
From Programming to Modeling: Our Experience
with a Distributed Software Engineering Course

Jordi Cabot
Universitat Oberta de Catalunya

Barcelona, Spain
jcabot@uoc.edu

Francisco Durán, Nathalie Moreno,
Antonio Vallecillo

Universidad de Málaga
Málaga, Spain

{duran,vergara,av}@lcc.uma.es

José Raúl Romero
Universidad de Córdoba

Córdoba, Spain
jrromero@uco.es

ABSTRACT
Distributed Software Engineering (DSE) concepts in Computer
Science (or Engineering) Degrees are commonly introduced using
a hands-on approach mainly consisting of teaching a particular
distributed and component-based technology platform (such as
Java Enterprise Edition or Microsoft .NET) and proposing the
students to develop a small distributed software application with it.
Though this approach provides the students with some relevant
practical knowledge, we believe that it is not the most appropriate
way of teaching all the concepts and particularities of DSE. Thus,
in this paper we report on our experience of redesigning an initial
DSE course following a model-based approach. By raising the
level of abstraction we gained modularity, separation of concerns
and technology independence, while making the course evolve
according to the latest trends in software development methods.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General – standards.
D.2.2 [Software Engineering]: Design Tools and Techniques –
object-oriented design methods.
D.2.11 [Software Engineering]: Software architectures – domain-
specific architectures, data abstraction, patterns.
D.2.12 [Software Engineering]: Interoperability – distributed
objects, interface definition languages.

General Terms
Design, Experimentation, Standardization, Languages.

Keywords: Education; Distributed Software Engineering;
Virtual University; Component-based Software Development;
UML; ODP

1. INTRODUCTION
Software Engineering (SE) is primarily an engineering discipline,
and therefore SE Education should focus more on the principles,
basic concepts and high-level models of the systems than on the
particularities and technical issues of programming languages and
technology platforms used to implement them. Although this is

progressively being achieved by the majority of most SE curricula
courses, some subjects are still too focused on the (low-level)
programming details and the complexity of the existing
implementation platforms. One representative example can be
found in Distributed Software Engineering (DSE), understood as
the engineering of distributed software [1] and not as the process
of distributed development of software. Probably because of the
inherent complexity of most distributed object and component
platforms, and the large number of aspects that need to be
considered in a distributed application, most of the DSE courses
focus on the description of the concepts and mechanisms of one
particular platform. Therefore, the students are provided with a
whole set of complex and low-level concepts, most of them
specific to the particular platform being taught, without receiving a
global view of the software architecture of the system and even
without learning the means to represent the different high-level
models of the system that capture the separate aspects involved in
its development, distribution and deployment. In other words, in
most DSE courses the trees do not allow the students to see the
forest.

At the same time, the growing adoption of Model-Driven
Development (MDD) and Model-Driven Architecture (MDA)
approaches in today’s software development projects is also
shifting the focus of existing SE methods from code to (higher-
level) models, which have now become the primary artifacts of the
software development process.

Taking these two ideas into account, it looks like there is a clear
need to make our traditional DSE courses evolve in order to raise
their level of abstraction, but without losing their practical nature.
This trade-off between teaching high-level DSE concepts and
mechanisms in a platform-independent manner, while at the same
time providing a hands-on approach to developing distributed
applications on at least one platform is one of the current
challenges of teaching DSE.

In this sense, the main goal of this paper is to present our
experience with the re-design of a DSE course taught at the Open
University of Catalonia (UOC) [2], a fully virtual university
founded in 1993 and with more than 5.000 computer science
students. In the UOC, the DSE course, which is taught during the
first course at the Master’s degree, is the most advanced of all SE
related subjects. In the previous courses, students learn the phases
of the software development life-cycle and how to specify and
design (using UML) a given software system. Fundamental
concepts of distributed systems (such as asynchronous
communications or distributed clocks) are also taught in previous
courses. Then, the DSE course addresses the specificities of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.
.

749

developing distributed software systems with emphasis on the use
of architectural and software components during the specification
and implementation of such distributed systems. The DSE course
has an estimated workload of 6 ECTS credits [3] (around 180
work hours in total).

