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A motivating
 

example
 Meta-model

 
of

 
DSVL for

 
production

 
systems

Different kinds of machines connected through trays
Trays contain parts and can be interconnected
Operators transfer parts between connected trays



A model
 

of
 

a production
 

system
 Concrete syntax

Nice picture!
…But how does the system actually works?
…How can I check that it does work well?

op

capacity
 

= 4
nelems

 
= 0

capacity
 

= 4
nelems

 
= 0

from

to

capacity
 

= 4
nelems

 
= 0

counter
 = 6

counter
 = 6

capacity
 

= 4
nelems

 
= 0



MDE is more than Conceptual 
Modeling!!!

Current DSLs
Unanimated (mostly static)
Limited analysis capabilities

Almost inexistent Tool Support
Simulation
Analysis
Estimation
Quality evaluation and control
…

Almost inexistent proven methodologies
For neither development nor modernization



A model
 

of
 

a production
 

system

1.
 

How to specify
 

the behavioral semantics
 

of Visual 
DSLs

 
in a precise, intuitive, yet formal

 
way

2.
 

How to analyze
 

the behavior of a given system?

op

capacity
 

= 4
nelems

 
= 0

capacity
 

= 4
nelems

 
= 0

from

to

capacity
 

= 4
nelems

 
= 0

counter
 = 6

counter
 = 6

capacity
 

= 4
nelems

 
= 0

Key
 

issues:



Why should we?

Animate models 
Define the behavioral semantics of DSLs

•
 

so that models can be understood, manipulated and 
maintained by both users and machines (i.e. Tools!)

Conduct simulations

Analyze models
Define different semantics to a DSL (depending on 
our focus: performance, deadlock-freedom, 
simulation,…) 
Make effective use of specific Analysis Tools



How do we
 

do that?

Option#1: Use a single language/notation/…
We’ve tried that for years…

Option#2: Use different DSLs and define 
“semantic bridges” between them

Each DSL is more apt for expressing some concerns
Each DSL has a precise semantics and set of 
(specific and very efficient) associated tools
Bridges provide “semantic mappings” semantic 
domains (and analysis tools)



How do we
 

do that?



In this paper

GT is used to specify behavioral semantics
GT semantics are then translated (encoded) into Maude
specs
Maude specs can be analyzed using the Maude tool-kit

Benefits
Additional analysis techniques to GT specs
Intuitive representation of Maude specs



Why?

Graph transformation
Benefits: visual, declarative, rule-based way to specify 
behavior, very close to the domain expert
Drawbacks: limited analysis capabilities in some cases 
(e.g., if dealing with attributes)

Maude
Benefits: many formal analysis methods and tools
Drawbacks: specialized knowledge and expertise



GT for
 

Behavioral
 

Specifications

Graph transformation rules use the concrete syntax to
express how a model can evolve through time, i.e. its
behavioral semantics

op

capacity
 

= 4
nelems

 
= 0

capacity
 

= 4
nelems

 
= 0

from

to

capacity
 

= 4
nelems

 
= 0

counter
 = 6

counter
 = 6

capacity
 

= 4
nelems

 
= 0



Graph
 

transformation
 Graph

 
transformation

 
rules

LHS: pre-conditions (including attribute conditions)
RHS: post-conditions (including attribute computacions)
NAC: additional negative application condition

LHS
assemble

h1 h2

ATTRIBUTE CONDITION:
t2.nelems

 

< t2.capacity

a
t1 t2

RHS

ATTRIBUTE COMPUTATION:
t1.nelems

 

= t1.nelems-2
t2.nelems

 

= t2.nelems+1

a
t1 t2

h3

l:[NAC] x LHS → RHS



Graph
 

transformation
 Graph

 
transformation

 
rules

l:[NAC] x LHS → RHS

moveOperator

RHS:

p*
op

from to

t1 t2

t3 t4
p

LHS:

*

op

from tot1 t2

t3 t4

ATT. CONDITION:
t4.nelems

 

< t4.capacity

NAC: op2

from to
t3 t4



Graph
 

transformation
 Derivation

While
 

some
 

rule
 

is
 

applicable
 

do:
1.

