Chapter 12

AN OVERVIEW OF MODEL-DRIVEN WEB
ENGINEERING AND THE MDA

Nathalie Morend José Rall Rometoand Antonio Vallecilld
!Dept. Lenguajes y Ciencias de la Computacién, Usiteof Malaga, Spain.
2Dept. Informatica y Anélisis Numérico, University@srdoba, Spain.

1. INTRODUCTION

Model-Driven Software Development (MDSD) is becogia widely
accepted approach for developing complex distribaggplications. MDSD
advocates the use of models as the key artifach phases of development,
from system specification and analysis, to desigh implementation. Each
model usually addresses one concern, independ&otly the rest of the
issues involved in the construction of the systehius, the basic
functionality of the system can be separated frtmfinal implementation;
the business logic can be separated from the ymagnplatform technology,
etc. The transformations between models enable théomated
implementation of a system from the different medigfined for it.

Web Engineering is a specific domain in which MDSian be
successfully applied. Most of the technology iseh&r implement systems
that exploit the Web paradigm, but the effectiveigie of Web applications
is still a concern: the complexity and requirememisWeb applications are
constantly growing, while the supporting technoésgand platforms rapidly
evolve.

Existing model-driven Web engineering (MDWE) apmioes already
provide excellent methodologies and tools for tesigh and development of
most kinds of Web applications. They address dfierconcerns using

2 Chapter 12

separate models (navigation, presentation, datg, end are supported by
model compilers that produce most of the applicédidVeb pages and logic
based on the models. However, these proposals piesent some
limitations, especially when it comes to modellfagther concerns, such as
architectural styles or distribution. Furthermocarrent Web systems need
to interoperate with other external applicatiomsnething that requires their
integration with third party Web-services, portadsd also with legacy
systems. Finally, many of these Web Engineeringogsals do not fully
exploit all the potential benefits of MDSD, such esmplete platform
independence, model transformation and mergingyeiamodelling. (Miller
and Mukerji, 2003) from the Object Management Grd@MG™) has
introduced a new approach for organizing the desigan application into
(yet another set of) separate models so portapilitteroperability and
reusability can be obtained through architectuegasation of concerns.
MDA covers a wide spectrum of topics and issues BM@sed metamodels,
UML profiles, model transformations, modelling larges and tools, etc.)
and also promises the interoperability requiredvbenh models and tools
from separate vendors. On the other camp, Softwantories (Greenfield
and Short, 2004) provide effective concepts anduregs for the model-
based design and development of complex applicgtiand it is our belief
that they can be successfully used for Web Engingéoo.

In this chapter we will introduce the main concepiglved in MDWE,
and discuss its current strengths, weaknesses amor nchallenges,
especially in the context of the MDA initiative.

2. DOMAIN SPECIFIC MODELLING

Domain-Specific Modelling (DSM) is a way of desiggiand developing
systems that involves the systematic use of DonSpacific Languages
(DSLs) to represent the various facets of a systumeh languages tend to
support higher-level abstractions than generalgegpnodelling languages,
and are closer to the problem domain than to th@ementation domain.
Thus, a DSL follows the domain abstractions and asgims, allowing
modellers to perceive themselves as working diyegith domain concepts.
Furthermore, the rules of the domain can be incudéo the language as
constraints, disallowing the specification of ilkgr incorrect models.

DSLs play a cornerstone role in DSM. In generafiniteg a modelling
language involves at least two aspects: the doroaimcepts and rules
(abstract syntax), and the notation used to reptekese concepts (concrete
syntax—Ilet it be textual or graphical). Each madedritten in the language
of its metamodel. Thus, a metamodel will describe toncepts of the

12. An Overview of Model-Driven Web Engineering trelMDA 3

language, the relationships between them, and ttuetgring rules that
constraint the model elements and combinationsrderoto respect the
domain rules. We normally say that a model confotmsts metamodel
(Bézivin, 2005).

Metamodels are also models, and therefore they tmwdx written in
another language, which is described by its met@medel. This recursive
definition normally ends at that level, since metatamodels conform to
themselves.

A typical example of a metamodel-defined DSL is A{douault and
Kurtev, 2006b), which is a transformation languafyéarge library of ATL
transformations is available from the Eclipse metdeh open source library.
The interested reader can consult the work by Bsmivin (2005) for a
more complete and detailed introduction to thepeso

DSM often also includes the idea of code generatariomating the
creation of executable source code directly from EFSM models. Being
free from the manual creation and maintenance afcgocode implies
significant improvements in developer productivityduction of defects and
errors in programs, and a better resulting quaMgreover, working with
models of the problem domain instead of model$iefdode raises the level
of abstraction, hiding unnecessary complexity anglémentation-specific
details, while putting the emphasis on already fiamierminology.

A DSM environment may be thought of as a metamodglool, i.e., a
modelling tool used to define a modelling tool cASE tool. The domain
expert only needs to specify the domain specifitstroicts and rules, and the
DSM environment provides a modelling tool tailofed the target domain.
The resulting tool may either work within the DSMveonment, or less
commonly be produced as a separate stand-aloneaprodJsing a DSM
environment can significantly lower the cost ofaibing tool support for a
DSM language, since a well-designed DSM environmghtautomate the
creation of program parts that are costly to bdilem scratch, such as
domain-specific editors, browsers and components.

Examples of DSM environments include commercial sorseich as
MetaEdit+; open source environments, such as tha@ef@e Eclipse
Modelling System; or academic ones such as the rigemdodelling
Environment (GME, http://lwww.isis.vanderbilt.edudfects/gme/). The
increasing popularity of DSM has led to DSM framekgobeing added to
existing integrated development environments, swsh the Eclipse
Modelling Project (EMP) and Microsoft's DSL Toolsorf Software
Factories.

4 Chapter 12

3. MDA

One of the best known MDSD initiatives is called débDriven
Architecture (MDA’), which is an approach to software development
produced and maintained by the OMG, a consortiuat firoduces and
maintains computer industry specifications for ioperable enterprise
applications. MDA is a registered trademark of @G, together with its
related acronym, Model-Driven Development (MDD), otrer OMG
trademark.

The goal of MDA is one that is often sought: to esepe business and
application logic from its underlying execution fitam technology so that
(1) changes in the underlying platform do not dffexisting applications;
and (2) business logic can evolve independentlymfrihe underlying
technology. A tool that implements the MDA conceptl allow developers
to produce models of the application and businegi,| and also generate
code for a target platform by means of transforometi

The major benefit of this approach is that it raittee level of abstraction
in software development. Instead of writing platfiespecific code in some
high-level language, software developers focus evelbping models that
are specific to the application domain but indegernaf the platform. In a
nutshell, MDA is a broad conceptual framework tHascribes an overall
approach to software development.

MDA is not to be confused with MDSD. MDA is the OMG
implementation of MDSD, using the set of tools atandards defined by
OMG. These OMG standards include UR(Unified Modelling Language),
MOF (Meta-Object Facility), XMl (XML Metadata Intehange), and
MOF/QVT (Query/View/Transformations), among other&ll these
standards can be obtained from the OMG’s Web wa#er.omg.org).

3.1 The MDA framework

The MDA framework is basically organized around the-called
Platform Independent Models (PIMs) and PlatformcEieModels (PSMs),
and on the model transformations between them.Plkkis a specification
of a system in terms of domain concepts. These tlootcepts exhibit a
specified degree of independence of different ptats (e.g. CORBA, .NET,
and J2EE). The system can then be compiled usingfamose platforms as
target by transforming the PIM to a platform spiecihodel (PSM). Thus,
the PSM specifies how the system uses a partitgparof platform. Finally,
the application’s code is considered a form of R&Mhe lowest level).

In MDA, a platform is a set of subsystems and tetdgies that provides
a set of functionality through interfaces and sipetiusage patterns, which

12. An Overview of Model-Driven Web Engineering trelMDA 5

any application supported by that platform can wgbout concern for the
details of how the functionality provided by theafibrm is implemented
(Miller and Mukerji, 2003). As in MDSD, each modelMDA conforms to
a metamodel, which in MDA can be defined using MOF.

