
Chapter 12

AN OVERVIEW OF MODEL-DRIVEN WEB
ENGINEERING AND THE MDA

Nathalie Moreno1, José Raúl Romero2, and Antonio Vallecillo1
1Dept. Lenguajes y Ciencias de la Computación, University of Málaga, Spain.
2Dept. Informática y Análisis Numérico, University of Córdoba, Spain.

1. INTRODUCTION

Model-Driven Software Development (MDSD) is becoming a widely
accepted approach for developing complex distributed applications. MDSD
advocates the use of models as the key artifacts in all phases of development,
from system specification and analysis, to design and implementation. Each
model usually addresses one concern, independently from the rest of the
issues involved in the construction of the system. Thus, the basic
functionality of the system can be separated from its final implementation;
the business logic can be separated from the underlying platform technology,
etc. The transformations between models enable the automated
implementation of a system from the different models defined for it.

Web Engineering is a specific domain in which MDSD can be
successfully applied. Most of the technology is here to implement systems
that exploit the Web paradigm, but the effective design of Web applications
is still a concern: the complexity and requirements on Web applications are
constantly growing, while the supporting technologies and platforms rapidly
evolve.

Existing model-driven Web engineering (MDWE) approaches already
provide excellent methodologies and tools for the design and development of
most kinds of Web applications. They address different concerns using

2 Chapter 12

separate models (navigation, presentation, data, etc.), and are supported by
model compilers that produce most of the application’s Web pages and logic
based on the models. However, these proposals also present some
limitations, especially when it comes to modelling further concerns, such as
architectural styles or distribution. Furthermore, current Web systems need
to interoperate with other external applications, something that requires their
integration with third party Web-services, portals, and also with legacy
systems. Finally, many of these Web Engineering proposals do not fully
exploit all the potential benefits of MDSD, such as complete platform
independence, model transformation and merging, or metamodelling. (Miller
and Mukerji, 2003) from the Object Management Group (OMG™) has
introduced a new approach for organizing the design of an application into
(yet another set of) separate models so portability, interoperability and
reusability can be obtained through architectural separation of concerns.
MDA covers a wide spectrum of topics and issues (MOF-based metamodels,
UML profiles, model transformations, modelling languages and tools, etc.)
and also promises the interoperability required between models and tools
from separate vendors. On the other camp, Software Factories (Greenfield
and Short, 2004) provide effective concepts and resources for the model-
based design and development of complex applications, and it is our belief
that they can be successfully used for Web Engineering too.

In this chapter we will introduce the main concepts involved in MDWE,
and discuss its current strengths, weaknesses and major challenges,
especially in the context of the MDA initiative.

2. DOMAIN SPECIFIC MODELLING

Domain-Specific Modelling (DSM) is a way of designing and developing
systems that involves the systematic use of Domain Specific Languages
(DSLs) to represent the various facets of a system. Such languages tend to
support higher-level abstractions than general-purpose modelling languages,
and are closer to the problem domain than to the implementation domain.
Thus, a DSL follows the domain abstractions and semantics, allowing
modellers to perceive themselves as working directly with domain concepts.
Furthermore, the rules of the domain can be included into the language as
constraints, disallowing the specification of illegal or incorrect models.

DSLs play a cornerstone role in DSM. In general, defining a modelling
language involves at least two aspects: the domain concepts and rules
(abstract syntax), and the notation used to represent these concepts (concrete
syntax—let it be textual or graphical). Each model is written in the language
of its metamodel. Thus, a metamodel will describe the concepts of the

12. An Overview of Model-Driven Web Engineering and the MDA 3

language, the relationships between them, and the structuring rules that
constraint the model elements and combinations in order to respect the
domain rules. We normally say that a model conforms to its metamodel
(Bézivin, 2005).

Metamodels are also models, and therefore they need to be written in
another language, which is described by its meta-metamodel. This recursive
definition normally ends at that level, since meta-metamodels conform to
themselves.

A typical example of a metamodel-defined DSL is ATL (Jouault and
Kurtev, 2006b), which is a transformation language. A large library of ATL
transformations is available from the Eclipse metamodel open source library.
The interested reader can consult the work by Jean Bézivin (2005) for a
more complete and detailed introduction to these topics.

DSM often also includes the idea of code generation: automating the
creation of executable source code directly from the DSM models. Being
free from the manual creation and maintenance of source code implies
significant improvements in developer productivity, reduction of defects and
errors in programs, and a better resulting quality. Moreover, working with
models of the problem domain instead of models of the code raises the level
of abstraction, hiding unnecessary complexity and implementation-specific
details, while putting the emphasis on already familiar terminology.