This paper discusses the educational context in the UOC (Section
2), the previous DSE course design (Section 3), the reasons that
motivated us to change the course (Section 4), our new targets and
objectives (Section 5) and the design of the new course (Section
6). Finally, we present some preliminary conclusions after the
completion of two terms with the new design (Section 7). In
summary, we show how it is possible to reconcile both a global
view of a distributed system and a high-level definition of the DSE
concepts and mechanisms, with a hands-on and practical approach
to DSE. However, our experience has not been free from
challenges and difficulties, which need to be shared so that the rest
of the SE educational community can benefit from our experience
and from the lessons that we have learnt.

2. (E-)LEARNING DSE IN THE UOC
The UOC is a fully virtual university founded in 1993. Currently,
it has more than 35.000 students, 5.000 of them enrolled in the
Computer Science degree. Virtual universities have appeared as an
alternative (or a complement) to conventional (also called
traditional or face-to-face) ones, especially for those students
unable to physically attend face-to-face classes.

The main difference with respect to conventional universities lies
in the learning process, and consequently, on how students acquire
the knowledge and skills required in the course. It shifts from
having the teacher as its main source to the combination of
materials, consultants, other students and the virtual environment.
This change in the learning process poses additional challenges
during the preparation of a DSE course for the UOC and, in
general, for any kind of virtual institution. In what follows, some
of theses issues are discussed.

The first thing to consider is the characteristics of the virtual
environment. In a virtual university, the student becomes part of a
virtual campus that provides a learning environment as well as
other kinds of services. For each course, the student finds a virtual
class (see Figure.1) led by a consultant teacher. Like conventional
classrooms, a virtual class in the UOC includes a communication
space, with a message board where the consultant posts important
information to the whole class and a forum where students can
exchange ideas with both the consultant and the other students.
Nevertheless, virtual classes go even further. They also include a
planning space, a resources space and an assessment space. The
planning space includes information about the course (objectives,
description, assessment method, etc.) along with instructions to
follow it properly (scheduling when to study each course unit,
deadlines for assessment activities, etc.). The resources space
groups all the course contents, including the teaching materials
(online version), additional materials (such as complementary
exercises or past exams), links to software resources (as CASE
tools), case studies and a recommended bibliography available by
means of the virtual library. The assessment space records the
students’ assignments and their marks.

To succeed in this virtual environment, students must be able to
develop abilities such as autonomy, discipline and self-

organization (there are no schedules; each student must manage
his/her own learning process individually). Proactive attitude and
the capability to acquire and share information with other students
are also required in order to carry out collaborative work
(especially relevant in all SE courses to overcome semantic
relativism issues and to obtain a unified solution). All these
abilities require student maturity, and therefore virtual courses are
usually discouraged for young students (as an example, 89% of the
UOC students are between 25 and 55 years old and are employed).
To help students organize their learning, for each course a detailed
schedule must be provided. The schedule of our DSE course
contains not only details about the exercises and tests to be done
during the term, but also (weekly) recommendations about how to
distribute the course contents throughout the term.

It is also very important to provide the students with adequate
tutoring support during their studies In the virtual model, the face-
to-face teacher is replaced by a team of teachers, each one with a
well-defined role: the consultant (in charge of the student learning
a particular subject), the tutor (permanent mentoring support
during all of the degree course) and the UOC staff teacher
(coordination of the other teacher roles and in charge of the course
contents and organization). See [4] for further information on
these roles.

The main task of the consultant teacher is to facilitate the student
learning process by clarifying concepts, answering their questions
and motivating them in the context of a specific course. The
consultant is also in charge of the student assessment. A consultant
of a DSE course should not be in charge of more than 50 students.
This has proven to be the upper limit for a quality learning
experience. Moreover, we should benefit from the fact that a
virtual model is an asynchronous time and space model (no fixed
schedule is required) where the consultants hired can come both
from the professional and academic world. We have observed that
having professional software developers as teachers of the DSE
course is a key issue in motivating the students, since they see
more easily the practical application of all contents.