PIM

Transformation

PSM

Figure 12.1.The MDA pattern

In addition to models, transformations are alsdhat heart of MDA.
Model transformation is the process of convertimge anodel to another
model of the same system (see Figure 12.1). Seetsformations can be
done following many ways: using types, marks, tetgd, etc. In MDA,
software development becomes an iterative modakfoamation process:
each step transforms one PIM of the system atevred into one PSM at the
next level, until a final system implementation fisached, with the
particularity that each PSM of a transformation bacome the PIM of the
next transformation (within another level of abstian). In this context, the
implementation is just another model, which prosigdl the information
necessary to construct the system and to putitdperation.

3.2 OMG approachesfor defining DSLs

Both PIMs and PSMs are models, and therefore difising modelling
languages. Although in theory MDA’s models can lefired using any
modelling language, OMG strongly suggests that nsodee specified using
UML or any other MOF-compliant language (i.e., whaseta-metamodel is
MOF). This interest for being MOF and UML-compliaatises from the
increasing need to be able to interoperate witkratiotations and tools, and
to exchange data and models, thus facilitatingiaaptoving reuse.

6 Chapter 12

OMG defines three main possible approaches fornowfi domain-
specific languages. The first solution is to depedometamodel that is able
to represent the relevant domain concepts. Thisnmeaeating a new
domain language, an alternative to UML, using th©Rmetamodelling
facilities provided by OMG for defining object-baseisual languages (i.e.,
the same mechanisms that have been used for defldML and its
metamodel). In this way, the syntax and semamtidhie elements of the
new language are defined to faithfully match themdm’s specific
characteristics. The problem is that standard Ubtilg will not be able to
deal with such a new language (to edit models tmatforms to the
metamodel, compile them, etc.). This approach & d¢he followed by
languages such as the CWM (Common Warehouse Metdmod the
W2000 (Bareset al, 2006b) notations, since the semantics of sontbese
languages’ constructs do not match the semantitteeatorresponding UML
model elements.

The second and third solutions are based on extgndliL. Extensions
of the UML can be either heavyweight or lightweigfthe difference
between lightweight and heavyweight extensions sofmrem the way in
which they extend the UML metamodel. Heavyweightngions are based
on a modified UML metamodel with the implicationaththe original
semantics of modelling elements is changed ancefiner the extension
might no longer be compatible with UML tools.

Lightweight extensions are called UML profiles aack based on the
extension mechanisms provided by UML (OMG, 2005kertes and
Vallecillo, 2004) (stereotypes, tag definitions, darconstraints) for
specializing its metaclasses, but without breakhmjr original semantics.
UML profiles may impose new restrictions on theeexted metaclasses, but
they should respect the UML metamodel, without rfyadg the original
semantics of the UML elements (i.e., the basicuiemst of UML classes,
associations, properties, etc., will remain theesapmly new constraints can
be added to the original elements). Syntactic sagaralso be defined in a
profile, in terms of icons and symbols for the newéfined elements. One
of the major benefits of profiles is that they ¢@nhandled in a natural way
by UML tools.

In UML profiles, stereotypes define particularipaws of given UML
elements, adding them some semantics. For instameecan define the
stereotype <<persistent>> that extends UML classagpresent persistent
elements in a particular domain. Tag definition®ecsly the possible
attributes of stereotypes (e.g., the name of tihée tavhere the persistent
element should be stored). Finally, constraintsndethe domain rules that
the stereotyped UML elements should obey in ordemike up correct
models (e.g., suppose that we do not want abstlastes to be stereotyped

12. An Overview of Model-Driven Web Engineering trelMDA 7

as persistent). Figure 12.2 graphically shows tML Wpecification of this
example stereotype.

==zterectype==
Persistent
1zelf baseClass . ishbstract = falze}

==metaclazse=
Class

HahleMame : String

Figure 12.2.An example of a UML 2.0 stereotype specification

Constraints on stereotypes are normally specifigiigu OCL (Object
Constraint Language) (OMG, 2006), whose currensivar (2.0) is fully
aligned with UML. Constraints can be either dingctittached to the
modelling elements (as shown in the Figure), orassply specified, and
then be related to the element to which they applyidentifying their
context:

context Persistent inv:
self.baseClass.isAbstract = false

Perhaps the best known example of customizing UMIL & specific
domain is SysML, a DSL for systems engineering (wsyaml.org). In
addition, there is a whole set of UML profiles tltaistomize UML to deal
with the specific concepts required in severalvaht application domains
(e.g., real-time, business process modelling, iraetc.) or implementation
technologies (such as .NET, J2EE, or CORBA).

Probably, the main advantage of UML profiles is tha extension of the
UML metamodel (which is already too large and camyb be used in full),
but that they allow “restricting” the set of UMLeshents that need to be
used in a given domain, particularizing the sensantif those elements in
order to capture the semantics and structuringsrafethe domain-specific
elements they represent. It is important to refiesttsuch a particularization
can only be done by refinement, and without chamtie original semantics
of UML elements.

Finally, meta-transformations which transform baaid forth from the
profile definition to the metamodel definition calso be specified, as shown
in Figure 12.3.

8 Chapter 12

Metamodel A UML Profile A
==metaclazss=

HavigationClass Transformation e
==stereotype==
HavigationClass

Figure 12.3 Example of transformation between a “profileabtetamodel and a profile

3.3 M oddl transfor mations

A model transformation can be viewed as a transftion between two
models, which describes how elements in the sonorodel are converted
into elements in the target model. This is donerddgiting the appropriate
metamodel elements in the source and target met&lsodnd defining
constraints and guards on such relations (e.g.,pteeonditions on the
transformation to take place). It is important totice that model
transformations are also models, and therefore ¢bejorm to a metamodel
that describes the language in which they are sgprk

MDA describes a wide variety of models and transfations between
models. Whilst there are many kinds of transfororedj they can fit broadly
into two main categories:

« Vertical mappings (orefinementy which relate system models at
different levels of abstraction—such as PIM to P&ippings, or
reverse-engineering mappings. Until now, vertigansformations
have in most cases been developed within moddiialy using Web
tool-specific proprietary languages. For the sagason that domain
know-how should not be tied to a particular platioit is thus critical
that model transformations are not dependent ofengCASE tool.

e Horizontal mappings, which relate or integrate ni®deovering
different aspects or domains within a system, bahe same level of
abstraction. Horizontal mappings maintain the csiesicy between
levels guarantying that an entity needs to be stersi with what is
said about the same entity in any other speciticadit the same level
of abstraction. This includes the consistency o#t thentity’s
properties, structure and behaviour.

In MDA, OMG proposes MOF-QVT (Query/View/Transfortizan)
(OMG, 2005a) as the standard language for spegifyimodel

12. An Overview of Model-Driven Web Engineering trelMDA 9

transformations. Many other model transformatiorgleages, like VIATRA
by the University of Budapest, ATL by INRIA, RubyT{Sanchez and
Garcia-Molina, 2006) by the University of Murcidc.e are also available,
with different levels of compliance to the QVT sdand (Jouault and Kurtev,
2006a). The interested reader can visit the “Mddahsformation” Web site
(www.model-transformation.org) for a complete figti of model
transformation languages and tools.

4. MODEL-DRIVEN WEB ENGINNERING
PROPOSALS

As mentioned in the introduction, Web Engineeriagispecific domain
in which MDSD can be successfully applied, due te particular
characteristics: there is a precise set of concérasneed to be addressed
(navigation, presentation, business processeg; #te. basic kinds of Web
applications is well known (Kappekt al, 2006) (document-centric,
transactional, workflow-based, collaborative, etcand the set of
architectural patterns and structural features us&tleb systems is reduced
and precisely defined. In fact, existing model-lohd&eb Engineering
approaches—most of which have been described m lbbk—already
provide excellent methodologies and tools for tesigh and development of
most kinds of Web applications.

