
Modeling ODP Computational

Specifications Using UML

JOSÉ RAÚL ROMERO1, JOSÉ M. TROYA2 AND ANTONIO VALLECILLO2,*

1Department of Informática y Análisis Numérico, University of Córdoba, Spain
2Department of Lenguajes y Ciencias de la Computación, University of Málaga, Spain

*Corresponding author: av@lcc.uma.es

The open distributed processing (ODP) computational viewpoint describes the functionality of a

system and its environment in terms of a configuration of objects interacting at interfaces, indepen-

dently of their distribution. Quality of service (QoS) contracts and service level agreements are an

integral part of any computational specification, which are specified in ODP in terms of environ-

ment contracts. Up until unified modeling language (UML) version 2, both the lack of precision

in the UML definition and the semantic gap between the ODP concepts and the UML constructs

hindered its application for ODP computational viewpoint modeling. With the advent of UML 2

the situation has changed, because its semantics have been more precisely defined and it now incor-

porates a whole new set of concepts more apt for modeling the structure and behavior of distributed

systems. In this paper, we explore the benefits provided by the new extension mechanisms of UML

for modeling the ODP computational specifications and, in particular, we show how ODP environ-

ment contracts can be modeled with this approach.

Keywords: RM-ODP; computational specifications; environment contracts; QoS; UML

Received 19 July 2006; revised 2 July 2007

1. INTRODUCTION

We are witnessing an increasing interest in the Software

Engineering community toward the use of models for develop-

ing software systems. Models allow to state features and prop-

erties of systems accurately, at the right level of abstraction,

and without delving into the implementation details. Shifting

intellectual property and business logic from source code

into models allows organizations to focus on the important

aspects of their systems, which have traditionally been

blurred by the usage of standard programming languages

and underlying technologies. Model engineering is an emer-

gent discipline that considers models as first-class entities

enabling new possibilities for creating, analyzing and manip-

ulating systems through various types of tools and languages.

Each model usually addresses one concern, and the transform-

ations between models provide a chain that enables the auto-

mated implementation of a system from its corresponding

models.

Models are specially important in the case of large-scale

heterogeneous distributed systems, which are inherently

much more complex to design, specify, develop and maintain

than classical, homogeneous, centralized systems. One way to

cope with such complexity is by dividing the design activity

according to several areas of concerns, each one focusing on

a specific aspect of the system, as described in IEEE Std.

1471 [1]. Following this standard, current architectural prac-

tices for designing open distributed systems define several dis-

tinct viewpoints. Examples include the viewpoints described

in the ‘4 þ 1’ view model [2], the Zachman’s framework [3]

or the reference model of open distributed processing

(RM-ODP) [4].

In this paper, we are interested in the RM-ODP, which is a

joint standardization effort by ISO/IEC and ITU-T that creates

an architecture within which support of distribution, inter-

working and portability can be integrated. Several years

after its final adoption as ITU-T Recommendation and ISO/

IEC International Standard, the RM-ODP is increasingly rel-

evant, mainly because the size and complexity of current IT

systems is challenging most of the current software engineer-

ing methods and tools. These methods and tools were not con-

ceived for use with large, open and distributed systems, which

are precisely the systems that the RM-ODP addresses. In

addition, the use of international standards has become the

most effective way to achieve the required interoperability

between the different parties and the organizations involved

in the design and development of complex systems. As a

result, we are now witnessing many major companies and

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

The Author 2007. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

Advance Access publication on September 12, 2007 doi:10.1093/comjnl/bxm062

organizations investigating RM-ODP as a promising alterna-

tive for specifying their IT systems, and for structuring their

large-scale distributed software designs. Examples of such

projects include the DASIBAO (Démarche d’Architecture

des Systémes d’Information BAsée sur ODP) methodology

for specifying IT systems, developed by EDF (Electricité de

France) [5]; the Reference Architecture for Space Data

Systems (RASDS), developed by the Consultative Committee

for Space Data Systems (CCSDS, which includes space

agencies such as NASA/JPL, JAXA, ESA, etc.) [6]; the pro-

jects developed by the Interoperability Technology Associ-

ation for Information Processing (INTAP) in Japan (http://

net.intap.or.jp/e/); or the Synapses project for enabling EU

healthcare professionals to share patient records and medical

data irrespective of the systems that hold them (https://www.

cs.tcd.ie/synapses/public/). RM-ODP has also been success-

fully used for building financial systems (see, e.g. [7, 8]) and

in government [9].

The RM-ODP provides five generic and complementary

viewpoints on the system and its environment: enterprise,

information, computational, engineering and technology.

They allow different participants to observe a system from

different perspectives [10]. These viewpoints are sufficiently

independent to simplify reasoning about the complete specifi-

cation of the system. The architecture defined by RM-ODP

tries to ensure the mutual consistency among the viewpoints,

and the use of a common object model and a common foun-

dation defining concepts used in all of them (composition,

type, subtype, actions, etc.) provide the glue that binds them

all together.

One of these viewpoints, the computational viewpoint,

describes the functionality of the system and its environment

through the decomposition of the system, in distribution trans-

parent terms, by means of objects which interact with inter-

faces. More precisely, the ODP computational viewpoint

focuses on the software architecture of the system, how the

system services are implemented, and the service level agree-

ments that govern such functional description. An integral part

of the ODP computational specifications are the environment

contracts, which determine the quality of service (QoS), usage

and management constraints of an object and its environment,

in terms of requirements placed on an object’s environment for

the correct behavior of the object; and constraints on the object

behavior in a correct environment. The correct and complete

specification of environment contracts is critical in many

important distributed application domains, such as embedded

systems, multimedia applications or e-commerce services and

systems.

Although the ODP reference model provides abstract

languages for the relevant concepts, it does not prescribe par-

ticular notations to be used in the individual viewpoints. The

viewpoint languages defined in the reference model are

abstract languages in the sense that they define what concepts

should be used, not how they should be represented. This lack

of precise notations for expressing the different models

involved in a multi-viewpoint specification of a system is a

common feature for most enterprise architectural approaches,

including the Zachman framework, the ‘4 þ 1’ model, or the

RM-ODP. These approaches were consciously defined in a

notation- and representation-neutral manner to increase their

use and flexibility. However, this makes more difficult,

among other things, the development of industrial tools for

modeling the viewpoint specifications, the formal analysis of

the specifications produced and the possible derivation of

implementations from the system specifications (see, e.g. [11]).

Several notations have been proposed for the different ODP

viewpoints by different authors, which seem to agree on the

need to represent the semantics of the ODP viewpoints con-

cepts in a precise manner [4, 10, 12, 13]. For example,

formal description techniques such as Z and Object-Z have

been proposed for the information and enterprise viewpoints

[14], and LOTOS, Specification and Description Language

(SDL) or Z for the computational viewpoint [4, 15].

However, the formality and intrinsic difficulty of most

formal description techniques have encouraged the quest for

more user-friendly notations. In this respect, the general

purpose modeling notation UML (Unified Modeling

Language) is clearly the most promising candidate as a mod-

eling language for expressing ODP system specifications.