To facilitate the student/teacher interaction, a UOC policy declares
that all questions must be answered in a 24-hour timeframe.
Moreover, we encourage the use of the forum as the best
communication channel, instead of private email exchange
between tutors and students. In this way, all students can benefit
from (and participate in) the discussions between the consultant
and the students. This is especially helpful when trying to reach a
consensus between the students and the consultant during the more
creative tasks of the software development process.

Another important factor in e-learning courses is the quality of the
teaching material (which must partially replace conventional
courses lecturers). Being the primary reference for students, the
quality of materials directly affects the quality of the course.
Materials should be specifically designed to facilitate the virtual
learning of the course content. Although this is a lengthy process
(the development of the materials for this DSE course took us one
year), student learning is easier than when using existing materials
or books as a primary reference. Additional materials (such as case
studies or frequently asked questions) can be released in the virtual
campus anytime.

Finally, due to the number and complexity of the tools used in the
DSE course, we found it necessary to provide additional support in

750

the form of virtual labs. A virtual lab is a special kind of virtual
class with a specific consultant and materials where the student
can solve questions about the technical problems derived from the
use of tools (installation, configuration, usage, etc.). Ideally, the
consultant of a virtual lab should be a (recent) former student since
they are the most likely to know the common problems students
will face during the course. Materials for the virtual lab
(installation manuals, FAQs, etc.) must be kept up to date with the
latest tool releases. We have realized that even small changes
between the manual and the tool setup greatly confuse the students
and generate many questions in the virtual class forum.

Figure 1. Partial view of a virtual class for the DSE course,
showing the planning space (Planificación in Spanish), with
the course information (Plan Docente) and the scheduling

(Calendario).

3. FORMER DSE COURSE DESIGN
The previous DSE course was clearly oriented to learning the Java
Enterprise Edition (JEE) platform. The main goal was for students
to be able to program a small distributed software application
using JEE technologies (mainly Java Server Pages and Entity
Beans), to understand the role of the different parts of the three-
layer application and how those parts communicate with each
other.

In this sense, the contents of the DSE course consisted of three
different modules. The first one provided a brief introduction to
distributed systems and a description of the RMI, CORBA and
DCOM technologies. The second module was devoted to a study
of the component technology, including some basic definitions
and their representation in UML. Finally, the third module (and by
far the largest one) contained a thorough description of the
different technologies forming the JEE platform.

The course was organized so that students completed the first two
modules during the first five weeks of the course (1/3 of the term).
For each module a small assessment activity was proposed mainly
consisting of five short questions on basic concepts of distributed
systems (module 1) and a couple of specifications of UML
component diagrams (module 2).

The rest of the term (10 weeks aprox.) was devoted to studying the
JEE platform and to the development of the small application
commented above. Students unable to provide a fully functional
and error-free application at the end of the term automatically fail

the course (regardless of the marks obtained in the first two
activities).

4. REASONS FOR A CHANGE
Clearly, considering the contents described in the previous section,
that course was more of a programming course than a software
engineering course. The course was more focused on describing a
particular technology than on explaining concepts and techniques
common to all kinds of distributed systems. After a few terms, we
realized that this focus had a number of drawbacks that hindered
the correct learning of the DSE concepts. Examples of such
drawbacks include:

- Students were unable to develop complex systems. This
requires raising the level of abstraction far beyond their
programming-oriented view.

- No methodological aspects about the specification/design
of distributed software systems were taught, and the few
ones that did appear in the course were mostly hidden by
the technical details of the JEE platform, considered to be
more relevant by the students.

- There was an important lack of (software) architectural
concepts. As a result, we found that students always
proposed the same solution (the classical 3-tier
architecture) to all kinds of distributed systems presented
during the course.

- The focus on specific technologies caused that many of
the contents to become quickly outdated due to the fast
pace of technology evolution. This implied that teaching
materials needed to be continuously updated and, more
importantly, that part of the time invested by the students
in the course became obsolete shortly afterwards. Instead,
a more abstract view of the topic and concepts is more
stable and offers more long-term usefulness of the learned
contents.