These approaches come basically from two main arféiast, a few
proposals are based on hypermedia design methsjucing the required
expressiveness and mechanisms to capture relevabispécific elements,
such as navigation. Prominent examples of thesgatines are HDM
(Garzottoet al, 1993), RMM (Frasincar, 2001), WebML (Cetial, 2002),
W2000 (Bareset al, 2006b), WSDM (De Troyer and Leune, 1998), Hera
(Vdovjak et al, 2003) and Webile (Di Ruscio, 2004), the majodfywhich
are based on the classic E/R model, or on extemsibit. Another group of
more recent approaches emerged as extensions ekrd@mnal object-
oriented development techniques, adapting thenope evith the particular
characteristics of Web systems. In this group we faad methods such as
EORM (Lange, 1994), OOHDM (Schwabet al, 1999), UWE (Koch,
2001), OOWS (Pastaat al, 2006), OO-Method (Pastet al, 2001), OO-H
(Gomez and Cachero, 2003) or MIDAS (De Castral, 2006).

These proposals are model-driven because they swddhe different
concerns involved in the design and developmeat\Web application using
separate models (such as content, navigation @&sgmpration), and then are
supported by model compilers that produce moshefapplication’s Web
pages and logic right from the original models.tR@mmore, most of them

10 Chapter 12

count with development processes that support tiwations and tools, and
have been successfully used in commercial enviroterfer building many
different kinds of Web systems. And although alltimoelologies adopt
different notations and propose their own cons&udhey all share a
common ground of concepts—and thus they might besidered as
somehow based on a common metamodel, as sugggstedkdmch and A.
Kraus (Koch and Kraus, 2003).

However, as the complexity of Web applications g0 be able to
deliver, e.g., large e-commerce, e-learning, ooeegiment applications),
and new requirements are imposed on Web systenst,ahthese proposals
are showing some limitations:

* They are usually tied to particular architectutsgles and technologies,
i.e., do not allow the parameterizable construcbdWeb applications
using different platform technologies and architeat styles—they
typically build client-server applications only,dabased on very specific
platform technologies (PHP, ASP, EJB or JSP). Tteblpm is that
these architectural styles and target technologiesno longer relevant
when, for example, mobility and nomadic featuresraquired for some
types of Web applications.

* Most of these proposals were originally conceivedeal with particular
kinds of Web applications (such as Web Informati&ystems,
Hypermedia Applications, or Adaptive Web Applicait®), so they deal
with a fixed set of common concerns (navigatiorgspntation, etc.).
Therefore they are very good at modelling certapeats, but very weak
at modelling others. In addition, they are diffictd extend to model
further aspects (such as internal processes,llisth, and some other
extra-functional concerns) in a natural, modulat mdependent way.

Finally, Web applications currently need to intexmgde with other
external systems. This requires their integratioith vthird party Web-
services, portals, and also with legacy systems—nAmga among other
things, that their processes, choreography, andgbaheir business logic,
must be explicitly available for integration witheise external systems
(Moreno and Vallecillo, 2005a). Not all MDWE propds address this issue
at the model level; the integration is mostly aghikat the implementation
level.

Solving all these limitations is not a trivial tasWe are currently
observing how some Web Engineering proposals avk/ieg to cope with
some of these issues. For instance, some of therdeaeloping extensions
to address more and more aspects. Examples in¢dw& and OO-H,
which have incorporated a process model into tobeiginal approaches
(Koch et al, 2004), and are working to deal with the architedlt style of

12. An Overview of Model-Driven Web Engineering trelMDA 11

the final application, too (Caceresal, 2006). WebML has also evolved to
be able to deal with legacy systems, and for cevetesareness (Cest al,
2007). The problem with these incremental exterssisnthat, unless their
efforts to include new concerns are made in a wegjyl organized and
interoperable manner, we may end up with propodels have grown by
adding too many new features in an unnatural arificeal way, and
therefore may become too complex and brittle.

Another problem that some of these proposals a@fakting is their use
proprietary notations and tools. This forces cugtianand developers to buy
and use “yet-another” modelling tool (with the leiag costs and efforts
involved in the process) if they want to take adage of them. Even worse,
these proprietary tools do not interoperate with tbst of the tools being
used by the customer, which forces him/her to waith a whole set of
isolated development environments, each one diffef@nd incompatible)
with the rest—something that the customer is naigto tolerate.

Thus, we are witnessing how the Web Engineeringneonity considers
the use of standard UML notation, techniques angpaering tools for
modelling Web systems, including the adaptatiorthafir own modelling
languages, representation diagrams and developprecesses to UML.
There is a need to be able to be compatible aretopéerate with other
notations and tools, and to seamlessly exchangeasat models with them.
This is the case for instance of WebML, which idirdeg UML-based
representations of its modelling language so tiatYebML notation and its
development process can be smoothly integrated stémdard UML
development environments (Moreabal, 2006; Schauerhubet al, 2006).

The advent of the Model Driven Architecture (MDAjtiative may also
bring significant benefits here, and also help tidrass most of the
limitations cited above in a natural way. As menéd in the preceding
section, MDA provides an approach for organizing ttlesign of an
application into separate models so that portabilibteroperability and
reusability can be achieved through architectueglasation of concerns. In
addition, the new modelling notation UML 2.0 incorates a whole new set
of diagrams and concepts which are more appropf@tenodelling the
specific structure and behaviour of software systeamd in particular of
Web applications (e.g., the new structuring medanj or the improved
specification and semantics of state machines atintees).

Of course, the use of UML and MDA for Model-Driveweb
Engineering is not free from problems. As any othétiative, it brings
along both benefits and drawbacks, and also cauttisboth supporters and
detractors. The next two sections are dedicatedxfain these ideas in
detail.

12 Chapter 12

5. MDA-BASED WEB ENGINEERING

MDA provides several interesting opportunities igprove current Web
Engineering approaches, helping them to overcomeesaf the limitations
cited above.

51 Becoming UML and M OF-compliant

As previously mentioned, there is an increasingdnae be able to
interoperate and be compatible with other notatiamsl tools, and to
integrate with already existing modelling enviromtse—in particular with
the UML tools that nowadays are commonplace in n@amstomer settings.
Of course, there are other DSM environments alrezmyning—some of
them probably much better than those supportindgJttdié notation—but the
problem is that they have not reached the levelcoEptance and are not as
spread as UML modelling tools are today. And wefaced with the need to
be able to offer a solution to our customers today.

In this sense, a very promising approach is thmitieh of UML profiles
for representing proprietary Web Engineering madgllanguages. This is
the case of WebML, which has recently defined aamedel and a UML
Profile (Morencet al, 2006; Schauerhubet al, 2006) for its notation. This
allows the WebML language and its development m®d¢esupported by the
WebRatio tool) to be smoothly integrated with semidUML development
environments.

In addition, counting on a metamodel for WebML wallow its
integration with other MDA tools as soon as theg awailable (editors,
validators, metric evaluators,...) and also with ot®SD approaches and
tools (using model transformations that allow thenwersion of MOF-
metamodels to other metamodelling approaches, aué&M3 or Ecore).

52 Organizing models according to the MDA principles

We are also withessing how other approaches that wargginally UML-
based are making use of the new MDA principlestorganize their models
in a modular manner, in such a way that each miodelses on one specific
concern, and then formulating their developmentcesses in terms of
model transformations and model merges.

Probably the most representative example is UWE,ctwhhas
successfully re-structured its original set of medgvhich represented the
different concerns involved in the design and dawelent of a Web
application) in terms of metamodels, and the UWietgpment process in
terms of transformations between them (Koch, 2606us, 2007). This has

12. An Overview of Model-Driven Web Engineering trelMDA 13

significantly enhanced the original proposal witretter modularity,

expressiveness and re-use. Furthermore, the usgeoffication techniques
for the transformations will allow UWE to redefiaed improve many of the
aspects of its development process, especiallyettioat were originally
hard-coded in the UWE supporting CASE tool, in ortte benefit from

model transformation rules defined at a higherrabtbn level, e.g., using
graph transformations or transformation languages.