A DSM environment may be thought of as a metamodelling tool, i.e., a
modelling tool used to define a modelling tool or CASE tool. The domain
expert only needs to specify the domain specific constructs and rules, and the
DSM environment provides a modelling tool tailored for the target domain.
The resulting tool may either work within the DSM environment, or less
commonly be produced as a separate stand-alone program. Using a DSM
environment can significantly lower the cost of obtaining tool support for a
DSM language, since a well-designed DSM environment will automate the
creation of program parts that are costly to build from scratch, such as
domain-specific editors, browsers and components.

Examples of DSM environments include commercial ones such as
MetaEdit+; open source environments, such as the Generic Eclipse
Modelling System; or academic ones such as the Generic Modelling
Environment (GME, http://www.isis.vanderbilt.edu/projects/gme/). The
increasing popularity of DSM has led to DSM frameworks being added to
existing integrated development environments, such as the Eclipse
Modelling Project (EMP) and Microsoft’s DSL Tools for Software
Factories.

4 Chapter 12

3. MDA

One of the best known MDSD initiatives is called Model-Driven
Architecture (MDA®), which is an approach to software development
produced and maintained by the OMG, a consortium that produces and
maintains computer industry specifications for interoperable enterprise
applications. MDA is a registered trademark of the OMG, together with its
related acronym, Model-Driven Development (MDD), another OMG
trademark.

The goal of MDA is one that is often sought: to separate business and
application logic from its underlying execution platform technology so that
(1) changes in the underlying platform do not affect existing applications;
and (2) business logic can evolve independently from the underlying
technology. A tool that implements the MDA concepts will allow developers
to produce models of the application and business logic, and also generate
code for a target platform by means of transformations.

The major benefit of this approach is that it raises the level of abstraction
in software development. Instead of writing platform-specific code in some
high-level language, software developers focus on developing models that
are specific to the application domain but independent of the platform. In a
nutshell, MDA is a broad conceptual framework that describes an overall
approach to software development.

MDA is not to be confused with MDSD. MDA is the OMG
implementation of MDSD, using the set of tools and standards defined by
OMG. These OMG standards include UML® (Unified Modelling Language),
MOF (Meta-Object Facility), XMI (XML Metadata Interchange), and
MOF/QVT (Query/View/Transformations), among others. All these
standards can be obtained from the OMG’s Web site (www.omg.org).

3.1 The MDA framework

The MDA framework is basically organized around the so-called
Platform Independent Models (PIMs) and Platform Specific Models (PSMs),
and on the model transformations between them. The PIM is a specification
of a system in terms of domain concepts. These domain concepts exhibit a
specified degree of independence of different platforms (e.g. CORBA, .NET,
and J2EE). The system can then be compiled using any of those platforms as
target by transforming the PIM to a platform specific model (PSM). Thus,
the PSM specifies how the system uses a particular type of platform. Finally,
the application’s code is considered a form of PSM (at the lowest level).

In MDA, a platform is a set of subsystems and technologies that provides
a set of functionality through interfaces and specified usage patterns, which

12. An Overview of Model-Driven Web Engineering and the MDA 5

any application supported by that platform can use without concern for the
details of how the functionality provided by the platform is implemented
(Miller and Mukerji, 2003). As in MDSD, each model in MDA conforms to
a metamodel, which in MDA can be defined using MOF.

Figure 12.1. The MDA pattern

In addition to models, transformations are also at the heart of MDA.
Model transformation is the process of converting one model to another
model of the same system (see Figure 12.1). Such transformations can be
done following many ways: using types, marks, templates, etc. In MDA,
software development becomes an iterative model transformation process:
each step transforms one PIM of the system at one level into one PSM at the
next level, until a final system implementation is reached, with the
particularity that each PSM of a transformation can become the PIM of the
next transformation (within another level of abstraction). In this context, the
implementation is just another model, which provides all the information
necessary to construct the system and to put it into operation.

3.2 OMG approaches for defining DSLs

Both PIMs and PSMs are models, and therefore defined using modelling
languages. Although in theory MDA’s models can be defined using any
modelling language, OMG strongly suggests that models are specified using
UML or any other MOF-compliant language (i.e., whose meta-metamodel is
MOF). This interest for being MOF and UML-compliant arises from the
increasing need to be able to interoperate with other notations and tools, and
to exchange data and models, thus facilitating and improving reuse.