- No distinction between platform-independent and
platform-specific concepts was provided. One of the
consequences is that, at the end of the course, students
tend to believe that they only knew how to develop
distributed systems with JEE (and not, for instance, with
.NET or other platforms). Their perception was that all
acquired knowledge was specifically for that platform.

In addition to this list of problems, there were a couple of external
driving forces that helped us realize that a complete reorganization
of the course goals and structure was required:

- The creation of the European Higher Education Area
(Bolognia process [5]) to unify the different higher
education systems of the European member states force
all courses to be described in terms of the list of
competences students will achieve after completing the
course.

- Several standards and software development trends have
appeared, matured and/or been popularized since the
contents of the original course were defined, not only at
the modeling level (MDD, MDA, RM-ODP) but also at
the technological level (web services, EJB 3.0, web
applications frameworks, etc.). We thought that these new

751

concepts were, at least, worth mentioning and also related
to the existing contents.

5. EDUCATIONAL OBJECTIVES
Like any other engineer, software engineers must learn, for any
discipline, its theoretical foundations, its design methods, its
standards, and its technological solutions and tools. Moreover,
they must also master the conceptual issues that discriminate good
solutions from merely valid ones.

Currently, most distributed software developers are educated
mainly in the specific tools and technologies for writing and
managing distributed software systems. Given the continuously
and rapidly evolving nature of software, a common problem is to
decide how a very broad range of technology is embraced.

Instead, we believe that education on DSE should especially
emphasize its underlying principles. Students should be equipped
with skills that allow them to understand and manage the various
technological trends without being overwhelmed by their
complexity and fast evolution, preventing them from the danger of
rapid obsolescence. This should be accomplished without ignoring
the classical development skills, and ensuring the cohesion and
effectiveness of mental models and tools.

To address these issues, we decided to rethink the DSE course
according to the following set of general educational goals:

- emphasize the stable and long-lasting concepts of this
discipline;

- use, when possible, well-established models and
notations; international standards are key to any
engineering discipline, in particular to SE [6];

- focus on how to select and evaluate different methods and
approaches rather than follow them as recipes;

- insist on a critical and comparative attitude;
More specifically, our goal is for our students to acquire the
following skills. By the end of the course, they should:

- be aware of the different concerns and aspects that need to
be considered when developing distributed applications;

- identify the different software architectural styles and be
able to define the most suitable software architecture
according to the particular characteristics of each
application;

- be conscious of the similarities and differences between
the different technological platforms currently available;

- realize that the same software development process can be
used independently of the final implementation platform,
since all of them rely on the same architectonic principles;

- understand how component-oriented programming can
serve as a useful implementation technique for software
systems;

- know how to transform the (platform-independent)
specification of a distributed software system into a
software design for current distributed and component-
based technological platforms, with special attention to
JEE, and

- be able to fully implement a distributed system (for the
particular case of the JEE platform). This is important so
that students see all phases of the software development
process and the relationships between the artifacts
obtained in each phase.

In the following section, we will discuss how we reshaped the
DSE course in order for our students to acquire all these skills and
knowledge.

6. THE NEW COURSE DESIGN
After stating our educational priorities, we decided upon the new
course contents (section 6.1) and organization (6.2) in order to
help students in achieving them.

6.1 Course Contents
The course is intended to provide an introduction to the concepts
and fundamental methods for the design and development of
component-based distributed systems, thus complementing the
knowledge acquired in previous courses. In this way, the course
explains both the theoretical concepts in the design and
development of distributed systems, and the way in which the
present technological platforms implement such concepts.

Our main goal was to combine an eminently practical approach
with a solid conceptual framework, independent of the
implementation technology, so that the problems described in
Section 4 can be overcome. Moreover, the use of a conceptual
framework allows us to present all contents in a more coherent
way and easily relate the different phases of the software
development process.

In addition, we also tried to make use of international standards
whenever they were available, since they need to play a
cornerstone role in SE (as they do in any other mature engineering
discipline).

We finally decided to structure the new contents of our DSE
course into five different modules, which are described in the
following sections.