Another interesting outcome of the work done by WIWE group when
adopting the MDA principles into their proposathe analysis of the models
(and model transformations) that comprise the MD&bDcess for Web
applications, focusing on the classification of thedel transformations in
terms of type, complexity, number of source modéts/olvement of
marking models, implementation techniques and di@tutype (Koch,
2006). This analysis could be very useful to otimeodel-based Web
Engineering methods if they decide to reformulbtgrtproposals in terms of
independent models and transformations between.ti@mer proposals,
such as MIDAS, have also started to adopt suchpproach by specifying
the development process of Web Information Systeémsterms of
(meta)models and transformations between them (Egeeal,, 2006).

53 Adding new concerns

That reformulation of model-based Web Engineeringppsals is also
proving other benefits, such as the modular additibfurther aspects into
their designs. Most of these concerns were notecoplated originally, and
integrating them was difficult because of the (liyuad-hoc) internal
structure of their supporting processes and tools.

One representative example is OO-H, whose autteaiized that they
had to be able to deliver Web applications withfeddént software
architectures and to different platforms, dependomy the customers’
specific requirements—in this case the customere We ones demanding
such features. The OO-H team managed to successéfitirmulate part of
their internal structure and methods, making thpregentation of the
software architecture of the system a separateecorbat could be captured
as a separate model, and then merged (using Q¥Yi$foranations) with the
rest of the models of the system (such as navigatiwesentation, etc.)
(Melid and Gémez, 2006).

UWE and OO-H have also investigated the expligitesentation of the
business processes of a Web application, as sepaadels (Koclet al,
2004). Their joint findings are very encouragingcause they managed to
define a common way for modelling them for bothpgwsals. This shows
that re-use of metamodels across Web Engineeropgppals is feasible.

14 Chapter 12

Finally, UWE has also showed recently how otherceons, such as the
user requirements (Kogatt al, 2006), can be expressed as UML models and
connected to the approach. This is one of the [isnisey have obtained
once they have fully re-organized their proposad agt of separate models,
related through model transformations (Kraus, 2007)

All these findings support the thesis that a comnmetamodel is
possible for Web Engineering, as originally progb®gy Koch and Kraus
(2003). Furthermore, in the next section we wikt $®w the existence of a
common metamodel could allow the definition of anfiework for building
Web applications, which in the context of the MDAwd also enable the
exchange of models and tools between MDWE proposals

6. WEI: AMODEL-BASED FRAMEWORK FOR
BUILDING WEB APPLICATIONS

In this section we shall identify a general setcoimmon concerns
involved in the development of Web applicationsd gresent a Model-
Driven Web Architectural Framework (WEI) for orgaimg and relating the
different models that represent these concernsh B#El model focuses on
one particular concern (navigation, presentatiomchigectural style,
distribution) and at different levels of abstranti@platform-independent,
platform-specific). The set of metamodels that mefsuch models can be
considered as a common metamodel for MDWE.

WEI is also supported by a development methodofogyuilding Web
applications, which conforms to the MDA principleg+the sense that it is
defined in terms of models and the relationshipswéen them, so
transformations can be easily formalized amongstniodels until the final
implementation is reached.

6.1 Identifying reference models for Web applications

In general, the kinds of concerns involved in tkeedlopment of a Web
application will directly depend on the type of Waelpplication being
designed and also on the project requirements. Afgllications have
already been classified by complexity and develagnméstory (Kappelet
al., 2006):

1. Document centric Web siteshich are hierarchical collections of static
HTML documents (basically, plain text and imagédsttoffer read-only
information based on a set of structured contemtigation patterns and
presentation characteristics designed and stopgiba- The simplicity

12. An Overview of Model-Driven Web Engineering trelMDA 15

and stability of these systems limits the scop@/eb modelling to three
models: auser interface structure model that deals with the content of
the information delivered to the client,navigation model that points
out the network of paths within the Web applicatéord apr esentation
model that refers to the visual elements that casapghe Web pages.

2. Transactional Web applicationswhich incorporate support for
persistent data store, information location, corengy control, failure
and configuration management. In addition to theigadion aspects of
any hypermedia application, development of transaat Web
applications implies the need for an effectiviiormation structure
model, which is capable of capturing the proces$dsserting, updating
and deleting data, and alsodsstribution model which enables the
establishment of alternatives for carrying out samtions. A clearer
separation between data design, behavioural aspethe application,
and from the user interface concerns is required.

3. Interactive Web applicationsvhich are browser-based applications that
allow dynamic content of Web pages, hence providirsgrs with
personalized information. This feature requirepracess model that
describes how business classes manage the informstored (i.e., the
elements of the information structure model), alst aequires that the
navigation and presentation models are parameldeizto provide
tailor-made information to individual users accogli to their
preferences, goals and knowledge. Furthermorefythes of application
puts emphasis on modelling not only the informastmicture itself and
its future consumers (i.e. thusers model), but also the relationships or
bridges between the information structure modeljgaion model and
business model.

4. Workflow-based Web applicatignshich provide support for modelling
structured business processes, activity flows,nassi rules, interactions
among actors, roles, and a high-performance imfretstre for data
storage (content management). Information is neeabé¢donly for the
system actors but also for its processes. For Kmsl of Web
applications, as a minimum the following models srquired: a user
interface structure model, a navigation model, es@ntation model, an
information structure model, a business model, (tfee description of
how functionality is encapsulated into business poments and
services), a process model (with a descriptionhef hehaviour of the
internal processes) andsaftware architecture model identifying the
subsystems, components and connectors (softwareharvare) the
application should have.

5. Collaborative Web applicationsvhich are those executed by different
groups of users that access Web resources to atisbrapspecific task.
They entail a modelling decomposition of the Welpligjation design
into views or workspaces based on differeiser roles. For each group

16

Chapter 12

of users, the functional requirements, task anwities to be performed
must be specified. These issues involwedularity and distribution
requirements on the process model. Finally, therintion assets to be
manipulated by views must be also modelled.

Portal-oriented Web applicationswhich integrate resources (data,
applications, and services) from different souiioes single point. From
an end-user perspective, a portal is a Web sitd péges that are
organized by some form of navigation. Pages cdreeilisplay static
HTML content or complex Web Services. Personalugtibehaviour
tracking of users as well as message flows in Véelice collaborations
are extremely relevant in portal-oriented Web aggions. Therefore, a
choreography model needs to express the expected behaviouotbf b
the system processes and #xeernal services in order to check their
compatibility and interoperability to compose thémnbuild the portal
aggregated.

Ubiquitous Web applicationsvhich need to be accessible at any time,
from anywhere, and in any media, i.e., they must on a variety of
platforms, including mobile phones, personal digissistants (PDAS),
desktop computers, etc. This implies that thpresentation and
navigational models should badaptable not only to different kinds of
users, but also to different kinds of platforms amdntexts.
Consequently, this kind of application requires glbidg the separation
betweemplatfor m-independent andplatfor m-specific concerns.

Based on the set of concerns identified above, eaehrepresented by

one model, we have built an architectural framewforkmodel-driven Web
application development (WEI). Its basic structigrdepicted in Figure 12.4.
It is organized in three main layers (User IntegfaBusiness Logic and
Data), each one corresponding to a viewpoint. Im,teach layer is
composed of a set of models, which specify thetiestirelevant to each
concern.

Far from being “yet another Web methodology”, tirasaof WEI can be

summarized as follows:

(@)

(b)

(c)
(d)

to be able to represent, in terms of models aratiogiships between
them, the concerns required for designing and odpual Web

applications—following an architectural separatioh concerns as
prescribed by MDA,;

to integrate and harmonize the models and practweposed by
existing approaches, addressing their concerns;

to be extensible so new concerns could be easilgdid

to provide as a common framework (and metamodelyiich current

proposals could be integrated and formulated img¢eof the MDA

12. An Overview of Model-Driven Web Engineering trelMDA

17

principles, hence allowing them to smoothly intenagte (by defining,
e.g., interoperability bridges between compatibledais coming from
different proposals, whenever this is possible) aothplement each
other, share tools, etc.