 
Find

 
a morphism

 
from

 
the

 
LHS to

 
the

 
host

 
graph

1.
 

NACs
 

and
 

attribute
 

conditions
 

must
 

be satisfied
 

as well
2.

 
Substitute

 
the

 
match by the

 
RHS

1.
 

Elements
 

in the
 

LHS and
 

not
 

in the
 

RHS are deleted
2.

 
Elements

 
in the

 
RHS and

 
not

 
in the

 
LHS are created

3.
 

Calculate
 

attribute
 

computations

There are two main algebraic formalizations of GT: 
DPO (double pushout) and SPO (single pushout)
The chosen semantics will affect the Maude
equivalent representation



Graph
 

constraints

A graph constraint is made of a set of graphs related
through morphisms
It demands the existence or absence of a certain graph
structure in a model
We use graph constraints to express model properties
to be analyzed in an intuitive way

∃Container ¬∃Parts

p*

∃PartOverflow

O

ATTRIBUTE CONDITION:
O.nelems

 

> O.capacity



Introduction
 

to
 

Maude

It support equational logic and rewriting logic specification
and programming of systems
A system is axiomatized by an equational theory describing
its states and a collection of rewrite rules

Rule syntax: 
crl

 
[l] : t => t’

 
if

 
Cond

mod
 

BANK is
class

 
Account

 
| balance : Int

 
.

class
 

Deposit
 

| account
 

: Oid, amount
 

: Int
 

.
vars

 
N M : nat

 
. vars

 
A D : Oid

 
.

crl
 

[deposit] :
< A : Account

 
| balance : N >

< D : Deposit
 

| account
 

: A, amount
 

: M >
=> < A : Account

 
| balance : N + M  >

if
 

(M > 0)
endm



From
 

graph
 

transformation
 

to
 

Maude
 Encoding

 
models

Nodes represented by objects
Attributes and edges represented by object attributes

Meta-models → a sort for each element (e.g. @Class)

ProductionSystem
 

{
< ‘t1 : Tray

 
| parts

 
: empty, 

next
 

: ‘t3, prev
 

: empty, 
min

 
: empty, mout

 
: empty, 

capacity
 

: 4, nelems
 

: 0 >
< ‘t3 : Tray

 
| parts

 
: empty,   

next
 

: empty, prev
 

: ‘t2, 
min

 
: empty, mout

 
: empty, 

capacity
 

: 4, nelems
 

: 0 >
< ‘op

 
: Operator

 
| from

 
: ‘t1, to

 
: ‘t3 >

}

op

capacity
 

= 4
nelems

 
= 0

capacity
 

= 4
nelems

 
= 0

from to



From
 

graph
 

transformation
 

to
 

Maude
 Encoding

 
LHS of

 
rules

crl
 

[MoveOperator] :
ProductionSystem

 
{

< T1 : Tray
 

| SFS@T1
 

>
< T2 : Tray

 
| SFS@T2

 
>

< OP : Operator
 

| 
from

 
: T1,

to
 

: T2, SFS@OP
 

>
< T3 : Tray

 
|

next
 

: (T4, NEXT@T3),
parts

 
: (P, PARTS@T3),

SFS@T3
 

>
< T4 : Tray

 
|

prev
 

: (T3, NEXT@T4),
capacity

 
: CAPT@T4,

nelems
 

: NEL@T4,
SFS@T4

 
>

< P : X:Part
 

| SFS@P
 

> 
OBJSET }

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4

(graph
 

constraints
 

expressing
model

 
properties

 
are 

transformed
 

in the
 

same
 

way)