Until the advent of UML version 2, both the lack of precision

in the UML definition and the semantic gap between the ODP

concepts and the UML constructs hindered its application in

this context. The UML (1.4) Profile for EDOC [16] tried to

bridge this gap. But from our perspective, the gap was so

big that the profile ended up being too large and difficult to

understand and use by both ODP and UML users. With the

advent of UML 2, the situation seems to have changed,

since not only its semantics have been more precisely

defined, but also incorporates now a whole new set of concepts

more apt for modeling the structure and behavior of open dis-

tributed systems. In particular, UML provides now more

appropriate support for describing architectural components

and connectors, structured classifiers, improved state machine

specifications and sequence diagrams, and better mechanisms

for defining domain-specific languages by means of UML

profiles.

These improvements, together with the wide adoption of

UML by industry, the number of available UML tools and

the increasing interest for model-driven development and the

model driven architecture (MDA) initiative, motivated both

ISO/IEC and the ITU-T to start a joint project, launched in

2004, to define a standard for the use of UML for ODP

system specifications [17]. This document (usually referred

to as UML4ODP) defines a set of UML profiles, one for

each viewpoint language and one to express the correspon-

dences between viewpoints, by which ODP modelers can

use the UML notation for expressing their ODP specifications

in a standard graphical way, and UML modelers could use the

436 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

RM-ODP concepts and mechanisms to structure their large

UML system specifications according to a mature and stan-

dard proposal.

The work presented in this paper has been developed within

the scope of that project. More precisely, this paper is an

extension of an initial work presented at EDOC 2005 [18],

which provided the input to the UML4ODP standard to

develop the representation of the computational viewpoint

specifications using UML. However, both that initial work

and the standard (in its current version) offer very limited

support for expressing environment contracts. Thus, this

paper not only describes the approach to express ODP compu-

tational specifications in UML, but also covers more in detail

the specification of environment contracts. As mentioned

earlier, these contracts are critical in most commercial

systems and therefore deserve to count on the appropriate

mechanisms for modeling them.

The structure of this document is as follows. First, Sections

2 and 3 serve as a brief introduction to the computational

viewpoint and UML, respectively. Section 4 presents both

the UML4ODP standard and our proposal to model environ-

ment contracts, describing how to model computational speci-

fications with UML. This is illustrated in Section 5 with a

small example. Then, Section 6 discusses some of the issues

that we have discovered when trying to use UML to represent

the ODP concepts, and Section 7 compares this work with

other similar proposals. Finally, Section 8 draws some con-

clusions and outlines some future research activities.

2. COMPUTATIONAL VIEWPOINT IN RM-ODP

The computational viewpoint is directly concerned with the

functional aspects of the system, independently from their dis-

tribution. The computational specification decomposes the

system into objects performing individual functions and inter-

acting at well-defined interfaces.

The heart of the computational language is the ODP object

model, which defines: the form of interfaces that objects can

have; the way that interfaces can be bound and the forms of

interaction which can take place at them; the actions an

object can perform, in particular the creation of new objects

and interfaces; and the establishment of bindings.

2.1. Computational language concepts

2.1.1. Objects and interfaces

ODP systems are modeled in terms of objects. An object con-

tains information and offers services. A system is composed

as a configuration of interacting objects. In the computational

viewpoint, we talk about computational objects, which model

the entities defined in a computational specification. Compu-

tational objects are abstractions of entities that occur in the

real world, in the ODP system or in other viewpoints [4].

Computational objects have state and can interact with their

environment at interfaces. An interface is an abstraction of the

behavior of an object that consists of a subset of the inter-

actions of that object together with a set of constraints on

when they may occur. ODP objects may have multiple

interfaces.

Binding objects are computational objects, which support a

binding between a set of other computational objects. They

help compose or synchronize two or more interfaces, e.g. a

binding object may be responsible for ensuring that a certain

level of QoS is maintained between interacting objects.

2.1.2. Computational templates

Computational objects and interfaces can be specified by tem-

plates. In ODP, an ,X. template is ‘the specification of the

common features of a collection of ,X . s in sufficient detail

that an ,X. can be instantiated using it’. ,X. can be any-

thing that has a type. Thus, an interface of a computational

object is usually specified by a computational interface

template, which is an interface template for either a signal

interface, a stream interface or an operation interface. A com-

putational interface template comprises a signal, stream or

operation interface signature as appropriate, a behavior speci-

fication and an environment contract specification.

An interface signature consists of a name, a causality role

(producer, consumer, etc.), and a set of signal signatures, oper-

ation signatures or flow signatures as appropriate. Each of

these signatures specifies the name of the interaction and its

parameters (names and types).

2.1.3. Interactions

RM-ODP prescribes three particular types of interactions:

signals, operations and flows. A signal may be regarded as a

single, atomic action between computational objects and con-

stitutes the most basic unit of interaction in the computational

viewpoint. Operations are used to model object interactions as

represented by most message passing object models, and come

in two types: interrogations and announcements. An interrog-

ation is a two-way interaction between two objects: the client

object invokes the operation (invocation) on one of the

server object interfaces; after processing the request, the

server object returns some result to the client object, in the

form of a termination. An announcement is a one-way inter-

action between a client object and a server object. In contrast

to an interrogation, after invocation of an announcement, the

server object does not return a termination. Terminations

model every possible outcome of an operation.

Flows model streams of information, i.e. a flow is an

abstraction of a sequence of interactions, resulting in convey-

ance of information from a producer object to a consumer

object. A flow may be used to abstract over, for example,

the exact structure of a sequence of interactions, or over a

continuous interaction including the special case of an

analog information flow. In general, a flow is seen in the

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 437

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

computational view as essentially unstructured, with the data

transfer process seen as a single stream. The structure of the

flow is normally described in the engineering view.

2.1.4. Environment contracts

Computational elements may have environment contracts

associated with them. These environment contracts may be

regarded as agreements on behaviors between the object and

its environment, including QoS constraints, usage and man-

agement constraints, etc. These QoS constraints involve tem-

poral, volume and dependability constraints, among others,

and they can imply other usage and management constraints,

such as location and distribution transparency constraints.

2.2. Structure of ODP computational specifications

A computational specification describes the functional

decomposition of an ODP system, in distribution transparent

terms, as: (i) a configuration of computational objects (includ-

ing binding objects); (ii) the internal actions of those objects;

(iii) the interactions that occur among those objects; (iv)

environment contracts for those objects and their interfaces.

A computational specification defines as well an initial set

of computational objects and their behavior. The configuration

will change as the computational objects instantiate further

computational objects or computational interfaces, perform

binding actions, effect control functions upon binding

objects, or delete computational interfaces or computational

objects.

3. UML 2

UML is a visual modeling language that provides a wide

number of graphical elements for modeling systems, which

are combined in diagrams according to a set of given rules.

The purpose of such diagrams is to show different views of

the same system or subsystem and indicate what the system

is supposed to do.

There are mainly two types of diagrams: structural and

behavioral. The former one shows the system features that

do not change with time. Structural diagrams include

package diagrams, object diagrams, deployment diagrams,

class diagrams and composite structure diagrams. Behavioral

diagrams reflect the system response to inner and outer

requests and its evolution in time, and include activity dia-

grams, use cases, statecharts (and protocol state machines)

and interaction diagrams (e.g. sequence, communication and

timing diagrams).

UML version 2 [19] counts on new diagrams (e.g. compo-

site, communication, timing and interaction overview dia-

grams) and has enhanced some of the UML 1.X ones (e.g.

sequence diagrams). Some of the UML version 2 improve-

ments have been influenced by the integration of the mature

SDL language within UML. In addition, UML 2 provides

better constructs for modeling the software architecture of

large distributed systems, with concepts such as components

and connectors, and has promoted the use of OCL 2 (Object

Constraint Language), which claims to be aligned with

UML 2 [20]. Finally, the language extension mechanisms

have greatly been enhanced too, with the more precise defi-

nition of UML Profiles to allow the customization of UML

constructs and semantics for given application domains.