6 Chapter 12

OMG defines three main possible approaches for defining domain-
specific languages. The first solution is to develop a metamodel that is able
to represent the relevant domain concepts. This means creating a new
domain language, an alternative to UML, using the MOF metamodelling
facilities provided by OMG for defining object-based visual languages (i.e.,
the same mechanisms that have been used for defining UML and its
metamodel). In this way, the syntax and semantics of the elements of the
new language are defined to faithfully match the domain’s specific
characteristics. The problem is that standard UML tools will not be able to
deal with such a new language (to edit models that conforms to the
metamodel, compile them, etc.). This approach is the one followed by
languages such as the CWM (Common Warehouse Metamodel) or the
W2000 (Baresi et al., 2006b) notations, since the semantics of some of these
languages’ constructs do not match the semantics of the corresponding UML
model elements.

The second and third solutions are based on extending UML. Extensions
of the UML can be either heavyweight or lightweight. The difference
between lightweight and heavyweight extensions comes from the way in
which they extend the UML metamodel. Heavyweight extensions are based
on a modified UML metamodel with the implication that the original
semantics of modelling elements is changed and therefore the extension
might no longer be compatible with UML tools.

Lightweight extensions are called UML profiles and are based on the
extension mechanisms provided by UML (OMG, 2005b; Fuentes and
Vallecillo, 2004) (stereotypes, tag definitions, and constraints) for
specializing its metaclasses, but without breaking their original semantics.
UML profiles may impose new restrictions on the extended metaclasses, but
they should respect the UML metamodel, without modifying the original
semantics of the UML elements (i.e., the basic features of UML classes,
associations, properties, etc., will remain the same, only new constraints can
be added to the original elements). Syntactic sugar can also be defined in a
profile, in terms of icons and symbols for the newly defined elements. One
of the major benefits of profiles is that they can be handled in a natural way
by UML tools.

In UML profiles, stereotypes define particularizations of given UML
elements, adding them some semantics. For instance, we can define the
stereotype <<persistent>> that extends UML classes to represent persistent
elements in a particular domain. Tag definitions specify the possible
attributes of stereotypes (e.g., the name of the table where the persistent
element should be stored). Finally, constraints define the domain rules that
the stereotyped UML elements should obey in order to make up correct
models (e.g., suppose that we do not want abstract classes to be stereotyped

12. An Overview of Model-Driven Web Engineering and the MDA 7

as persistent). Figure 12.2 graphically shows the UML specification of this
example stereotype.

Figure 12.2. An example of a UML 2.0 stereotype specification

Constraints on stereotypes are normally specified using OCL (Object
Constraint Language) (OMG, 2006), whose current version (2.0) is fully
aligned with UML. Constraints can be either directly attached to the
modelling elements (as shown in the Figure), or separately specified, and
then be related to the element to which they apply by identifying their
context:

context Persistent inv:

self.baseClass.isAbstract = false

Perhaps the best known example of customizing UML for a specific

domain is SysML, a DSL for systems engineering (www.sysml.org). In
addition, there is a whole set of UML profiles that customize UML to deal
with the specific concepts required in several relevant application domains
(e.g., real-time, business process modelling, finance, etc.) or implementation
technologies (such as .NET, J2EE, or CORBA).

Probably, the main advantage of UML profiles is not the extension of the
UML metamodel (which is already too large and complex to be used in full),
but that they allow “restricting” the set of UML elements that need to be
used in a given domain, particularizing the semantics of those elements in
order to capture the semantics and structuring rules of the domain-specific
elements they represent. It is important to repeat that such a particularization
can only be done by refinement, and without changing the original semantics
of UML elements.

Finally, meta-transformations which transform back and forth from the
profile definition to the metamodel definition can also be specified, as shown
in Figure 12.3.

8 Chapter 12

Figure 12.3. Example of transformation between a “profileable” metamodel and a profile

3.3 Model transformations

A model transformation can be viewed as a transformation between two
models, which describes how elements in the source model are converted
into elements in the target model. This is done by relating the appropriate
metamodel elements in the source and target metamodels, and defining
constraints and guards on such relations (e.g., the preconditions on the
transformation to take place). It is important to notice that model
transformations are also models, and therefore they conform to a metamodel
that describes the language in which they are expressed.

MDA describes a wide variety of models and transformations between
models. Whilst there are many kinds of transformations, they can fit broadly
into two main categories:

• Vertical mappings (or refinements), which relate system models at

different levels of abstraction—such as PIM to PSM mappings, or
reverse-engineering mappings. Until now, vertical transformations
have in most cases been developed within modelling tools using Web
tool-specific proprietary languages. For the same reason that domain
know-how should not be tied to a particular platform, it is thus critical
that model transformations are not dependent of a given CASE tool.

