
José

Eduardo Rivera
Esther Guerra
Juan de Lara
Antonio Vallecillo

Analyzing

Rule-Based
 Behavioural

Semantics

of

Visual

Modeling

Languages

with

Maude

Universidad de Málaga
Universidad Carlos III de Madrid
Universidad Autónoma de Madrid
Universidad de Málaga

A motivating

example
 Meta-model

of

DSVL for

production

systems

Different kinds of machines connected through trays
Trays contain parts and can be interconnected
Operators transfer parts between connected trays

A model

of

a production

system
 Concrete syntax

Nice picture!
…But how does the system actually works?
…How can I check that it does work well?

op

capacity

= 4
nelems

= 0

capacity

= 4
nelems

= 0

from

to

capacity

= 4
nelems

= 0

counter
 = 6

counter
 = 6

capacity

= 4
nelems

= 0

MDE is more than Conceptual
Modeling!!!

Current DSLs
Unanimated (mostly static)
Limited analysis capabilities

Almost inexistent Tool Support
Simulation
Analysis
Estimation
Quality evaluation and control
…

Almost inexistent proven methodologies
For neither development nor modernization

A model

of

a production

system

1.

How to specify

the behavioral semantics

of Visual
DSLs

in a precise, intuitive, yet formal

way

2.

How to analyze

the behavior of a given system?

op

capacity

= 4
nelems

= 0

capacity

= 4
nelems

= 0

from

to

capacity

= 4
nelems

= 0

counter
 = 6

counter
 = 6

capacity

= 4
nelems

= 0

Key

issues:

Why should we?

Animate models
Define the behavioral semantics of DSLs

•

so that models can be understood, manipulated and
maintained by both users and machines (i.e. Tools!)

Conduct simulations

Analyze models
Define different semantics to a DSL (depending on
our focus: performance, deadlock-freedom,
simulation,…)
Make effective use of specific Analysis Tools

How do we

do that?

Option#1: Use a single language/notation/…
We’ve tried that for years…

Option#2: Use different DSLs and define
“semantic bridges” between them

Each DSL is more apt for expressing some concerns
Each DSL has a precise semantics and set of
(specific and very efficient) associated tools
Bridges provide “semantic mappings” semantic
domains (and analysis tools)

How do we

do that?

In this paper

GT is used to specify behavioral semantics
GT semantics are then translated (encoded) into Maude
specs
Maude specs can be analyzed using the Maude tool-kit

Benefits
Additional analysis techniques to GT specs
Intuitive representation of Maude specs

Why?

Graph transformation
Benefits: visual, declarative, rule-based way to specify
behavior, very close to the domain expert
Drawbacks: limited analysis capabilities in some cases
(e.g., if dealing with attributes)

Maude
Benefits: many formal analysis methods and tools
Drawbacks: specialized knowledge and expertise

GT for

Behavioral

Specifications

Graph transformation rules use the concrete syntax to
express how a model can evolve through time, i.e. its
behavioral semantics

op

capacity

= 4
nelems

= 0

capacity

= 4
nelems

= 0

from

to

capacity

= 4
nelems

= 0

counter
 = 6

counter
 = 6

capacity

= 4
nelems

= 0

Graph

transformation
 Graph

transformation

rules

LHS: pre-conditions (including attribute conditions)
RHS: post-conditions (including attribute computacions)
NAC: additional negative application condition

LHS
assemble

h1 h2

ATTRIBUTE CONDITION:
t2.nelems

< t2.capacity

a
t1 t2

RHS

ATTRIBUTE COMPUTATION:
t1.nelems

= t1.nelems-2
t2.nelems

= t2.nelems+1

a
t1 t2

h3

l:[NAC] x LHS → RHS

Graph

transformation
 Graph

transformation

rules

l:[NAC] x LHS → RHS

moveOperator

RHS:

p*
op

from to

t1 t2

t3 t4
p

LHS:

*

op

from tot1 t2

t3 t4

ATT. CONDITION:
t4.nelems

< t4.capacity

NAC: op2

from to
t3 t4

Graph

transformation
 Derivation

While

some

rule

is

applicable

do:
1.