These new concepts and mechanisms of UML version 2 con-

stitute the basis of this proposal.

4. MODELING COMPUTATIONAL VIEWPOINT
CONCEPTS IN UML 2

The UML Profile for the ODP computational viewpoint, as

described in the UML4ODP standard [17], is made up of

three main parts. First, it defines the ODP computational view-

point metamodel as well as the semantics, properties and

related elements of each metaclass. Second, ODP concepts

are expressed as UML elements. This mapping contains infor-

mation about every ODP computational concept, the UML

base element that represents such a computational concept,

and the stereotype that extends the metaclass so that the

specific domain terminology can be used. Finally, a set of

OCL constraints (on the stereotyped elements) captures the

structuring rules that should be followed by those models

that claim conformance to the ODP computational specifica-

tions. Note that the description of the metamodel is not strictly

necessary to define the profile, because metamodels and pro-

files are different ways of defining domain-specific languages.

However, thinking about the metamodel greatly helped to

define the ODP concepts and to understand the existing

relationships among them, as a previous step to map them to

UML concepts.

This section summarizes how the main concepts of the ODP

computational language are expressed in terms of the UML 2

concepts. The interested readers can consult [17, 18] for a

more detailed description of these mappings.

It is important to notice that the mappings between the ODP

and the UML elements are not always straightforward. In fact,

the use of UML for ODP system modeling is not free from pro-

blems, as we shall discuss later in Section 6. For instance, the

object models followed by UML and ODP do not match com-

pletely (e.g. UML is class-based, whereas ODP is object-

based; their behavioral models are different; etc.), and there

are some ODP concepts that do not have a direct mapping

onto UML (e.g. there is no single UML element that can natu-

rally represent an ODP interface signature). In some cases, we

had to find compromise solutions between the definition given

by the computational language for some ODP concepts and the

UML semantics for the corresponding notational constructs. In

such cases, our priority was always focused on improving the

438 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

usability, the simplicity and the readability of specifications

produced, while respecting the semantics of both the ODP

computational language and the UML.

In the following, when there is some possibility of con-

fusion between the ODP and the UML concepts, we will dis-

tinguish them by writing ODP concepts in italic typeface and

UML concepts in sans-serif typeface.

4.1. Computational objects and interfaces

A key concept of the ODP computational viewpoint is the

computational object. An ODP computational object is gener-

ally specified in terms of its template, which is expressed by a

UML component stereotyped as �CV_Object�. UML com-

ponents represent autonomous system units, that encapsulate

state and behavior—their granularity is arbitrary, as the

ODP reference model requires for computational objects—

and interact with their environment in terms of provided and

required interfaces.

ODP computational objects are then expressed as UML

instance specifications of the UML components that represent

their templates.

4.1.1. Computational interfaces

Computational objects interact with their environment at inter-

faces. These are instantiated from computational interface

templates, which comprise the interface signature (signal,

operation or stream as appropriate), a behavior specification

and an environment contract specification.

There are no exact terms in UML 2 to provide one-to-one

mappings for these ODP concepts. However, the semantics

provided by other modeling elements can be used. According

to ODP, an interface is ‘an abstraction of the behavior of an

object that consists of a subset of the interactions of that

object together with a set of constraints on when they may

occur.’ Then, if we consider computational interfaces as inter-

action points at which computational objects interact, we find

that this concept corresponds to the UML concept of interaction

point, i.e. a port at the instance level. More precisely, according

to the UML 2 specification, the required interfaces realized by a

port characterize the services that the owning component

requires from its environment. Similarly, the provided inter-

faces characterize the behavioral features that the component

offers to its environment at this interaction point. A behavioral

port may be used in order to specify some behaviors (e.g.

a protocol state machine) associated to some interfaces.

In ODP, a computational interface template comprises an

interface signature, which is defined as the set of action

templates associated with the interactions of an interface.

Each of these action templates comprises the name for the

interaction, the number, names and types of the parameters

and an indication of causality with respect to the object that

instantiates the template.

Then, an ODP computational interface signature is

expressed as a set of UML interfaces (see also Section 6.4),

each of which is defined as a kind of classifier that represents

a declaration of a set of coherent public features and

obligations.

This means that each interface can be considered as the spe-

cification of a contract that must be fulfilled by any instance of

a classifier that realizes the interface (e.g. the UML component

instance specification that represents the computational object,

through its corresponding interaction point).

Different stereotypes will be used to distinguish the

interfaces that represent the different kinds of computational

interface signatures. Thus, ODP signal, operation and

stream interface signatures are expressed as interfaces stereo-

typed �CV_SignalInterfaceSignature�, �CV_OperationInterface

Signature� and �CV_StreamInterfaceSignature�, respectively.

4.1.2. Binding objects

In ODP, a binding object is considered as a computational

object that supports a binding between a set of other compu-

tational objects and that is subject to special provisions as speci-

fied by the binding rules. As a special kind of computational

objects, binding objects are specified by component instance

specifications stereotyped�CV_BindingObject� (this stereotype

inherits from �CV_Object�).

According to the structuring rules of the ODP compu-

tational viewpoint [4, Part 3–7.2.3], there are two different

kinds of explicit bindings among computational objects:

primitive and compound bindings. Primitive bindings

communicate two objects directly through their interfaces,

and are expressed in UML in terms of assembly connectors,

stereotyped �CV_PrimitiveBinding�, between the ports of the

components that represent the interacting computational

objects. Compound bindings link two or more computational

objects via a binding object, and are therefore expressed in

terms of the component that represent the binding object,

which is connected to the interacting objects using primitive

bindings.

4.2. Interactions

In ODP, the basic one-way communication mechanism from

an initiating object to a responding object is the signal,

which represents a single basic interaction between them.

Both synchronous and asynchronous interactions are possible

in UML and in ODP [21].

An ODP signal will be expressed as a UML message stereo-

typed �CV_Signal�, which is the specification of the convey-

ance of information from one instance to another. In UML, a

message can specify either the raising of a UML signal or the

call of a UML operation.

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 439

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

The interactions that comprise ODP operations are also

expressed in terms of UML messages, which represent the cor-

responding announcements, invocations or terminations.

Please note that, according to the interaction rules [4, Part

2–7.2.2.5], at a lower level of abstraction, operations can

also be defined in terms of signals. Every invocation is then

defined by two signals, one outgoing from the client (the invo-

cation submit), and the corresponding signal that reaches the

server (the invocation deliver). Similarly, terminations are

modeled by other two signals, the one that is sent by the

server (the termination submit), and the one that finally

reaches the client (the termination deliver). This way of mod-

eling operations is not contemplated here. However, should

there be the need to use it, the signals that comprise the speci-

fication of an operation can naturally be expressed in UML in

terms of UML MessageEvents (from Communications).

An ODP flow is specified by a UML property, stereotyped as

�CV_Flow�. The property shall belong to a UML interface

stereotyped as �CV_StreamInterfaceSignature�, which rep-

resents the stream interface signature where the flow is

defined. The name of the property expresses the name of the

flow. The type of the property expresses the flow signature,

which shall be expressed by a UML interface, stereotyped as

�CV_FlowSignature�. The causality of the flow (consumer

or producer) is expressed by the tag definition, causality, of

stereotype �CV_Flow�.