6.1.1 Module 1: viewpoints for distributed systems
Normally, the different aspects to be considered in a distributed
application are intermingled, thus increasing the complexity of its
design and implementation. Even worse, it is not very common to
apply any systematic method to handle these concerns separately,
nor to integrate them in a controlled way. Thus, handling them is
usually rather chaotic, and dependent on the programmer or
designer at hand. The Software Engineering community has
therefore come to the conclusion that these problems must be
addressed in the initial stages of the software development
process. Specifically, at the architectural level, when decisions on
the structure, general goals and strategies, implementations
platforms and system deployment are taken.

Consequently, most of the existing proposals for describing the
global architecture of distributed systems (i.e., the enterprise
architecture) are based on the identification and separation of
independent viewpoints, as prescribed by IEEE Std. 1471. Each
one of these viewpoints focuses on a single aspect of the system,
abstracting from the rest, and thus simplifying the design. In fact,
several standards have been published (e.g., Kruchten’s “4+1”
views model, the Zachman framework, DoDAF, TOGAF, FEAF,

752

or the RM-ODP), which try to settle the basis for the description
of the global architecture of software systems, using this modular
separation of the design in different perspectives. We believe that
the use of international standards is the most effective way to
achieve the required interoperability between the different parties
and organizations involved in the design and development of
complex systems.

Thus, among all the available standards and proposals, we have
chosen RM-ODP (Reference Model for Open Distributed
Processing [7]) as the framework to be used in our DSE course.
The rest of the standards mentioned above are presented briefly.
RM-ODP is a joint ISO/IEC and ITU-T standard which is
currently receiving increasing interest from many large companies
and organizations, such as NASA/JPL, INTAP, EDF, etc. It
provides a comprehensive and coherent framework of concepts for
the specification of complex large scale IT systems, and now it has
taken on new significance in the light of the MDA initiative from
the OMG and the wide-scale adoption of Service-Oriented
Architectures (SOA). In addition, major companies and
organizations are starting to use RM-ODP as an effective approach
for structuring their large-scale distributed IT system
specifications, mainly because the size and complexity of current
IT systems is challenging most of the current software engineering
methods and tools. These methods and tools were not conceived
for use with large, open and distributed systems, which are
precisely the systems that the RM-ODP addresses.

RM-ODP defines five different and complementary viewpoints:
enterprise, information, computation, engineering, and technology.
Each of these viewpoints is studied separately in the course.
Besides, in RM-ODP, an “abstract” language is defined for each of
the five viewpoints. They are abstract in the sense that they define
what concepts should be used but not how they should be
represented. However, several notations have been proposed [8],
although we have opted for the general purpose modeling notation
UML. UML is familiar to our students, is easy to learn and to use
by non-technical people, offers a close mapping to
implementations, and has commercial tool support. Furthermore,

the use of UML for ODP system specification has recently been
standardized by ISO/IEC and ITU-T [9], which allows us again to
align our course contents with international standards—something
which is particularly important in any engineering discipline.

In summary, this first module serves as an introduction to the
concepts and mechanisms on which RM-ODP bases the
architectural description of distributed systems using independent
viewpoints. In addition, it reviews the main international standards
related to these subjects, which guarantee portability,
interoperability and compatibility between applications developed
by different enterprises or organizations.

From the five ODP viewpoints, in this course we concentrate on
three of them: the computational viewpoint, which provides the
high-level description of the software architecture and
functionality of the system in a platform and technology
independent manner; the engineering viewpoint, which describes
the concepts and mechanisms used for the distribution of that
functionality across different physical nodes, i.e., machines and
processes; and the technology viewpoint, which describes how the
ODP system is implemented. Figure 2 clarifies these five
viewpoints and draws the mapping to the course modules.

6.1.2 Module 2: architectural styles for the
development of distributed systems
The computational viewpoint of a distributed system determines
its software architecture by means of a high level description of its
functionality in terms of architectural components, interfaces and
connectors. Thus, the architectural components encapsulate the
basic system’s functionality, provided through the component
interfaces, whereas the connectors describe how these interfaces
are related to achieve this functionality. In this module, students
become familiar with the advantages of having an independent
technology design for this viewpoint, i.e., they learn a design that
is not focused on how the architectural components will be later
distributed in physical nodes or implemented.