At a high architectural design level, the whole Wieincept space is
captured by thirteen metamodels, organized in thrai® packages as shown
in Figure 12.4. It is important to note that thedwals that comprise the
framework have not been arbitrarily chosen, butedasn the concerns
covered by existing Web Engineering proposals édse Table 12.1 later
on) and our previous experience with the developgméarge distributed

applications.
User Interface |
- - - - - - - - - - - - -~ |
I] [[l
v Presentation | _ _ W87 lbsor. A
o e T — = UserInterface Afe — — 1 |
Structure =
! ™ [| | 1 W
| | L | | (I Adaptation A =
L | s | | Navigation A ==
| | ==t T Context A
| 7T T .
|
| | |] g :
| | | | ‘ |
| | [| | |
| | | i | =suse
| | | Business Logic | | |
¥ |
g1 I e |
: [. Foo - ‘
Cum:eplualI‘Jludelﬂ_e 4 | — — _| BusinessLogicStucture Al — _ _ _ _ _ _ _ _ | Processes A
S=UsEEs —
& I Internal A
| | T T Cnmp{nnem AP — = Prirsaas
| IS s
| | Style
users| | _|
! | | | 2<iisess Ch h
[i s | = oreography A
! | | Distribution A
\ | |
euses | |
' | |
| | Data |
: | |
: . y -

Information A
Structure

e — — —

Information p|
Distribution

Figure 12.4.Models representing the concerns involved in #netbpment of Web

applications

At the bottom level, theData Structure package describes the
organization of the information managed by the i@pfibn (by means of,
e.g., a database system) and provides a mechamistofing it persistently.
Information is depicted in terms of the data eletmeat constitute its

18 Chapter 12

information base and the semantic relationshipsvdxen these elements.
This level is organized in two models:

() Thelnformation Structure model deals with the information that has
to be made persistent, i.e., stored in a database.

(i) The Information Distribution model describes the distribution and
replication of the data being modelled, since imfation can be
fragmented irNodesor replicated in differeritocations

Then, theUser Interface focuses on the facilities provided to the end user
for accessing and navigating through the infornmatimnanaged by the
application, and how this information is presendegending on the context
and the user profile. The User interface levelesponsible for accepting
persistent, processed or structured data from theceBs and Data
viewpoints, in order to interact with the end uaed deliver the application
contents in a suitable format. Originally, Web égations were specifically
conceived to deal mainly with navigation and préston concerns, but
currently they also need to address other reldganes:

(i) TheUser Interface Structure model encapsulates the information that
the rest of the models at this level have aboutrifrmation handled
by the system (i.e., it is thgiew of such information from this
viewpoint).

(i) The Navigation model represents the application navigational
requirements in terms of Access Structures that lmraccessed via
Navigational Links.

(iif) Navigational objects are not directly perceivedthy user; rather, they
are accessed via theresentation model. This model captures the
presentational requirements in terms of a séresentationUnits

(iv) TheUser model describes and manages the user charactemsth the
purpose of adapting the content and the presentatithe users’ needs
and preferences.

(v) The Context model deals wittDevice Network Location and Time
aspects, and describes the environment of the capiplh. These are
needed to determine how to achieve the requiretmization.

(vi) The Adaptation model captures context features and user prefesenc
to obtain the appropriate Web content charactesige.g., the number
of embedded objects in a Web page, the dimensiahetbase-Web
page without components, or the total dimensionthef embedded
components). Adaptation policies are usually spegtiin terms of ECA
rules.

12. An Overview of Model-Driven Web Engineering trelMDA 19

Finally, theBusiness Logic package encapsulates the business logic of

the application, i.e., how the information is presed, and how the
application interacts with other computerized syste

() The Business Logic Structure model describes the major classes or

component types representing services in the system

(BusinessProcessInformatipriheir attributesAttribute9, the signature
of their operations Signatur@, and the relationships between them
(Associatiol. The design of the Structure model is driven iy needs
of the processes that implement the business tigite system, taking
into account the tasks that users can perform.

(i) Thelnternal Processes model specifies the precise behaviour of every
BusinessProcessinformationr component as well as the set of
activities that are executed in order to achieliginess objective. For
a complete description of a business process, &pantthe Structure
model, we need information related to #hetivities carried out by the
BusinessProcessinformatioaxpressing their behaviour and fHews
that pass around objects or data.

(i) TheChoreography model defines the valid sequences of messages and

interactions that the different objects of the egstmay exchange. The
choreography may be individually oriented, speaifyihe contract a
component exhibits to other componer®artialChoreography or, it
may be globally oriented, specifying the flow of saages within a
global compositionGlobalChoreography

(iv) TheDistribution model describes how its basic entities, Nuzles are
connected by means of point to point connectionkimmks While the
Information Distribution model of the Data layer esfies the
distribution of the data, this model describes thstribution of the
processes that achieve the business logic of stersy

(v) The Component+Architectural Style model defines the fundamental
organization of a system in terms of its componehtsr relationships,
and the principles guiding its design and evolytidgre., how
functionality is encapsulated into business comptsand services.

The emphasis in each of these levels will dependhenkind of Web
application being modelled (data-intensive, use&gfface oriented, etc.)

A central model of the WEI framework is tl®mnceptual Model, which
can be used for both specifying the basic strucama contents on the Web
application (so the rest of the “views” can relðe elements of that
model), and also to maintain the consistency of rifeaelel specifications
establishing how the different viewpoints merge aachplement each other.

Please note that, in addition to the models, thenéwork predefines
some dependencies between the models which deterthose cases in

20 Chapter 12

which the definition of a model requires the prexspecification of some
other models. At a different level, the dependenamay also imply how the

framework instantiation process should be carriad Burthermore, these
dependencies also specify correspondences betweerelements from

different models of the framework, especially whbry may have been
independently developed by different parties, oremwhhey represent the
system from different viewpoints, and therefore tk@me element is
specified in different ways in different models ¢baone offering a partial

view of the whole). In these cases, corresponddme®gen model elements
may be also subject to certain consistency ruléichwcheck that the views
do not impose contradictory requirements on thmetds they share.

6.2 M odelling these concer ns

In order to formally define the framework, we habeilt a MOF
metamodel for each model, which describes its iestitand their
relationships (http://www.Icc.uma.es/~nathalie/WWEMOF was selected as
metamodelling language because our interest ingb&DA-compliant.
Other alternatives were of course possible (usgy, KM3 or Ecore) but it
was important for us to try to use OMG’s notatiamsl tools, to exercise the
MDA approach. MagicDraw was selected as modelloa.tThe selection
of a UML tool is something really important, becaushey do not
interoperate well and therefore the tool you usg gr@atly condition your
project.

But the metamodels are just one part of the puzdelike other
approaches, OMG does not provide a solution fagatly building correct
models from metamodels. Instead, you have to defimer own DSL
associated to these metamodels. In our case waedefiight-weight
extensions of UML, i.e., UML profiles, for represmg these models
(Morenoet al, 2005). As an example of it, Figure 12.5 shovesgtofile for
the WEI presentation metamodel.

12. An Overview of Model-Driven Web Engineering trelMDA 21

==profile==
Presentation

==metaclasss= ==sterectypes=
Class GroupPr i i

I
==sterectypes>
ListBox

1
==stereotype==
Page

==stereotype==
Form

==stereotype==
Section

==metaclassss. ==ctereatypes==
StructuralFeature SinglePresentationUnit

==stereotype==
Image

==sterectypes>
Label

I

c=sterentypess
LinkLabel

==stereotype==
Text
I

==stereotype==
CheckBox

==stereotype==
RadioButton

==stereotypes=
Button

= <sterentype=s
HextButton

== sterentypess
BackButton

==sterentypes:
TextArea

=smetaclass=»
AssociationClass

==stereatype=»
Transition

Figure 12.5.The WEI Presentation profile

6.3 How the framework is used

WEI can be instantiated both to build Web applaradifrom scratch, and
to build Web applications based on existing mogialduding those defined
using other methodologies, e.g., UWE, WebML or OOH)

6.3.1 Building applications from scratch with WEI

The straightforward application of the frameworklie context of MDA
to develop a Web system from scratch has alreaely decumented in detalil
(Morenoet al, 2005a; Morenet al, 2005b; Moreno and Vallecillo, 2005c),
and successfully applied to define and implemewnersg kinds of Web
applications such as th@onference Review Systein the Travel Agency
Application

As a brief summary, the WEI methodology processolvaes the
definition of at least three PIMs, each one comesing to a viewpoint as
illustrated in Figure 12.6(b). Each PIM is compos#dhe set of models
described in the previous section, and is develdp#awing the process
depicted in Figure 12.6(a).