Find

a morphism

from

the

LHS to

the

host

graph

1.

NACs

and

attribute

conditions

must

be satisfied

as well
2.

Substitute

the

match by the

RHS

1.

Elements

in the

LHS and

not

in the

RHS are deleted
2.

Elements

in the

RHS and

not

in the

LHS are created

3.

Calculate

attribute

computations

There are two main algebraic formalizations of GT:
DPO (double pushout) and SPO (single pushout)
The chosen semantics will affect the Maude
equivalent representation

Graph

constraints

A graph constraint is made of a set of graphs related
through morphisms
It demands the existence or absence of a certain graph
structure in a model
We use graph constraints to express model properties
to be analyzed in an intuitive way

∃Container ¬∃Parts

p*

∃PartOverflow

O

ATTRIBUTE CONDITION:
O.nelems

> O.capacity

Introduction

to

Maude

It support equational logic and rewriting logic specification
and programming of systems
A system is axiomatized by an equational theory describing
its states and a collection of rewrite rules

Rule syntax:
crl

[l] : t => t’

if

Cond

mod

BANK is
class

Account

| balance : Int

.

class

Deposit

| account

: Oid, amount

: Int

.
vars

N M : nat

. vars

A D : Oid

.

crl

[deposit] :
< A : Account

| balance : N >

< D : Deposit

| account

: A, amount

: M >
=> < A : Account

| balance : N + M >

if

(M > 0)
endm

From

graph

transformation

to

Maude
 Encoding

models

Nodes represented by objects
Attributes and edges represented by object attributes

Meta-models → a sort for each element (e.g. @Class)

ProductionSystem

{
< ‘t1 : Tray

| parts

: empty,

next

: ‘t3, prev

: empty,
min

: empty, mout

: empty,

capacity

: 4, nelems

: 0 >
< ‘t3 : Tray

| parts

: empty,

next

: empty, prev

: ‘t2,
min

: empty, mout

: empty,

capacity

: 4, nelems

: 0 >
< ‘op

: Operator

| from

: ‘t1, to

: ‘t3 >

}

op

capacity

= 4
nelems

= 0

capacity

= 4
nelems

= 0

from to

From

graph

transformation

to

Maude
 Encoding

LHS of

rules

crl

[MoveOperator] :
ProductionSystem

{

< T1 : Tray

| SFS@T1

>
< T2 : Tray

| SFS@T2

>

< OP : Operator

|
from

: T1,

to

: T2, SFS@OP

>
< T3 : Tray

|

next

: (T4, NEXT@T3),
parts

: (P, PARTS@T3),

SFS@T3

>
< T4 : Tray

|

prev

: (T3, NEXT@T4),
capacity

: CAPT@T4,

nelems

: NEL@T4,
SFS@T4

>

< P : X:Part

| SFS@P

>
OBJSET }

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4

(graph

constraints

expressing
model

properties

are

transformed

in the

same

way)

From

graph

transformation

to

Maude
 Encoding

RHS of

rules

…
=> ProductionSystem

{

< T1 : Tray

| SFS@T1

>
< T2 : Tray

| SFS@T2

>

< OP : Operator

|
from

: T3,

to

: T4, SFS@OP

>
< T3 : Tray

|

next

: (T4, NEXT@T3),
parts

: (P, PARTS@T3),

SFS@T3

>
< T4 : Tray

|

prev

: (T3, NEXT@T4),
capacity

: CAPT@T4,

nelems

: NEL@T4,
SFS@T4

>

< P : X:Part

| SFS@P

>
OBJSET }

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4
p

RHS:

*
op

from to

t1 t2

t3 t4

From

graph

transformation

to

Maude
 Encoding

attribute

conditions

of

rules

…
if

(NEL@T4

< CAP@T4)

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4
p

RHS:

*
op

from to

t1 t2

t3 t4

ATT. CONDITION:
t4.nelems

< t4.capacity

From

graph

transformation

to

Maude
 Encoding

negative

app. conditions

of

rules

…
if

(NEL@T4

< CAP@T4)