Figure 2. Overall view of the proposed framework and its application over an example model.

753

In this regard, we place special emphasis on the importance that
the correct choice of an architectural style has in the development
process. We present the student with commonly used architectural
styles for the development of distributed systems (e.g., multi
layers, client-server and peer-to-peer architectures) though we
focus on the three-layer (or n-layer) architecture due to its
importance in the development of web applications.

At the end of this module, students are able to suggest (among a
predefined catalogue of typical architectural styles) and adapt an
architectural style to meet a concrete system specification, taking
into account both its functional and non-functional requirements
(such as performance, scalability, etc). This is not an easy task,
since we may have several appropriate architectures that suit the
system specification. Thus, to decide which is the best one
requires compromising a set of quality criteria (e.g., simplicity,
extensibility, performance, etc.), many of which are usually
contradictory to each other.

In addition, this second module tries to show the student how to
describe the architectural design using UML. This aim also
requires that the student understands, on the one hand, the role of
the architectural design and its relevance in the development
process of distributed systems and, on the other hand, the
importance of reusing existing architectural solutions to address a
new system design with similar characteristics.

6.1.3 Module 3: component-oriented programming
as a technique for the realization of software
architectures
Once we have selected a specific architectural pattern for our
application, and the description of the software architecture has
been made, we need to develop the system. It is possible to use
different alternatives, depending on the programming paradigm
chosen: structured programming, object-oriented programming,
component-oriented programming, aspect-oriented programming,
etc. Each of these paradigms comes with different technologies
and programming languages, suitable for specific types of
systems. This module focuses on one of these paradigms, namely
component-oriented programming (COP), currently the most
widely acknowledged and used approach for developing
distributed applications.

It is important to note that the COP concepts, mechanisms and
processes presented in this module are described in a general way,
independently of any specific platform or implementation
technology, in order to separate the concepts particular to this
discipline from their implementation in any concrete platform
(commercial technologies evolve much faster than their
supporting theoretical concepts). Hence, in this module we
adopted the definition of “component” (proposed in [10]) that
considers that “the specification of a component represents the
specification of a software unit and describes both the provided
services, as well as the required ones from other components, and
the behavior of any component instance concerning to its
specification.” These “component specifications” define the
abstract components that comprise the system design and refine
the previous ones identified in the computational viewpoint
specification although there may not exist a one-to-one
correspondence among them. That is, an architectural component
may be implemented by several different interconnected software

components, which,jointly realize the services offered by the
specification of such component.

RM-ODP does not prescribe any specific development process to
define the tasks that must be performed by the software engineer
to “transform” the architectural components and connectors into
software components. Note that at the specification level we refer
to architectural components instead of referring to software
components. The latter implement the functionality of the
architectural components defined by the software architecture of a
system (i.e., software components realize architectural
components). Thus, in this course we offer the students a generic
vision of the different software development processes that allow
us to implement the requirements of the software architecture
from these software components. In any case, and for practical
reasons, we try to follow the Cheesman and Daniels approach
[10], because it is intrinsically easy and because it is well-known
and widely adopted in practice.

Architectural and software components are described by means of
UML 2 component diagrams. All other concepts of the RM-ODP
engineering viewpoint (those related to distribution, remote
access, etc.) as well as other physical structures (as DLLs,
executable files, etc.) are described and represented with UML
deployment diagrams.

6.1.4 Module 4: implementation with JEE
In this module, the student gets familiar with how the theoretical
concepts studied in the previous modules are implemented in a
specific technology platform (technology viewpoint)

In particular, this module explains in detail the principles of the
JEE platform, its elements and the architectural patterns it
provides. The module is focused on the study of multi-layer
architectures, as proposed by the JEE application model, and
analyzes the components and technologies offered by this
particular platform in each layer (the Enterprise Java Beans, the
Java Server Pages, etc.).

Once the student has acquired a basic knowledge of the JEE
platform, he/she learns how to transform the platform-
independent specification of the distributed software system
(obtained as a result of defining the RM-ODP viewpoints
described above) into a platform-specific design for the JEE
platform. If not before, during this translation the student finally
realizes that the contents of the first three modules can be used
regardless of the technology platform where the system is about
to be implemented.