From
 

graph
 

transformation
 

to
 

Maude
 Encoding

 
RHS of

 
rules

…
=> ProductionSystem

 
{

< T1 : Tray
 

| SFS@T1
 

>
< T2 : Tray

 
| SFS@T2

 
>

< OP : Operator
 

| 
from

 
: T3,

to
 

: T4, SFS@OP
 

>
< T3 : Tray

 
|

next
 

: (T4, NEXT@T3),
parts

 
: (P, PARTS@T3),

SFS@T3
 

>
< T4 : Tray

 
|

prev
 

: (T3, NEXT@T4),
capacity

 
: CAPT@T4,

nelems
 

: NEL@T4,
SFS@T4

 
>

< P : X:Part
 

| SFS@P
 

> 
OBJSET }

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4
p

RHS:

*
op

from to

t1 t2

t3 t4



From
 

graph
 

transformation
 

to
 

Maude
 Encoding

 
attribute

 
conditions

 
of

 
rules

…
if

 
(NEL@T4

 
< CAP@T4) 

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4
p

RHS:

*
op

from to

t1 t2

t3 t4

ATT. CONDITION:
t4.nelems

 

< t4.capacity



From
 

graph
 

transformation
 

to
 

Maude
 Encoding

 
negative

 
app. conditions

 
of

 
rules

…
if

 
(NEL@T4

 
< CAP@T4) 

/ \
LHS := < T1 : Tray

 
| SFS@T1

 
>

< T2 : Tray
 

| SFS@T2
 

>
…
< P : X:PartS

 
| SFS@P

 
> 

/ \
MODEL := 
ProductionSystem(LHS

 
OBJECT SET) 

/ \
not
NAC@MoveOperator(LHS, MODEL)

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4
p

RHS:

*
op

from to

t1 t2

t3 t4

ATT. CONDITION:
t4.nelems

 

< t4.capacity

NAC: op2

from to
t3 t4



Analyzing
 

behavior
 

with
 

Maude
 Simulation

Maude specifications can be executed

Maude commands:
rewrite: top-down rule-fair strategy
frewrite: depth-first position-fair strategy

It is possible to specify upper bounds for the number of
rule applications (useful for non-terminating systems)

rewrite
 

initModel
 

.



Analyzing
 

behavior
 

with
 

Maude
 Reachability

 
analysis

We can explore the reachable state space

Maude commands:
search: breadth-first strategy to a specified bound

•
 

input: model
 

properties
 

to
 

be satisfied
 

for
 

the
 

reachable
 

states
•

 
output: reachable

 
states

 
satisfying

 
the

 
model

 
properties

E.g. deadlock states where there is a container without parts
∃Container ¬∃Parts

p*

search
 

[10 ] initModel
 

=>! 
ProductionSystem

 
{ 

< ‘co
 

: Container | parts
 

: empty, SFS > 
OBJSET } .



Analyzing
 

behavior
 

with
 

Maude
 LTL model

 
checking

Linear temporal logic explicit-state model checker
(useful to check temporal logic properties, safety and
liveness properties)

State predicates: exist, stored, operated, 
eventually (<>), henceforth ([])...

E.g. check whether a given hammer is eventually stored
reduce modelCheck(initModel,

[](exist(‘hammer1) -> <>stored(‘hammer1)) .

result Bool: true



Tool
 

support
 AToM3

 
+ Maude

Front-end: AToM3 for the specification of the modeling
language, the GT rules and the model properties
Back-end: Maude for the analysis



Conclusions

Keep the best of GT and Maude:
Visual and intuitive specification of DSVL semantics by 
GT rules

Analysis using the Maude toolkit
•

 
Reachability

 
Analysis

•
 

Model
 

checking
•

 
…

Usable approach: Verification mechanisms are hidden
Transformations from GT systems to Maude (and back)



Future
 

work/issues

GT <-> Maude
Annotation of some analysis results to the original 
modeling language
Termination of a rule-based specification
Strategies for setting the order in which GT rules are 
selected and executed
Scalability and efficiency

More bridges…
From/to GT to Petri-Nets, pre-post, etc.
From/to Maude to other rule-based visual notations

Add NFP to behavioral specifications (time, probabilities,…)



Thanks!
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