A computational signature can be expressed by a UML

reception, a UML operation or interface, depending on the

sort of signature. UML receptions are used to express signa-

tures of computational interactions, which are expressed by

individual signals (signals, announcements, invocations and

terminations). UML operations can be used to express ODP

interrogation signatures that are composed of an invocation

signature and a termination signature. Finally, UML inter-

faces are used for expressing flow signatures.

4.3. Environment contracts

An environment contract is a contract between an object and

its environment. Unlike contracts in other ODP viewpoints,

mainly in the enterprise and information viewpoints, which

govern part of the collective behavior of sets of objects,

environment contracts place constraints on the behavior of

individual computational objects, and usually include QoS,

usage and management aspects. QoS aspects are mainly

focused on three main issues: time (e.g. latency), volume

(e.g. throughput) and reliability (e.g. percentage of media

frames lost).

In the UML4ODP standard, an environment contract of a

computational object is simply expressed by a set of UML

constraints (stereotyped �CV_EnvironmentContract�) applied

to the component that expresses the computational object.

Although this is correct, we feel that it cannot be expressive

enough to represent, in a standard manner, many of QoS

constraints required in the environment contracts of, let us

say, a complex multimedia application.

In general, the ODP reference model does not prescribe how

environment contracts must be specified. This is why there are

not many works that deal with the modeling of ODP environ-

ment contracts, even less in UML. Moreover, each system

modeler might like to specify the contract constraints in the

way that best suits his/her particular application, and therefore

the UML elements (and their semantics) required to model

different environment contracts can change from one appli-

cation to another.

Our proposal is based on reusing existing UML mechanisms

and notations for modeling QoS and other environment con-

tract constraints, on top of the UML4ODP profiles. The possi-

bility offered by UML to apply multiple profiles to a

package—as long as they do not have conflicting con-

straints—will allow the specifier use the QoS profile(s) of

his/her preference.

In general, two standard profiles are currently the most wide-

spread and used specifications concerning QoS aspects: the

UML Profile for Schedulability, Performance and Time Speci-

fications [22], and the UML Profile for Modeling QoS and Fault

Tolerance Characteristics and Mechanisms [23]. Both docu-

ments are OMG standards and propose a set of constructs that

provide support to describe the main QoS elements in their

respective domain. The first one is mainly focused on time-

related properties, and allows the specification of performance

and schedulability requirements. The UML profile for QoS was

specially conceived for large distributed systems, and allows

the description of QoS requirements and properties, including

extra-functional requirements in analysis models (delay, jitter,

throughput, etc.), risk assessment concepts and high-reliability

requirements. The core concepts and general model of both

UML profiles are inspired on the ISO general QoS architecture

[24], that defines the fundamental QoS terms, concepts and

mechanisms. In this paper, we will use the OMG’s UML

Profile for QoS to illustrate how an additional profile can per-

fectly work to express environment contracts and, particularly,

QoS constraints on the computational elements.

The profile uses QoS characteristics to define collections of

QoS concepts with precise meaning. Specifically, a QoS

characteristic is a quantifiable non-functional aspect within a

certain domain of values. QoS characteristics are defined inde-

pendently of the means in which they are represented or con-

trolled. Since a specification of a QoS characteristic is a

constraint over its domain, these QoS characteristics are

used to model the QoS requirements by identifying restrictions

on a certain element or service with respect to the value

domain. QoS characteristics also include a set of quality attri-

butes that are the dimensions in which to express a quality sat-

isfaction. Then, quality levels serve to express the quantifiable

level of satisfaction of a non-functional property.

Sometimes, specifications need to support different models

of execution with different QoS levels. Each mode is executed

440 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

depending on different QoS constraints associated, and may

exhibit different functionality. Thus, a QoS constraint define

any kind of restriction that an element or service impose on

QoS characteristics. Changes between levels are described in

terms of QoS transitions. Three different kinds of QoS con-

straints can be distinguished: (i) those that define the level

of quality of the services that must be provided to achieve

the clients’ requirements (QoS required); (ii) those that

define the set of services provided, and establish the limits

for supported values (QoS offered); and (iii) the agreements

between the required and provided QoS constraints, for both

the provider and the client (QoS contract).

Since a QoS constraint is expressed by a stereotyped UML

constraint, this could also be compatible with the use of the

stereotype �CV_EnvironmentContract�. If needed, we could

even import the profile and extend it so that any QoS con-

straint, or QoS level and transition might be depicted as a com-

putational environment contract. However, this is not strictly

necessary because any non-functional information reflected

in the model can be considered as an environment contract

[4, Part 2–11.2.3].

4.4. Structure of computational specifications

As mentioned in Section 2.2, a computational specification

describes the functional decomposition of an ODP system,

in distribution transparent terms. In UML, the computational

specification will be represented by a set of diagrams that

model both structural and behavioral aspects of the system.

These diagrams will use the elements provided by the

applied profiles (using their specified semantics).

A computational specification is composed of a configur-

ation of computational objects, which need to be instantiated

from their corresponding computational templates. These tem-

plates are modeled using component diagrams, which comprise

the notational elements for representing at least the object tem-

plates, interfaces templates, interface and interaction signa-

tures and bindings.

A computational specification also comprises the specif-

ication of the internal actions for those objects, which will

be modeled using behavioral models associated to the UML

components that represent those objects’. In particular, two

kinds of UML diagrams will be used to model the objects

behavior: activity diagrams, which focus on the sequence

and conditions for coordinating low-level behaviors; and

statecharts, which show how events cause changes in the

objects’ states.

After providing the computational objects’ structure and

individual behavior, the interactions that occur between the

objects can be modeled using interaction diagrams. These dia-

grams emphasize object interactions by describing how mess-

ages are passed between objects and cause invocations of

other behaviors. Interaction diagrams come in different types.

Sequence diagrams are used to model message interchanges

between a number of lifelines, each of which represents the

interacting ODP interface instances. They also allow to

specify fragments of interactions that can be reused to

specify more complex interactions, using options, alternatives,

exceptions and other sequence composition operations. Com-

munication diagrams may also be useful. They provide the

vision of how messages are passed from one component

instance to another and how they make their sequencing expli-

cit. In addition, interaction overview diagrams are a new variant

of activity diagrams [19]. They define interactions in a way that

facilitates the overview of the control flow within system.

Each node within the diagram can represent another inter-

action diagram.

Finally, the specification of the objects’ environment con-

tracts complete the computational specification of the

system, using the mechanisms described in the previous

section. UML 2 also offers new diagrams, which allow the rep-

resentation of some QoS constraints in a more natural way. In

particular, timing diagrams can also be useful to represent the

interactions among computational objects when some timed

simple constraints need to be observed or applied.

4.5. Summary of the mappings

The fact that most ODP concepts can be represented by UML

2 concepts without changing their original semantics (maybe

imposing some additional constraints on them, at most)

enables the use of a UML profile as the right kind of mechan-

ism for our purposes. Note that profiles do not allow modify-

ing existing metamodels. Rather, a profile is intended to

provide a straightforward mechanism for adapting an existing

metamodel with constructs that are specific to a particular

domain.

Table 1 shows a summary of the stereotypes defined in the

UML Profile for the ODP computational viewpoint. Three

important concepts are described in this table: (i) the ODP

computational language concept; (ii) the UML base element

that should be used to model that concept; and (iii) the name

of the stereotype that should be applied to the UML

element. The tag definitions and constraints that complete

the definition of the profile have been omitted, but the inter-

ested readers can found them in [17].