The last part of this module provides some recommendations for
helping to choose the right JEE technology for each part of the
system during the translation from the RM-ODP specification to
the JEE design. These recommendations are mostly based on the
professional experience of the course consultants.

6.1.5 Module 5: other technological platforms
Finally, this last module introduces alternative platforms to JEE,
which also provide valid implementations of the technology
viewpoint of RM-ODP. This module is also intended to provide a
historical view of the implementation technologies that can be
used for the development of distributed applications. The main

754

principles of CORBA, Microsoft .NET and the Web Services
implementation platforms are explained and illustrated here using
the same simple distributed application. Thus, the skills and
knowledge acquired by the student in this module will allow
him/her to establish the main similarities and differences between
the different component frameworks available on the market for
implementing distributed applications.

Additionally, we believe this comparison helps students become
familiar with the main keywords and acronyms used by the
different platforms, and also improves the student’s confidence in
his/her abilities to develop distributed systems in any kind of
technology platform (because they discover that these
technologies are just implementations of the basic concepts and
mechanisms that they have learnt previously, mainly using
different terminology).

6.2 Course Organization and Assessment
This course lasts for an entire term (14-15 weeks) and includes
four assessment activities. The activities cover the different
phases of the software development process for a proposed
distributed software system (from analysis to implementation). In
what follows we describe the course scheduling, indicating for
each week the modules to study, the activities to perform and
typical tasks requested in them.

- Weeks 1-2. Description of the course planning, study of
module 1, and a first look at module 2.

- Weeks 3-4. First assessment activity. As main tasks, it
includes the definition of the information viewpoint (i.e.
the domain model system, specified using the knowledge
acquired in the previous SE courses) and an initial
software architectural description (module 2) for the
proposed software system. Additionally, the student must
comment on the architectural styles of a set of real
systems listed in the activity.

- Weeks 5. Study of module 2.
- Week 6-7. Second assessment activity. Starting from a

given solution of the information viewpoint provided by
the consultant, in this second activity the students must
define the computational viewpoint, i.e., the complete
software architecture of the system (module 2) and the
dependencies between this viewpoint and the elements of
the information viewpoint (i.e., how the functionality of
the system handles and changes the system’s persistent
information).

- Week 8. Study of module 3 and first part of module 4.
- Week 9-10. Third assessment activity. Students must

complete the specification of the system by defining its
engineering viewpoint, i.e., how it is distributed across
different nodes and computers (module 3) and then,
transform this set of platform-independent models into a
set of platform-specific design models for the JEE
platform (module 4).

- Week 11. Complete the study of module 4.
- Week 12-15. Fourth assessment activity. Given the

official design models for the example software system,
the students must implement a JEE application that
respects all design decisions expressed in all the different
models (interfaces of each component, distribution, and
so forth). There is an optional part that allows the students
to propose (and implement) their own extensions to the
basic system to account for further aspects and
functionality.

Note that module 5 is not explicitly used during the practical part
of the course. It was designed more as a complementary feature
and to be used for student reference (even after finishing the
course).

Figure 3. Example of the specification of a general software architecture for an order managements system (task included in the
second assessment activity).

755

Figure 4. Example of the design of a subset of one of the previous architectural components for the JEE platform (task belonging to
the fourth activity), after the refinement of the initial architectural components in terms of a set of software components (done as

part of the third assessment activity; not shown here).

The final mark is obtained by combining the marks obtained in
each individual activity (there is no final exam, quite unfeasible
with virtual students.) Students that have not completed the fourth
activity (i.e. who have not been able to provide a functional
implementation of the system; one on the key skills we want our
students acquire) automatically fail the course.

7. SOME REFLECTIONS AND
PRELIMINARY CONCLUSIONS
After completing the first two terms with the new design of the
DSE course, we are ready to present the first conclusions.

