAPT@T4,
nelems : NEL@T4,
SFS@T4 >
<P:X:Part| SFS@P >
OBJSET }

From graph transformation to Maude

®

Encoding attribute conditions of rules
moveQOperator
/ ge. op YRHS: 0 T if (NEL@T4 < CAP@T4)

)

. ATT. CONDITION:
t4.nelems < t4.capacity

Forcms < .

° From graph transformation to Maude
Encoding negative app. conditions of rules

moveQOperator
(e N)

LHS: ©°p RHS:

| /\
frm X t1 t2: LHS =<T1:T SFS@T1 >
t1 t2 ii'\ "'\ ,' ' Tray| @

| |[jl> <T2:Tray | SFS@T2 >

1 0 i

p* pfr <P:XPartS | SFS@P >

] B t4 | t3 t4i /)

e e | e e MODEL :=

| -3 : ProductionSystem(LHS OBJECT SET)
. ATT. CONDITION: I\

 t4.nelems < t4.capacity not

T g NAC@MoveOperator(LHS, MODEL)

Analyzing behavior with Maude
Simulation

o Maude specifications can be executed

o Maude commands:
rewrite: top-down rule-fair strategy
frewrite: depth-first position-fair strategy

o ltis possible to specify upper bounds for the number of
rule applications (useful for non-terminating systems)

rewrite initModel.

Analyzing behavior with Maude
Reachability analysis

o We can explore the reachable state space

o Maude commands:

search: breadth-first strategy to a specified bound

input: model properties to be satisfied for the reachable states
output: reachable states satisfying the model properties

o E.g. deadlock states where there is a container without parts

search [10] initModel =>!
ProductionSystem { /
< ‘co : Container | parts : empty, SFS >
OBJSET }.

Analyzing behavior with Maude
LTL model checking

o Linear temporal logic explicit-state model checker
(useful to check temporal logic properties, safety and
liveness properties)

o State predicates: exist, stored, operated,
eventually (<>), henceforth ([1)...

o E.g. check whether a given hammer is eventually stored

reduce modelCheck (initModel,
[] (exist (‘hammerl) -> <>stored(‘hammerl)) .

result Bool: true

Tool support

»
AToM3 + Maude

o Front-end: AToMs? for the specification of the modeling
language, the GT rules and the model properties

o Back-end: Maude for the analysis
kT U ey isingd Mo die i Hhge JJLB

File Model Transformation Graphics Layout
7 Editivalie Lﬂ‘
ProductionPlant| | Modelops | Edit entity| Eonnect| Delete| Insert rnodel| Expand m _
PositivePatterm edit | TaMAwtidiZharlinaransinocalre S < ||
Wisual ops Smooth| Inzert point| Delete point| Change connector 6 T L B 03T e s d d
Azsembler ApplicationConditions edit File Model Graphics Lavout

11 Depth -1] T
Generator I n It M Od e I ch toadionk PraductionPlant| | Model ops | Edit entity | Connect | Delete |
. Wisual ops | Smaooth | Insert point | =lste po|
Cortairer ane Azzembler
HeadGen

ZE10 O More e G ra p h
op one or more .
Handlelien from Cantainer CO nSt ral nt
= D o oK Cancel |
ray l HeadGen
Operator counter=F o o HandleGen
capacity= 4 -
2 capacity= <AMNT>
Head nelems=0 Tray nelems= <AMY
]
Handle i
T counter=6 nelems= 10
ammer
capacity= 4 []
Simulate nelems= 1 (_)/
Reachability

Gen. Maude
I i

~
~
SearchType P
~

capacity= 4
neleme= 1

Conclusions

o Keep the best of GT and Maude:

Visual and intuitive specification of DSVL semantics by
GT rules

o Analysis using the Maude toolkit
Reachability Analysis
Model checking

o Usable approach: Verification mechanisms are hidden
Transformations from GT systems to Maude (and back)

Future work/issues

o GT <-> Maude

Annotation of some analysis results to the original
modeling language

Termination of a rule-based specification

Strategies for setting the order in which GT rules are
selected and executed

Scalability and efficiency
o More bridges...

From/to GT to Petri-Nets, pre-post, etc.
From/to Maude to other rule-based visual notations

o Add NFP to behavioral specifications (time, probabilities,...

Thanks!

Analyzing Rule-Based
Behavioural Semantics of Visual
Modeling Languages with Maude

José Eduardo Rivera Universidad de Malaga

Esther Guerra Universidad Carlos Ill de Madrid
Juan de Lara Universidad Autonoma de Madrid
Antonio Vallecillo Universidad de Malaga

ma T A R
M LA

> UNIVERSIDAD AUTONOMA

	Analyzing Rule-Based Behavioural Semantics of Visual Modeling Languages with Maude
	A motivating example�Meta-model of DSVL for production systems
	A model of a production system�Concrete syntax
	MDE is more than Conceptual Modeling!!!
	A model of a production system�
	Why should we?
	How do we do that?
	How do we do that?
	In this paper
	Why?
	GT for Behavioral Specifications
	Graph transformation�Graph transformation rules
	Graph transformation�Graph transformation rules
	Graph transformation�Derivation
	Graph constraints�
	Introduction to Maude�
	From graph transformation to Maude�Encoding models
	From graph transformation to Maude�Encoding LHS of rules
	From graph transformation to Maude�Encoding RHS of rules
	From graph transformation to Maude�Encoding attribute conditions of rules
	From graph transformation to Maude�Encoding negative app. conditions of rules
	Analyzing behavior with Maude�Simulation
	Analyzing behavior with Maude�Reachability analysis
	Analyzing behavior with Maude�LTL model checking
	Tool support�AToM3 + Maude
	Conclusions�
	Future work/issues�
	Thanks!