5. A CASE STUDY

Let us show in this section how the UML Profile for the ODP

computational viewpoint can be used, and how some QoS con-

straints can be modeled. We will illustrate it using a simple

example of a typical multimedia system, composed of listen-

ers that want to receive audio frames (e.g. listen to a radio

program) from a given audio streamer (e.g. a radio station or

some kind of audio emitter). Apart from these two objects,

binding objects are in charge of the actual transmission of

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 441

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

the audio frames to all listeners attached to a given channel,

and a service manager object controls the selection of channels

by the listener and the configuration of the corresponding

binding objects. A snapshot of the system is shown in Fig. 1.

We also need to specify the environment contracts. In this

case, suppose that the following QoS constraints apply to

the system.

(i) The response time from the service manager will

always be ,100 ms when processing the listeners’

requests.

(ii) Listeners will be able to accept audio frames from the

binding objects (i.e. the channels) at a rate of

�232 bits/s.

(iii) The behavior of Listeners may be affected by their

workload. Thus, two QoS levels will be distinguished

for these objects, normal and overloaded, depending

on the capacity of their internal buffer. Working in

normal mode they will be able to process frames at a

rate of 256 kbps, while this rate will drop to

128 kbps when overloaded, i.e. when the size of their

buffer exceeds a certain threshold.

5.1. Computational templates

From the snapshot in Fig. 1, we can identify several compu-

tational object templates and computational interface

templates.

More specifically, four object templates can be identified:

Listener, ServiceMgr, AudioStreamer and Binding. These all are

represented by stereotyped UML components as shown in

Fig. 2. Three computational interface templates are identified

too. In this case, UML stereotyped ports are used to express not

only the different kind of interface templates, but also theFIGURE 1. An audio stream application (informal spec).

TABLE 1. Summary of the ODP computational viewpoint profile

ODP concept UML base element Stereotype

Computational object template Component (from PackagingComponents) �CV_Object�
Computational interface template Port (from Ports) �CV_Interface�
Signal interface signature Interface(s) (from Interfaces) �CV_SignalInterfaceSignature�
Operation interface signature Interface(s) (from Interfaces) �CV_OperationInterfaceSignature�
Stream interface signature Interface(s) (from Interfaces) �CV_StreamInterfaceSignature�
Interrogation signature Operation (from Communications) �CV_InterrogationSignature�
Announcement signature Reception (from Communications) �CV_AnnouncementSignature�
Invocation signature Reception (from Communications) �CV_InvocationSignature�
Termination signature Reception (from Communications) �CV_TerminationSignature�
Signal signature Reception (from Communications) �CV_SignalSignature�
Flow signature Interface (from Interfaces) �CV_FlowSignature�
Flow type Property (from Kernel) �CV_Flow�
Computational object InstanceSpecification (from Kernel) �CV_Object�
Binding objects InstanceSpecification (from Kernel) �CV_BindingObject�
Signal interface Port (interaction point) (from Ports) �CV_SignalInterface�
Operation interface Port (interaction point) (from Ports) �CV_OperationInterface�
Stream interface Port (interaction point) (from Ports) �CV_StreamInterface�
Signal Message (from BasicInteractions) �CV_Signal�
Announcement Message (from BasicInteractions) �CV_Announcement�
Invocation Message (from BasicInteractions) �CV_Invocation�
Termination Message (from BasicInteractions) �CV_Termination�
Primitive binding Connector (from BasicComponents) �CV_PrimitiveBinding�
Environment contract Constraint (from Kernel) �CV_EnvironmentContract�

442 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

object templates of which these interface templates are

part. More specifically, these interfaces templates are: IAudio-

Channel, IRegistry and IAudioStream. The first two are oper-

ation interfaces and the last one is a template for stream

interfaces. (For clarity, the information about the role and

causality of these ODP interfaces has been omitted in the

diagram.)

UML interfaces shown in Fig. 2 indicate the corresponding

signature for each interface template, according to the type

of interfaces they will instantiate. For example, the

UML interface IAudioChannel_Signature—stereotyped �

CV_OperationInterfaceSignature�—declares the signatures

for both the activateListener announcement and the select-

AudioChannel invocation. This port (which represents an

ODP interface signature) has another UML interface,

jAudioChannel_SelectionResponse, which models the corre-

sponding terminations. In this example, we have decided to

model the interrogations using separate invocations and

terminations. Alternatively, they could have been modeled

using UML operations that jointly represent the corresponding

ODP interrogations.

5.2. Computational objects and interfaces

As mentioned in Section 2.2, a computational specification

describes the functional decomposition of an ODP system in

terms of a configuration of computational objects. Fig. 3

shows a configuration consisting of two audio streamers (i.e.

radio stations). One of them is currently connected to the

service manager. A given number of listeners are connected

to the binding object that manages the distribution of audio

packets from one of those streamers.

Each of these computational objects is represented in UML

by the corresponding instance of the UML component that rep-

resents its computational object template. Although in general

there is no need to name the component instances, sometimes

we need to do it in order to distinguish them, and to make

FIGURE 3. Computational object configuration.

FIGURE 2. Computational templates for the audio stream application.

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 443

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

explicit the existence of such computational objects in the

system (e.g. both audio streamers have a unique name in the

model).

Computational interfaces are represented by ports attached

to the corresponding component instances. Note that, at the

object level, the stereotype itself indicates the kind of interface

that this port represents. Link between ports represent the

binding between computational interfaces.

There is no explicit need to indicate the type of the port that

represents the computational interface template from which it

is instantiated: indicating the name that identifies such inter-

face template in the object template is enough. Likewise,

any additional information can easily be obtained from the

information available in the computational template.

In UML, interfaces are non-instantiable elements, and ports

are instantiated and destroyed only once the components

that comprise them are instantiated or destroyed. However,

in ODP computational objects can instantiate, bind to or

destroy individual interfaces. This issue will be discussed

later in Section 6.3.

5.3. Behavior

Computational templates can include the specification of

behavior. In this case, state machines (e.g. protocol state

machines attached to the ports that represent the computational

stream interface templates) provide the natural mechanism for

modeling the state changes caused by events in computational

objects. For example, Fig. 4 shows the statechart that models

the basic behavior of an AudioStreamer computational object.

Note that not all the events and calls specified are represented

by the computational interfaces at which this object interacts.

This is because the interface signature just specifies public

features of the computational object.

5.4. Environment contracts

As previously mentioned in Section 4.3, environment con-

tracts place constraints on the behavior of computational

objects. These constraints usually refer to some QoS aspects,

which are particularly relevant for multimedia applications.

Thus, the application of the profile presented here and the

use of UML allows us to specify these constraints in, at

least, two different ways.

(i) We can use the normal UML mechanisms to specify,

for example, certain time aspects such as the duration

intervals between messages in the interaction diagrams

(these diagrams also allow the specification of con-

ditions and alternative behaviors, if required).

(ii) Alternatively, we can use specific UML profiles for

representing particular constraints.

Each kind of constraints of an environment contract may

require a different way of modeling.

In our example, we will show how the UML profile for QoS

[23] can be used for modeling the two QoS constraints pre-

sented above, as explained in Section 4.3.

The first constraint establishes a limit of time between a lis-

tener’s request and the corresponding service manager

response, i.e. the serviced manager’s turn-around time. We

first select one of the QoS characteristics defined in the

profile (in this case, turn-around) and specialize it to our

specific circumstances by defining a new QoS characteristic

(ServiceMgrTurnAround), which assigns the appropriate

values to the template parameters, as shown in Fig. 5.