According to the formal polls sent to the students at the end of
each term (these polls are anonymous and voluntary) the overall
student satisfaction with the course has not changed. We believe
that this is positive, because we were originally convinced that the
satisfaction level would decrease: usually, students tend to prefer

practical contents instead of more “abstract” conceptual courses.
This is strengthen by the fact that, at least in Spain, the number of
job offers containing the keyword JEE outnumbers by far those
offers mentioning UML modeling or enterprise architecture, and
thus, we thought that a shorter view of the JEE part in favor of the
“UML” part would be hardly appreciated. Though not reflected in
the formal poll, some students have also shown in informal
communications their preference for this new approach. In
particular, most students mention that it is now easier to
understand the different aspects that must be considered in the
design of a distributed system, and to understand the different
concepts and mechanisms of commercial component platforms.

What worries us a little is that the student failure rate has
increased by 10% (average). We believe that the main reason is
that now the course includes much more content than before (all
the “old” programming part plus the “new” modeling part).

Note that, comparing both course organizations, in the previous
course the students had ten weeks to develop the proposed JEE
application programs, while in the new one they barely have four
weeks to implement the same application. This is one of the most
important trade-offs of the course. With four weeks time to learn
to program in JEE they cannot master the details of this
technology platform. However, we still believe it is important that
students show they are at least able to develop a complete JEE
application.

In this sense, and to help students grasp all the course concepts we
have recently developed a complete case study (more than 100
pages), where a variant of the typical “online pet store”
application (http://java.sun.com/developer/releases/petstore/) is
specified in RM-ODP, designed for the JEE platform, and then

completely implemented. Students can use this case study as a
reference for all their assessment activities. We expect that this
case study will help improve the student success rate in the future.

Another issue revealed to be very important to ensure student
success is providing technical assistance during the programming
part of the course. Implementing an application with JEE requires
installing and configuring an application server (JBoss in our
case), an integrated development environment (Eclipse) and a
database server (MySQL). To avoid students spending too much
time with these low-level tasks, we provided a virtual lab for the
course with a specific tutor who answers all installation and
configuration questions within 24 hours.

756

From an organizational point of view, we would also like to
mention that it is difficult to find consultants with a suitable
profile to teach this course. Ideal candidates should possess both
technical skills as well as in deep UML analysis and design
capabilities. It is easy to find tutors that may cover part of the
course but not to find tutors who are expert in the whole course
contents. An alternative way to tackle this problem is to assign
two different tutors to each virtual class, one in charge of the first
three modules and the other focused on the last two.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees for their
insightful and constructive comments and suggestions. This work
has been partially supported by Spanish Research Projects
TIN2005-09405-02-01 and TIN2005-06053.

9. REFERENCES
[1] Kramer, J. Distributed Software Engineering. ICSE'94,

ACM Press, pp. 253-263, 1994.
[2] UOC. Open University of Catalonia. www.uoc.edu
[3] European Commission. ECTS - European Credit Transfer

and Accumulation System.

http://ec.europa.eu/education/programmes/socrates/ects/inde
x_en.html

[4] Rodríguez, M. E., Serra, M., Cabot, J. and Guitart, I.
Evolution of Teacher Roles and Figures in E-learning
Environments. ICALT'06, pp. 512-514, 2006.

[5] Council of Europe. European Higher Education Area.
http://www.coe.int/T/DG4/HigherEducation/EHEA2010/De
fault_en.asp

[6] Coalier, F. Standards, Agility, and Engineering. IEEE
Computer, 40, 9, pp. 100-102, 2007.

[7] ISO/IEC. Open Distributed Processing - Reference Model:
Foundations. ISO/IEC IS 10746 ITU-T Rec. X.901 to
X.904, 1997. http://www.rm-odp.net

[8] Romero, J. R., Durán, F. and Vallecillo, A. Writing and
Executing ODP Computational Viewpoint Specifications
using Maude. Computer Standard & Interfaces, 29, 4, pp.
481-498, 2007.

[9] ISO/IEC. Use of UML for ODP system specifications.
ISO/IEC FDIS 19793, ITU-T 2006. Rec. X.906, 2007.
http://www.rm-odp.net

[10] Cheesman, J. and Daniels, J. UML Components. A simple
process for specifying component-based software. Addison-
Wesley, 2000.

757

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