Once we have the three top-level PIMs are apprmtyialefined, we
need to mark them using the appropriate profilfsthe target platform(s)
and technologies. Once marked, we need to foll@vMDA transformation
process from PIMs to PSMs, applying a set of mapputes (one for each

22 Chapter 12

mark and for each marked element). The result efapplication of such
mapping rules are a set of UML models of the apfibc according to the
target technologies (e.g. Java, JSP, Oracle, dmplly, the PSMs are
translated to code applying a transformation preoegsin.

It is important to note thdiridgesshould be specified between the three
PIMs and between their corresponding PSMs, and/fich transformations
are also required. Bridges are the key elementmdotain consistency
between the different models at the same levebsfraction, and to be able
to provide links between them. A very interestingrkvby the group of
Alfonso Pierantonio at the University of L’Aquil&hicchettiet al, 2006)
shows how model weaving can be effectively usesperify and implement
such bridges, being able to connect the differetifaats and models
produced during the development of Web applicatieims particular the
models describing the data, navigation, and prasient aspects, whose
connections are usually defined in an ad-hoc mararet their consistency
manually maintained. Although their work is carriedt using non-OMG
notations and standards, it can be easily portade¢dVIDA context, using
MOF metamodels and QVT transformations for esthis
correspondences between elements from differentsvie

12. An Overview of Model-Driven Web Engineering trelMDA 23

Define

—
(" Define L n ool
Business Logic rocess Model
g Sl \rocess Toce) Define N Define PIM
), Component Distribution [| Business
Model Logic Viewpoint

N

Define
Choreography
Model]

Identify the
framework i 1
>{ metamodels that| Define . Data b pcint | ()
need 1o be Informanon Information
instantiated Structure Model Location Model
Define
User Interface Navlgallon
| structure Model

Define PIM
Presentation User Interface
| Model Viewpoint
T pefine
Define Define Define
>|_Context Model e > Ad';s;:uonpf
|

(a) Building Web applications from scratch

[
[T
|
|
|
|
|
|
|
|
|
|
|
|
+
|

|
I
I
e

| |
Psi M
User Imerface Layer _— Busmess Logu: Layer |————— Data Layer
| |
| | | ‘
| | |
Pl b Lo
| "l' ———————————— 1T T
Code
User In(erface Layer — Eusmess Loglc Layer |[————— > Data Layer
(b) MDA chain

Figure 12.6.The WEI process

6.3.2 Designing Web applications by reusing models from other
methodologies

One of the major advantages of our proposal isbifity to design and
implement applications reusing both models and sto¢®.g., model
compilers) defined by other Web methodologies. Thu§Veb application
developer could use, for instance, UWE or OO-Hdesigning the models
of the User Interface layer, and WebML for designiihe Data layer or vice-
versa. Furthermore, models could be already defioedther applications
and reused here for building fast prototypes.

Reusing models conforming to other Web methodobgequires the
definition of interoperability bridges between “cpatible” models coming
from different methodologies and the appropriatelel® of our framework.
Usually, the source and target entities definediffierent approaches do not
differ much. In addition, neither the models nog #ntities described in our

24 Chapter 12

framework were arbitrarily chosen: instead, thgytérgeneralize the entities
and models defined by most Web Engineering propo&se Table 12.1).
Thus, the interoperability bridges between modesfdifferent proposals
are a priori feasible and even quite straightfoduasing WEI as a reference
framework.

Layer M odédl OOHDM | W2000 | UWE | WebML | WSDSM | OOWS | OOH

User Structure N ~ \ ~ ~ N N

Inter- User ~ \ N N N

face Context ~ \ N
Adaptation \ N N
Navigation N N N N N N N
Present. N N \ N N N N

Busi- Structure ~ ~ N N —

ness Processes N N N N

Logic Choreogr. N
Architect. \ N N
Distribution

Data Inf.Struct. N N \ \ N J
Inf.Distrib.

Table 12.1Concerns and models covered by current Web Engimgeproposals

There are however some issues that need to besaddrewhich are
similar to the traditional problems that appear wirgegrating models that
represent different views of the same system. énfitist place we may find
models using different names to refer to the saements. Second, we may
find that one model may assume the existence aratiodels that either
provide some services (e.g., the precise behatihaimeeds to be executed
when a navigation link is traversed) or represeteéraal systems or legacy
applications that our Web system should be ablevadk with (by, e.g.,
exchanging data o invoking services). Third, thejomiy of Web
Engineering proposals apply (almost the same) agparof concerns but
the problem is that their levels of abstraction grahularity do not always
coincide. Fourth, some of the models that we waretise may deal with
more than one of our framework concerns. And finalle may find some
aspects and concerns that have not been modelethuge they are
implicitly assumed in the proposals’ models (thesmtypical example is
behaviour).

The way in which we address the first four issiselsyi specifying bridges
(either correspondences or transformations) betwierelements living in
different models. Such bridges have been defingtyu@VT relations. The
last issue, i.e., the lack of models for represgniome concerns, needs to

12. An Overview of Model-Driven Web Engineering trelMDA 25

be addressed by the explicit specification of setdments, in order to
supply the “missing” information. This case curkgitappens when models
to be re-used come from methodologies which do mte all their

information explicitly modelled, but hard-wired intheir supporting CASE
tools. Thus, the models to be re-used assume sofeemiation and

semantics which is not available if we try to uden in a different

environment. This problem is alleviated by the &iptepresentation of all
concerns in the WEI framework, because all thermédion has to be
supplied there.

1. ISSUESAND CHALLENGESFOR MDWE AND
MDA

So far we have discussed how MDA and its relatedcepts and
mechanisms can help in the effective design anceldpment of Web
applications. This section describes the major lehges faced by the
introduction of MDA in the Web Engineering domain.

7.1 Maturity of MDA standards and tools

One of the major problems that any person appragdWiDA discovers
is the lack of maturity of the current standardd tools. For example, some
standards considered key to MDA are not currentfypsrted by tools, and
some others have not even been finalized. Prolihblynost representative
example is QVT, for which there is not a completpliementation available
as of today. This is really frustrating, and netalbe urgently addressed in
order to avoid the dissatisfaction it producesdteptial users.

7.2 Lack of interoperability between UML tools

Despite the interoperability goals of the OMG, eutr UML modelling
tools cannot properly interoperate, and exchangiglels and diagrams
between them is almost impossible. XMl is suppdsegrovide the solution
to this problem, but most UML tool vendors fail generate fully XMI-
compliant specifications of the models they prodWat we currently see
is that most vendors add proprietary extensionshé&o XMI tags, which
cannot be understood by other tools. This is amosign of the current
immature status of the MDA initiative, which we exp can be resolved
soon (otherwise the vendors may Kkill this oppotiuniwith their
incompatibilities).

26 Chapter 12
7.3 Need to improvethe support for DSLs

As mentioned above, UML profiles are a very inténgsoption to define
DSLs, not only because they are relatively simpldefine, but also because
once defined they can be (in theory) used by anyLUbbl to produce
models that conform to that profile.

The current situation is not so bright, howevertuatly, most UML tools
provide support for defining UML profiles (in ternad their corresponding
stereotypes, tag definitions and constraints),failito be able to guarantee
the constraints on the models because they do upgost OCL checks.
Therefore, you can specify a UML profile that reyaets a given application
domain (that is, a DSL for that domain), but thieeré is no way of checking
that the models that users produce respect thetting rules of that DSL,
i.e., users can easily create wrong models. im#ar to defining a language
but without providing a compiler that could chedietgrammar of the
programs produced.