Once we have defined this QoS characteristic, we need to

attach it to the appropriate model elements. In this case, as

shown in Fig. 7, we attach the �QoSOffered� constraint to

the corresponding IAudioChannel computational interface tem-

plate of the ServiceManager component.

FIGURE 4. AudioStreamer statechart.

444 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

Similarly, we need to specify the minimum rate at which a

listener is able to receive audio frames from the channel, i.e.

the communication throughput. Then, we define our own Min-

StreamerThroughput characteristic and, as prescribed in [23],

bind it to the communication-throughput QoS characteristic

(see Fig. 6). Since that characteristic is not parameterized,

no template parameters need to be considered.

This QoS characteristic is used by the �QoSRequired�

constraint attached to the AudioStream computational inter-

face template in the IAudioStream computational object tem-

plate, as shown in Fig. 7. (Please notice that Figs. 2 and 7

are the same, apart from the QoS notes attached to some of

their elements.)

Finally, Fig. 8 specifies two states for Listener objects,

depending on the QoS level they are able to provide. Thus,

depending on how full their buyer is, they toggle between

the normal and overload states, as prescribed by the third of

the QoS constraints defined for this example.

6. FURTHER ISSUES

UML is a notation general enough to model most kinds of

object-oriented systems. However, it presents some semantic

differences with ODP, which need to be taken into account

when modeling ODP viewpoint languages. This section dis-

cusses the issues that we have discovered when modeling

the ODP computational language using the UML 2 notation.

None of them are really critical, but they deserve some atten-

tion for the sake of precision.

6.1. General issues

The major issues come from the differences between the

underlying object-oriented models of UML and the ODP.

The traditional UML object model assumes a single hierar-

chy of subclasses of isolated objects exchanging messages, in

which classes are first-class citizens, and objects are just

instances of classes that own attributes (to hold the objects’

state), operations and invariants. In contrast, a more general

object model, such as the one followed by ODP, does not

require invariants and operations to be owned by a single

object; rather, it uses collective state for invariants, and collec-

tive behavior for operation and interaction specifications [25].

For example, the interaction model of the UML is based on

message exchange between objects, whereas interactions in

the computational viewpoint are pieces of shared behavior.

Furthermore, ODP object types are predicates on the objects,

and classes are just collections of objects, promoting objects

as first-class citizens.

These are subtle differences, but they raise some issues

when trying to model some configurations of ODP objects

or ODP interactions in UML, e.g. ODP synchronous inter-

actions that simultaneously involve more than one object.

However, this is probably a more critical issue in the enterprise

or information viewpoints than in the computational view-

point, in which we are normally concerned with the behavior

of isolated interacting objects. Actually, both environment [4,

Part 2–8.2] and environment contract [4, Part 2–11.2.3] are

mainly defined for individual objects (although objects, at

different abstraction level, may be composite).

This is why in our approach their representation is done for

individual objects, too. Other representations are of course

possible. In order to provide an alternative representation of

environment contracts that refer to the collective behavior of

objects in UML, it would be necessary to use class diagrams,

at least to describe the ontology of the objects under consider-

ation and of the relationships between these objects. Although

these class diagrams may not, strictly speaking, be a fragment

of the computational viewpoint, nevertheless, the compu-

tational specification ought to refer to the semantics of these

diagrams: as in any specification, independently of the nota-

tion used, the ontology, i.e. the domain model, is essential

for understanding the rest including the computationalFIGURE 6. QoS charact.: MinStreamerThroughput.

FIGURE 5. QoS characteristic: ServiceMgrTurnAround.

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 445

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

objects and their behavior. For examples of these alternative

representations see, e.g. the UML Profile for EDOC (on

Relationships) [16]; the book ‘Business models’ by Kilov

[26]; or the third volume (‘Domains, Requirements, and

Software Design’) of the book ‘Software Engineering’ by

Bjorner [27].

6.2. Terminology Conflicts

Another issue may arise from the different meaning assigned

to some common terms to UML and ODP. Examples

include the previously mentioned terms, class and type.

UML classes (and types) may correspond to ODP types;

UML concrete classes or components may correspond to

ODP templates, but there is no UML concept related to the

concept of ODP class (an ODP class is a collection of

objects that satisfy a given type).

In the computational language, the main problem may be

related to the concept of interface. An ODP interface is a col-

lection of interactions, i.e. it sits at the instance level.

However, UML interfaces ‘specify’ a set of public features

and obligations, and therefore they sit at the classifier level

FIGURE 7. Computational template diagram with QoS constraints.

FIGURE 8. Statechart of the Listener with different states depending on the QoS level.

446 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

(a component implements an interface, i.e. an implementation

relationship between a component and an interface implies

that the component supports the set of features owned by the

interface). This is why in the UML4ODP profile, UML inter-

faces express ODP interface signatures.

In addition, it is well known that RM-ODP substantially

uses the concepts of abstraction levels and viewpoints, and

while UML may be using viewpoints in a reasonable

manner (although it is not always clear whether and how

different diagrams interrelate and interoperate), it is certainly

not clear how UML uses the concept of ‘abstraction levels’,

which is essential for large and complex specifications.

6.3. Interface instantiation

Other problems are due to the differences between the rules

that constrain the instantiation of the ODP computational

interfaces, and the rules that govern the instantiation of their

corresponding ports and interfaces in UML.

The ODP structuring rules [4, Part 3–7.2.5.1] establish that

any computational object can dynamically instantiate inter-

face templates. This would translate in UML into the capa-

bility of a component instance to dynamically instantiate

ports. However, the semantics of UML prescribe that if a com-

ponent classifier instance is created, then the instances of each

of its contained ports are also created. This implies that ports

cannot be created or destroyed except as part of the creation

or destruction process of the owning component. This issue

is not very critical, though, because a UML component is a

composite structure, and UML allows to dynamically create,

destroy and assign the objects (or other internal component

instances) that implement the services provided by the port.

6.4. No UML interfaces for two-way interactions

This problem happens when modeling ODP interface signa-

tures that comprise incoming and outgoing interactions.

UML interfaces can only group interactions with the same

causality, and therefore we may obtain a very unnatural

decomposition of the same interface signature specification:

provided interfaces will represent the incoming interactions

and required interfaces will specify the outgoing ones.

But if several UML interfaces are required to model a single

ODP computational signature (some for the outgoing inter-

actions, some for the incoming ones), then several UML

assembly connectors will be required to express the same

binding between two interacting computational objects

through their computational interfaces. This implies both

stronger constraints on the elements defined in the ODP

profile, and an unnatural grouping of messages (depending

on their causalities).

This is a similar problem to that of modeling Web services

descriptions with UML, because WSDL also allows

operations with different causalities to co-exist within the

same interface description.

We have tried to illustrate this issue in the example, Section

5.1, Fig. 2, by splitting the IAudioChannel interface signature

into two separate UML interfaces, one with the invocations

and other with the terminations. In most cases, the use of

UML operations can help to overcome this problem.

However, it is not so easy to solve when interrogations with

different causalities need to co-exist in the same interface—

as it happens, for instance, in the case of interactions that

contain ‘call-backs’.