/ \
LHS := < T1 : Tray

| SFS@T1

>

< T2 : Tray

| SFS@T2

>
…
< P : X:PartS

| SFS@P

>

/ \
MODEL :=
ProductionSystem(LHS

OBJECT SET)

/ \
not
NAC@MoveOperator(LHS, MODEL)

moveOperator

p

LHS:

*

op

from tot1 t2

t3 t4
p

RHS:

*
op

from to

t1 t2

t3 t4

ATT. CONDITION:
t4.nelems

< t4.capacity

NAC: op2

from to
t3 t4

Analyzing

behavior

with

Maude
 Simulation

Maude specifications can be executed

Maude commands:
rewrite: top-down rule-fair strategy
frewrite: depth-first position-fair strategy

It is possible to specify upper bounds for the number of
rule applications (useful for non-terminating systems)

rewrite

initModel

.

Analyzing

behavior

with

Maude
 Reachability

analysis

We can explore the reachable state space

Maude commands:
search: breadth-first strategy to a specified bound

•

input: model

properties

to

be satisfied

for

the

reachable

states
•

output: reachable

states

satisfying

the

model

properties

E.g. deadlock states where there is a container without parts
∃Container ¬∃Parts

p*

search

[10] initModel

=>!
ProductionSystem

{

< ‘co

: Container | parts

: empty, SFS >
OBJSET } .

Analyzing

behavior

with

Maude
 LTL model

checking

Linear temporal logic explicit-state model checker
(useful to check temporal logic properties, safety and
liveness properties)

State predicates: exist, stored, operated,
eventually (<>), henceforth ([])...

E.g. check whether a given hammer is eventually stored
reduce modelCheck(initModel,

[](exist(‘hammer1) -> <>stored(‘hammer1)) .

result Bool: true

Tool

support
 AToM3

+ Maude

Front-end: AToM3 for the specification of the modeling
language, the GT rules and the model properties
Back-end: Maude for the analysis

Conclusions

Keep the best of GT and Maude:
Visual and intuitive specification of DSVL semantics by
GT rules

Analysis using the Maude toolkit
•

Reachability

Analysis

•

Model

checking
•

…

Usable approach: Verification mechanisms are hidden
Transformations from GT systems to Maude (and back)

Future

work/issues

GT <-> Maude
Annotation of some analysis results to the original
modeling language
Termination of a rule-based specification
Strategies for setting the order in which GT rules are
selected and executed
Scalability and efficiency

More bridges…
From/to GT to Petri-Nets, pre-post, etc.
From/to Maude to other rule-based visual notations

Add NFP to behavioral specifications (time, probabilities,…)

Thanks!

José

Eduardo Rivera
Esther Guerra
Juan de Lara
Antonio Vallecillo

Analyzing

Rule-Based
 Behavioural

Semantics

of

Visual

Modeling

Languages

with

Maude

Universidad de Málaga
Universidad Carlos III de Madrid
Universidad Autónoma de Madrid
Universidad de Málaga

	Analyzing Rule-Based Behavioural Semantics of Visual Modeling Languages with Maude
	A motivating example�Meta-model of DSVL for production systems
	A model of a production system�Concrete syntax
	MDE is more than Conceptual Modeling!!!
	A model of a production system�
	Why should we?
	How do we do that?
	How do we do that?
	In this paper
	Why?
	GT for Behavioral Specifications
	Graph transformation�Graph transformation rules
	Graph transformation�Graph transformation rules
	Graph transformation�Derivation
	Graph constraints�
	Introduction to Maude�
	From graph transformation to Maude�Encoding models
	From graph transformation to Maude�Encoding LHS of rules
	From graph transformation to Maude�Encoding RHS of rules
	From graph transformation to Maude�Encoding attribute conditions of rules
	From graph transformation to Maude�Encoding negative app. conditions of rules
	Analyzing behavior with Maude�Simulation
	Analyzing behavior with Maude�Reachability analysis
	Analyzing behavior with Maude�LTL model checking
	Tool support�AToM3 + Maude
	Conclusions�
	Future work/issues�
	Thanks!