Another improvement that is also required is advettipport for relating
MOF metamodels with profiles, i.e., to map the muidel of a DSL to its
corresponding profile, as suggested in Section 3fs would allow
importing metamodels from other sources, and theimgo able to use
standard UML tools to easily draw models that camféo them. There are
some academic proposals in this respect (Abouzsthad, 2005), although
this kind of mechanisms should be implemented istiML tools as part
of their profiling facilities.

74 The complexity of UML

The size and technical complexity of UML has beeld mesponsible for
hampering its wide adoption in many industrial eoriments. UML is a
general-purpose modelling language for softwareAsitve systems, which
is designed to support many kinds of applicati@mnsequently, in contrast
to specific DSM languages, UML is used for a wideiety of purposes
across a broad range of domains. Thus, it counts miany modelling
elements and diagrams, and even provides supparbge with different
semantic variants, through teemanticvariation pointsdefined for some of
its elements. This mechanism increases the potead@ption of UML in
many different kinds of environments, but at thghhcost of increasing its
complexity and introducing lack of focus and pramis(“maximizing reuse
minimizes use”). This kind of mechanisms has alstrang impact on the
learning curve of UML, and on the efforts requil®dsystem modellers to
master and effectively use the UML notation.

12. An Overview of Model-Driven Web Engineering trelMDA 27
7.5 Thewaysin which modellerswork

Many of today’s modellers are still casual in thegaproach; MDSD (and
in particular MDA) requires increased rigor to puod models which are
amenable to automatic generation of code. This m#zat users need to be
very precise when designing their models—which iDAimplies plenty of
training in UML modelling.

Please notice that this issue and the previous amed be greatly
alleviated by the use of UML profiles which resteid the set of UML
elements that can be used to model a domain-spegifilication, and only
allowed users to draw correct models with regardheo DSL metamodel
(i.e., the profile). This is why very compact, peecand specific UML-based
DSLs, with a reduced number of elements and stetngturing rules are
being perceived as key factor to the success of M[Ezivinet al, 2005).
However, current UML tools do not provide completgpport for UML
profiles (including the validation of their OCL cstnaints) as mentioned
above. In addition, the use that average modettedse of UML stereotypes
and profiles is not always correct, especially lbeea this extension
mechanism is not as simple as it might seem atdight. Different studies
have tried to analyse the way in which stereotygescurrently used, and
the most common mistakes made by modellers wheminigfand using
them (Atkinsoret al, 2003; Henderson-Sellers and Gonzélez-Pérez, 2006)

Another tendency that we also perceive in normadetiers is the use of
DSLs that support agile methodologies and rapidopyping for designing
and developing Web applications. For instance,ube of Ruby is gaining
acceptance in many areas (Schwabe, 2006), andxfegiences show that
the increase in development performance and remtuati costs might be
worth its use, especially when combined with frames such as Rails
(Thomaset al, 2006).

7.6 MDA isnot just about modelling

It is unrealistic to expect 100% code generation deery computing
problem, and no vendor today can realistically roffe complete MDA
solution. Thus, if you expect too much of MDA, iflmfail. What MDA
offers is just a way of approaching the design dexklopment of systems,
using a set of standard notations and tools toeaehinteroperability and
reuse across vendors, and platform independenceioBtealize the full
benefits of MDA, organizations should not just @astuce some modelling
practices in their development processes; they swsbort the full software
lifecycle development process, from analysis amgirements management

28 Chapter 12

through design, development, implementation, deply, and
maintenance. Otherwise the full advantages of MDIAbe lost.

1.7 Modelling further concerns

Finally, and specially in the case of more datanastve Web applications
(usually called Web-based Information Systems) @e & trend towards the
incorporation of emerging initiatives like the Sertia Web, with supporting
technologies such as (Semantic) Web Services, 8athgntic) Web Rule
Languages, which aim at fostering application mperability. Semantic
Web languages (like RDF(S) or OWL) facilitate thesdription of models
for such domains. However, the integration of ladlse models with the rest
of the model-based Web Engineering approachesllisistesolved. This is
not only a problem for MDA, but for any MDSD appcba

Further concerns, such as user requirements, dsasvéhe role that the
Computation Independent Model (CIM) defined by Mpkays in MDWE,
need to be investigated too.

8. CONCLUSIONS

In this chapter we have presented an overview efdinrent state of
Model-Driven Software Development, and of Modelx@n Web
Engineering in particular, especially in the comte MDA. We have
analyzed which are the key concepts and mecharitshshese approaches
provide, and how the development of Web systemsbearefit from them.
Apart from introducing the advantages and oppotiesithat MDA can
bring to MDWE, we have also discussed the curreablpms and threats
that MDA faces for its successful adoption in irtdas$ settings. Addressing
and resolving them properly is possibly the majbelienge for MDA
nowadays.

In summary, we have seen that there is a real teeiategrate with UML
environments, which are the ones currently demandechany customer
settings nowadays, and that MDA can help re-fortimgeand re-organizing
current Web Engineering proposals in terms of nodeld transformations
between them. MDWE can significantly benefit frohe tfacts that each
model can address a concern, that these concemsbeaexplicitly
represented, and that they can be specified inatfopin independent
manner—hence achieving the modularity, portabilitgusability and
interoperability required for any competitive Wemmdieering proposal.
MDWE solutions cannot survive isolated any longéney need to
interoperate among themselves and be integratenl fim customers’

12. An Overview of Model-Driven Web Engineering trelMDA 29

development environments. And these are precibelyssues that MDA can
help them address in a very successful way.

0. ACKNOWLEDGEMENTS

We would like to acknowledge the work of many MDSBDA and
MDWE experts who have been involved in investigatimd addressing the
problems of model-Web Web Engineering. Althoughvtesvs in this paper
are the authors’ solely responsibility, they coulnt have been formulated
without the many long and clarifying discussionghwihese experts. In
particular we would like to thank Nora Koch, Jaim@mez, Vicente
Pelechano, Piero Fraternali, Oscar Pastor, Damilelv&be, Gustavo Rossi,
Geert-Jan Houben, Joaquin Miller, Jean BézivinpAdio Pierantonio, Bryan
Wood, and many others too numerous to be named Waravould also like
to thank both the organizers and the participahthe past editions of the
Model-driven Web Engineering (MDWE) workshop at thest ICWE
conferences, where some of the issues presentedveee originally raised
and discussed.

This work has been supported by Spanish Projet42d05-25886-E and
TIN2005-09405-C02-01.

10. REFERENCES

Abouzahra, A., Bézivin, J., Del Fabro, M.D. and aalty F. 2005. A Practical Approach to
Bridging Domain Specific Languages with UML profilen: Proc. of the Best Practices
for Model Driven Software Development at OOPSLA’@&n Diego, California, USA.

Atkinson, C., Kihne, T. And Henderson-Sellers, BO2 Systematic stereotype usage.
Software and Systems Modelling, 2(3) pp. 153-163.

Baresi, L., Colazzo, S., Mainetti, L. and Morasga,2006a. Model-Based Web Application
Development, in: Web Engineering, Germany, Springerlag, pp. 303—334.

Baresi, L., Colazzo, S., Mainetti, L. and Moras8a,2006b. W2000: A Modelling Notation
For Complex Web Applications, in: Web Engineerifigreory and Practice of Metrics
and Measurement for Web Development, Springer-gepp. 335-408.

Bézivin, J., Jouault, F., Rosenthal, P. and VakyrP. 2005. Modelling in the Large and
Modelling in the Small, in: Proc. of the EuropeadM Workshops: Foundations and
Applications, MDAFA 2003 and MDAFA 2004, Springeekfag, LNCS 3599, pp. 33—
46.

Bézivin, J. 2005. On the Unification Power of MagleSoftware and Systems Modelling
(SoSym), Springer Verlag, 4(2) pp.171-188.

Céaceres, P., De Castro, V., Vara, J.M. and MarEns2006. Model transformations for
hypertext modelling on web information systems,Rnoc. of the ACM/SAC 2006 Track
on Model Transformations (MT2006), Dijon, France pp56—1261.

30 Chapter 12

Ceri, S., Fraternali, P., Bongio, A., Brambilla, ,MComai, S. And Matera, M. 2002.
Designing Data-Intensive Web Applications, Morgaawmann.