6.5. UML semantic variation points

One of the problems for defining precise mappings between

UML and ODP (or any other language) concepts is due to

the UML semantic variation points, which allow for ‘semantic

specialization’ of the UML concepts. Semantic variation

points, as defined by UML, explicitly identify the areas

where the semantics are intentionally underspecified to

provide leeway for domain-specific refinements of the

general UML semantics (e.g. using stereotypes and profiles).

Examples include the order and way in which part instances

of an aggregation are created, or the dispatching method by

which a particular behavior is associated with a given

message. These issues depend on the higher-level formalism

used and are not defined in the UML specification.

In general, the presence of numerous variation points in the

UML semantics (and the fact that they are defined informally

using natural language), make it impractical to define formal

mappings. In this approach, we decided that, in case of

variation points of a UML concept representing an ODP

concept, the semantics of the ODP concept should be used

(this is one of the benefits of using ODP, which has more

precise semantics). For instance, ODP defines several failure

rules, that UML leaves underspecified (e.g. the behavior of

an invocation of a UML operation when a precondition is

not satisfied is a semantic variation point). Other example of

semantic variation point in UML happens in the specification

of the rules for the redefinition of operations in case of special-

izations, i.e. the rules regarding invariance, covariance or con-

travariance of types and preconditions, which determine

whether the specialized classifier is substitutable for its more

general parent. This is precisely defined in ODP, and therefore

the ODP semantics should apply in this case.

6.6. Metamodeling choices

This final issue does not have to do with UML itself, but on

how the RM-ODP foundational concepts (defined in Part 2)

and the specific viewpoint language concepts have been struc-

tured. We initially had two choices: (i) define a single meta-

model with the foundational concepts of RM-ODP (i.e. the

core model), and then extensions of that metamodel with the

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 447

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

particular concepts and mechanisms of every viewpoint

language; or (ii) define individual metamodels with all con-

cepts related to every particular viewpoint language, and

then establish correspondences between them.

We decided to go for the second option, i.e. to model each

viewpoint language individually. This has proved to have

some interesting benefits. For instance, viewpoint languages

are self-contained. Furthermore, although the core elements

are common to all viewpoints, most of them have some indi-

vidual particularities in each viewpoint language, which

required extensions in all viewpoint language metamodels,

anyway. In addition, some concepts may have different rep-

resentations in different viewpoint languages when rep-

resented in UML, e.g. in the UML4ODP proposal, objects in

the Enterprise and Information viewpoints are specified in

terms of UML classes, whereas Computational and Engineer-

ing objects are specified in terms of UML components, which

are more appropriate UML elements for capturing the seman-

tics of the corresponding ODP concepts. Of course, this option

may present some limitations, too. For instance, the common

structure underlying all viewpoint specifications may be lost

(or at least may not be explicitly visible), so that viewpoint

correspondences might be non-trivial to establish.

In any case, we think that the advantages outweigh the

limitations, especially when the viewpoints are normally

specified individually, and then ODP correspondences need

to be defined between their elements anyway. As we have

just mentioned, in this way the individuality of each viewpoint

language can be respected, and the UML modeling elements

more apt for representing each viewpoint concept can be

decided in each case.

7. RELATED WORK

Most of the existing proposals for modeling the ODP view-

point languages have usually used formal description tech-

niques, which have proved valuable in supporting the

precise definition of reference model concepts [13, 25, 28].

Among all the works, probably the most widely accepted nota-

tions for formalizing the computational viewpoint are Z,

LOTOS and SDL.

Lately, rewriting logic and Maude have also shown their

adequacy for modeling the ODP languages [29, 30]. More

specifically, in [31] we showed how Maude (a formal language

based on rewriting logic) can be used to formalize the compu-

tational viewpoint. It has been shown that rewriting logic has

very good properties as a logical framework, in which repre-

senting many different languages and logics, and as a semantic

framework, in which giving semantics to them [32]. Thus,

Maude seems to be a promising option as a unifying frame-

work for the specification of environment contracts using

different notations and logics. However, the lack of acceptance

of formal notations in industrial and commercial environments

has encouraged the quest for graphical and more appealing

notations for modeling the ODP viewpoint concepts.

UML 1.X has also been proposed by different authors for

ODP computational modeling. It has an appealing graphical

syntax and wide acceptance within the software engineering

community. However, its loose semantics and lack of

elements for modeling many of the specific concepts of

ODP has traditionally represented an impediment for achiev-

ing the precise specification and analysis of systems. This

issue has been addressed by different authors using different

approaches. For instance, the use of UML Profiles provides

customized extensions to UML to deal with specific appli-

cation domains and systems. This is the approach followed

by the UML Profile for EDOC [16], whose component collab-

oration architecture provides a set of elements and mechan-

isms well suited to write ODP computational specifications.

However, the size and complexity of EDOC represents,

from our point of view, an important limitation for its wide

acceptance by the software engineering community.

Another interesting and complete proposal by Akehurst

et al. [33] uses UML to address computational viewpoint

designs, complementing the UML diagrams with the com-

ponent quality modeling language [34] for expressing environ-

ment contracts constraints. However, this approach, which

was specially designed for multimedia distributed systems,

uses UML version 1.4, so it does not take advantage of the

new concepts and mechanisms provided by UML 2. In

addition, although this proposal tries to model the compu-

tational viewpoint language, it seems to present some seman-

tic differences with the ODP standard (e.g. there is no

distinction between interface templates and signatures, and

therefore they are treated equally).

8. CONCLUSIONS

The increasing interest in model-driven engineering and in the

MDA initiative for coping with the complexity of distributed

systems has urged the need to count with precise models of

the different aspects (or viewpoints) that constitute a

system’s specifications. The RM-ODP is also becoming

increasingly relevant nowadays, mainly because the size and

complexity of current IT systems is challenging most of the

current software engineering methods and tools. Thus,

RM-ODP is gaining recognition as an effective approach for

specifying large-scale distributed system, and the industry is

showing interest on it.

The work presented here provides a notation and a Profile

for modeling the ODP computational concepts in UML 2,

which aims at enabling model-driven support for specifying

and implementing ODP systems. This paper is an extension

of an initial work reported at EDOC 2005 [18] that now

covers the environment contracts, which are an essential part

of the computational specification of any system. Moreover,

448 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

this work is in line with the ITU-T and ISO/IEC joint standard-

ization efforts to provide a UML representation of the ODP

concepts. This proposal has been presented here using a

rather small but illustrative example. Other examples, together

the electronic versions of the metamodel and profile, are avail-

able from the RM-ODP web site (http://www. rm-odp.net).

There are some lines of work that we plan to address

shortly. In particular, once we count with a graphical notation

to model the ODP computational viewpoint, its connection to

formal notations and tools might bring along many advan-

tages. For instance, formal analysis of the system can be

achieved from the UML environment (such as model check-

ing, theorem proving, etc.), leveraging the system analyst

from most formal technicalities. In this sense, we are

working on the provision of bridges between the UML speci-

fication and the Maude language, so that the Maude formal

toolkit can be used with the UML models produced for the

ODP system. Our first results in this respect are encouraging,

and have already been reported in [11].

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees for

their insightful and constructive comments and suggestions.

Although the views in this paper are the authors’ solely

responsibility, they could not have been formulated without

many hours of detailed discussions with ISO experts on

ODP. In particular, we would like to thank Peter Linington,

Akira Tanaka and Bryan Wood for sharing their expertise

and knowledge with us.

FUNDING

Ministerio de Educación y Ciencia de España (Spanish

Research Project TIN2005-09405-02-01).