Ceri, S., Daniel, F., Matera, M. and Facca, F. 2083del-driven Development of Context-
Aware Web Applications. ACM Trans. on Internet Tieslogy (TOIT), 7(1).

Chicchetti, A., Di Ruscio, D. and Pierantonio, A08. Weaving Concerns in Model-Based
Development of Data-Intensive Web Applications, Rroc. of the ACM/SAC 2006
Track on Model Transformations (MT2006), Dijon, kea, pp. 1256-1261.

De Castro, V., Marcos, E. and Lépez Sanz, M. 2@084odel Driven Method for Service
Composition Modelling: A Case Study, Int. Journal Web Engineering and
Technology, 2(4) pp. 335-353.

De Troyer, O. and Leune, C. J. 1998. WSDM: A Usentéred Design Method For Web
Sites, in: Proc. of the 7th International Confeeion World Wide Web, Amsterdam,
The Netherlands, Elsevier Science Publishers Bpj..85-94.

Di Ruscio, D., Muccini, H. and Pierantonio, A. 200\ Data Modelling Approach to Web
Application Synthesis, International Journal of Wehgineering and Technology, 1(3)
pp. 320-337.

Frasincar, F., Houben, G. and Vdovjak, R. 2001. RMM-Based Methodology for
Hypermedia Presentation Design, in: Proc. of the Bast European Conference on
Advances in Databases and Information Systems ADBIS London, UK, Springer-
Verlag, pp. 323-337.

Fuentes, L. and Vallecillo, A. 2004. An Introductido UML Profiles. UPGRADE, The
European Journal for the Informatics Professiob@) pp. 5-13.

Garzotto, F., Paolini, P. and Schwabe, D. 1993. HBM\ Model-based Approach to
Hypertext Application Design, ACM Transactions arfiokmation Systems, 11(1) pp. 1-
26.

Gomez, J. and Cachero, C. 2003. OO-H Method: EiigndML to Model Web Interfaces,
Idea Group Publishing, pp. 144-173.

Greenfield, J. and Short, K. 2004. Software FaetorAssembling Applications with Patterns,
Frameworks, Models & Tools, Wiley Publishing, Inc.

Henderson-Sellers, B. and Gonzalez-Pérez, C. 208&s and abuses of the stereotype
mechanism in UML 1.x and 2.0, in: Proc. of MODEL®B. Italy.

Jouault, F. and Kurtev, I. 2006a. On the Architeait Alignment of ATL and QVT, in: Proc.
of the ACM Symposium on Applied Computing, Dijomakce. ACM Press.

Jouault, F. and Kurtev, I. 2006b. Transforming medeith ATL, in: Proc. of the Model
Transformations in Practice Workshop at MoDELS 206%fontego Bay, Jamaica.
Springer-Verlag, LNCS 3844, pp. 128-138.

Kappel, G., Proll, B., Reich, S. and Retschitzegddt 2006. Web Engineering — The
Discipline of Systematic Development of Web Applioas, Wiley & Sons.

Koch, N. 2001. Software Engineering for Adaptivepdymedia Systems: Reference Model,
Modelling Techniques and Development Process, So&tgchnik- Trends, 21(1).

Koch, N. and Kraus, A. 2003. Towards A Common Meaidei For The Development of Web
Applications, in: Proc. of 3rd International Cordece on Web Engineering, ICWE
2003. Springer-Verlag, LNCS 2722, pp. 497-506.

Koch, N., Kraus, A., Cachero, C. and Melia, S. 20@tegration of Business Processes in
Web Applications Models, Journal of Web Enginee(i/E), 3(1) pp. 22—49.

Koch, N., Zhang, G. and Escalona, M.J. 2006. Mddehsformations from Requirements to
Web System Design, in: Proc. of the 6th Internaid@onference on Web Engineering,
ICWE 2006, Palo Alto, USA, ACM Press, pp. 281-288.

12. An Overview of Model-Driven Web Engineering trelMDA 31

Koch, N. 2006. Transformations Techniques in thed®™ddriven Development Process of
UWE, in: Proc. of the 2nd Model-Driven Web EngiriegrWorkshop, MDWE 2006,
Palo Alto, California.

Kraus, A. 2007. Model Driven Software Engineerirgg ¥Veb Applications, PhD Thesis.
Institut fur Informatik, Ludwig-Maximilians-Univeigit Miinchen.

Lange, D. B. 1994. An Object-Oriented Design Methedr Hypermedia Information
Systems, in: Proc. of 27th Annual Hawaii Interoatil Conference on System Sciences
(HICSS-27), Maui, Hawaii. IEEE Computer Society, Bf6—375.

Melia, S. and Gémez, J. 2006. The WebSA Approagiplying Model-Driven Engineering
To Web Applications, Journal of Web Engineering EIM5(2) pp. 121-149.

Miller, J. and Mukeriji, J. 2003. The MDA Guide. Btra. 2.0, OMG doc. ab/2003-01-03.

Moreno, N. and Vallecillo, A. 2005a. A Model-BasAgproach For Integrating Third Party
Systems With Web Applications, in: Proc. Proc. tif Biternational Conference on Web
Engineering, ICWE 2005, Springer-Verlag, LNCS 3539, 441-452.

Moreno, N., Romero, J.R. and Vallecillo, A. 2003hcorporating Cooperative Portlets in
Web Application Development, in: Proc. of the fitdbdel-Driven Web Engineering
Workshop, MDWE 2005. Sydney, Australia, pp. 70-79.

Moreno, N. and Vallecillo, A. 2005c. Modelling Iméetions between Web Applications and
Third Party Systems, in: Proc. of IWWOST 2005. BpRortugal, pp. 441-452.

Moreno, N., Fraternalli, P. and Vallecillo, A. 2006 UML 2.0 Profile for WebML
Modelling, in: Proc. of the 2nd Model-Driven Web dtmeering Workshop, MDWE
2006, Palo Alto, California.

OMG. 2005a. MOF QVT Final Adopted Specification, GMoc. ptc/05-11-01.

OMG. 2005b. UML 2.0 Superstructure Specificatio2@d, OMG doc. formal/05-07-04.

OMG. 2006. OCL 2.0, OMG doc. ptc/06-05-01.

Pastor, O., Gémez, J., Insfran, E. and Pelechan®001. The OO-Method Approach for
Information Systems Modelling: from Object-Oriente@onceptual Modelling To
Automated Programming, Information Systems, 26(7)507-534.

Pastor, O., Fons, J., Abrahao, S. and Pelechad@0®6. Conceptual Modelling of Web
Applications: the OOWS approach. Web Engineerindgs.EEmilia Mendes and Nile
Mosley. Springer, pp. 277-302.

Sanchez, J. and Garcia-Molina, J. 2006. A plugseldanguage to experiment with model
transformation, in: Proc. of the 9th Internatiof@dnference MoDELS 2006, Genova,
Italy. Springer-Verlag, LNCS 4199, pp. 336-350.

Schauerhuber, A., Wimmer, M. and Kapsammer, E. 2B0i6lging existing Web Modelling
Languages to Model- Driven Engineering: A MetamoidelWebML, in: Proc. of the
2nd Model-Driven Web Engineering Workshop, MDWE 80Palo Alto, California.

Schwabe, D., Pontes, R. A., Moura, |. 1999. OOHDMWe\n Environment for
Implementation of Hypermedia Applications in the WAVSigWEB Newsletter, 8(2).

Schwabe, D. 2006. Rapid Prototyping of Web Appi@a combining Domain Specific
Languages and Model Driven Design, in: Proc. ofdix¢h International Conference on
Web Engineering, ICWE 2006, Palo Alto, CaliforrdeCM Press.

Thomas, D. and Heinemeier, D. 2006. Agile Web Depelent with Rails: A Pragmatic
Guide. Second Edition, Pragmatic Bookshelf.

Vdovjak, R., Frasincar, F., Houben, G. and Barna2®03. Engineering Semantic Web
Information Systems In Hera, Journal of Web Engiimge(JWE), 2(1-2) pp. 3-26.