REFERENCES

[1] IEEE Std. 1471 (2000) Recommended practice for architectural

description of software-intensive systems. IEEE. New York,

USA.

[2] Kruchten, P. (1995) Architectural blueprints—the ‘4 þ 1’ view

model of software architecture. IEEE Softw., 12, 42–50.

[3] Zachman, J.A. (1997) The Zachman framework: a primer for

enterprise engineering and manufacturing. Zachman

International, La Cañada, CA, USA. http://www.zifa.com.

[4] ISO/IEC 10746, ITU-T Rec. X.901-4 (1997) RM-ODP.

Reference Model for Open Distributed Processing. ISO and

ITU-T. http://www.rm-odp.net. Geneva, Switzerland.

[5] Picault, A., Bedu, P., Delliou, J.L., Perrin, J. and Traverson, B.

(2004) Specifying information system architectures with

DASIBAO—a standard-based method. Proc. ICEIS 2004,

Porto, Portugal, April, 254–264. INSTICC Publications, France.

[6] CCSDS Red Book 311.0-R-1 (2007) Reference architecture for

space data systems (RASDS). Consultative Committee for Space

Data Systems, http://public.ccsds.org/review/default.aspx.

Reston, (VA), USA.

[7] Bernet, O. and Kilov, H. (2003) From Box-and-Line Drawings

to Precise Specifications: Using RM-ODP and GRM to Specify

Semantics. In Kilov, H. and Baclawski, K. (eds.), Practical

Foundations of Business System Specifications, 99–110.

Kluwer Academic Publishers, Norwell, MA.

[8] Kudrass, T. (2003) Describing Architectures Using RM-ODP.

In Kilov, H. and Baclawski, K. (eds.), Practical Foundations

of Business System Specifications, pp. 231–244. Kluwer

Academic Publishers, Norwell, MA.

[9] Sweeney, L.E., Kortright, E.V. and Buckley, R.J. (2001)

Developing an RM-ODP-based architecture for the defense

integrated military human resources system. Proc.

WOODPECKER’2001, Setubal, Portugal, July, 110–123.

ICEIS’2001 ICEIS Press.

[10] Linington, P. (1995) RM-ODP: The Architecture. In Milosevic, K.

and Armstrong, L. (eds.), Open Distributed Processing II,

Brisbane, Australia, 15–33. Chapman & Hall, London.

[11] Romero, J.R. and Vallecillo, A. (2006) On the execution of ODP

computational specifications. Proc. 3rd Int. Workshop on ODP

and Enterprise Computing (WODPEC 2006), Hong Kong,

October, 33–44. IEEE Digital Library.

[12] Bernardeschi, C., Dustzadeh, J., Fantechi, A., Najm, E.,

Nimour, A. and Olsen, F. (1997) Transformations and

Consistent Semantics for ODP Viewpoints. In Bowman, H.

and Derrick, J. (eds.), Proc. FMOODS’97, Canterbury,

England, July, pp. 371–386. Chapman & Hall, London.

[13] Bowman, H., Derrick, J., Linington, P. and Steen, M.W. (1995)

FDTs for ODP. Comput. Stand. Interfaces, 17, 457–479.

[14] Steen, M.W. and Derrick, J. (2000) ODP enterprise viewpoint

specification. Comput. Stand. Interfaces, 22, 165–189.

[15] Sinnot, R. and Turner, K.J. (1997) Specifying ODP

computational objects in Z. In Najm, E. and Stefani, J.-B.

(eds.), Proc. FMOODS’96, Paris, France, March, pp. 375–

390. Chapman & Hall, London.

[16] OMG ad/2001-08-19 (2001) A UML profile for enterprise

distributed object computing V1.0. Object Management

Group, Needham, MA.

[17] ISO/IEC FCD 19793, ITU-T X.906 (2006) Information

technology—open distributed processing—use of UML for

ODP system specifications. International Standards

Organization. Geneva, Switzerland.

[18] Romero, J.R. and Vallecillo, A. (2005) Modeling the ODP

computational viewpoint with UML 2.0. Proc. 9th IEEE Int.

Enterprise Distributed Object Computing Conf. (EDOC

2005), Enschede, The Netherlands, September, pp. 169–180.

IEEE CS Press, Los Alamitos, CA.

[19] OMG formal/07-02-05 (2007) Unified modeling language 2.1.1

superstructure specification. OMG, Needham, MA.

[20] OMG ptc/06-05-01 (2006) Object constraint language (OCL)

2.0. OMG. Needham, MA.

MODELING ODP COMPUTATIONAL SPECIFICATIONS USING UML 449

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

[21] Linington, P.F. (2004) What foundations does the RM-ODP

need? Proc. 1st Int. Workshop on ODP in the Enterprise

Computing (WODPEC), Monterey, CA, September, pp. 17–

22. IEEE Digital Library.

[22] OMG formal/05-01-02 (2005) UML profile for schedulability,

performance, and time specification. OMG, Needham, MA.

[23] OMG ptc/04-09-01 (2004) UML profile for modeling quality of

service and fault tolerance characteristics and mechanisms.

OMG, Needham, MA.

[24] ISO/IEC 15935 (1998) Open distributed processing—reference

model—quality of service. Geneva, Switzerland.

[25] Johnson, D.R. and Kilov, H. (1999) An approach to a Z toolkit

for the reference model of open distributed processing. Comput.

Stand. Interfaces, 21, 393–402.

[26] Kilov, H. (2002) Business Models. Prentice-Hall, NY.

[27] Bjorner, D. (2006) Software Engineering. Domains,

Requirements, and Software Design, Vol. III. Springer Verlag,

Heildelberg.

[28] Johnson, D.R. and Kilov, H. (1996) Can a flat notation be used

to specify an OO system: using Z to describe RM-ODP

constructs. In Najm, E. and Stefani, J.-B. (eds.), Proc.

FMOODS’96, Paris, Fance March, pp. 407–418. Chapman &

Hall, London.

[29] Durán, F. and Vallecillo, A. (2003) Formalizing ODP enterprise

specifications in Maude. Comput. Stand. Interfaces, 25, 83–102.

[30] Durán, F., Roldán, M. and Vallecillo, A. (2005) Using Maude to

write and execute ODP Information viewpoint specifications.

Comput Stand Interfaces, 27, 597–620.

[31] Romero, J.R., Durán, F. and Vallecillo, A. (2007) Writing and

executing ODP computational viewpoint specifications using

Maude. Comput. Stand. Interfaces, 29, 481–498.

[32] Meseguer, J. (2000) Rewriting logic and Maude: a

wide-spectrum semantic framework for object-based

distributed systems. In Smith, S. and Talcott, C. (eds.), Proc.

FMOODS 2000, Stanford, CA, September, pp. 89–117.

Kluwer Academic Publisher, Norwell, MA.

[33] Akehurst, D.H., Derrick, J. and Waters, A.G. (2003) Addressing

computational viewpoint design. Proc. 7th IEEE Int. Enterprise

Distributed Object Computing Conf. (EDOC 2003), Brisbane,

Australia, September, pp. 147–159. IEEE CS Press, Los

Alamitos, CA.

[34] Aagedal, J. (2001) Quality of service support in development of

distributed systems. PhD Thesis, Department of Informatics,

Faculty of Mathematics and Natural Sciences, University of

Oslo, Norway.

450 J. R. ROMERO et al.

THE COMPUTER JOURNAL, Vol. 51 No. 4, 2008