• Horizontal mappings, which relate or integrate models covering
different aspects or domains within a system, but at the same level of
abstraction. Horizontal mappings maintain the consistency between
levels guarantying that an entity needs to be consistent with what is
said about the same entity in any other specification at the same level
of abstraction. This includes the consistency of that entity’s
properties, structure and behaviour.

In MDA, OMG proposes MOF-QVT (Query/View/Transformation)

(OMG, 2005a) as the standard language for specifying model

12. An Overview of Model-Driven Web Engineering and the MDA 9

transformations. Many other model transformation languages, like VIATRA
by the University of Budapest, ATL by INRIA, RubyTL (Sánchez and
García-Molina, 2006) by the University of Murcia, etc., are also available,
with different levels of compliance to the QVT standard (Jouault and Kurtev,
2006a). The interested reader can visit the “Model Transformation” Web site
(www.model-transformation.org) for a complete listing of model
transformation languages and tools.

4. MODEL-DRIVEN WEB ENGINNERING
PROPOSALS

As mentioned in the introduction, Web Engineering is a specific domain
in which MDSD can be successfully applied, due to its particular
characteristics: there is a precise set of concerns that need to be addressed
(navigation, presentation, business processes, etc.); the basic kinds of Web
applications is well known (Kappel et al., 2006) (document-centric,
transactional, workflow-based, collaborative, etc.); and the set of
architectural patterns and structural features used in Web systems is reduced
and precisely defined. In fact, existing model-based Web Engineering
approaches—most of which have been described in this book—already
provide excellent methodologies and tools for the design and development of
most kinds of Web applications.

These approaches come basically from two main areas. First, a few
proposals are based on hypermedia design methods, introducing the required
expressiveness and mechanisms to capture relevant Web-specific elements,
such as navigation. Prominent examples of these initiatives are HDM
(Garzotto et al., 1993), RMM (Frasincar, 2001), WebML (Ceri et al., 2002),
W2000 (Baresi et al., 2006b), WSDM (De Troyer and Leune, 1998), Hera
(Vdovjak et al., 2003) and Webile (Di Ruscio, 2004), the majority of which
are based on the classic E/R model, or on extensions of it. Another group of
more recent approaches emerged as extensions of conventional object-
oriented development techniques, adapting them to cope with the particular
characteristics of Web systems. In this group we can find methods such as
EORM (Lange, 1994), OOHDM (Schwabe et al., 1999), UWE (Koch,
2001), OOWS (Pastor et al., 2006), OO-Method (Pastor et al., 2001), OO-H
(Gómez and Cachero, 2003) or MIDAS (De Castro et al., 2006).

These proposals are model-driven because they address the different
concerns involved in the design and development of a Web application using
separate models (such as content, navigation and presentation), and then are
supported by model compilers that produce most of the application’s Web
pages and logic right from the original models. Furthermore, most of them

10 Chapter 12

count with development processes that support their notations and tools, and
have been successfully used in commercial environments for building many
different kinds of Web systems. And although all methodologies adopt
different notations and propose their own constructs, they all share a
common ground of concepts—and thus they might be considered as
somehow based on a common metamodel, as suggested by N. Koch and A.
Kraus (Koch and Kraus, 2003).

However, as the complexity of Web applications grows (to be able to
deliver, e.g., large e-commerce, e-learning, or e-government applications),
and new requirements are imposed on Web systems, most of these proposals
are showing some limitations:

• They are usually tied to particular architectural styles and technologies,

i.e., do not allow the parameterizable construction of Web applications
using different platform technologies and architectural styles—they
typically build client-server applications only, and based on very specific
platform technologies (PHP, ASP, EJB or JSP). The problem is that
these architectural styles and target technologies are no longer relevant
when, for example, mobility and nomadic features are required for some
types of Web applications.

• Most of these proposals were originally conceived to deal with particular
kinds of Web applications (such as Web Information Systems,
Hypermedia Applications, or Adaptive Web Applications), so they deal
with a fixed set of common concerns (navigation, presentation, etc.).
Therefore they are very good at modelling certain aspects, but very weak
at modelling others. In addition, they are difficult to extend to model
further aspects (such as internal processes, distribution, and some other
extra-functional concerns) in a natural, modular and independent way.

Finally, Web applications currently need to interoperate with other

external systems. This requires their integration with third party Web-
services, portals, and also with legacy systems—meaning, among other
things, that their processes, choreography, and part of their business logic,
must be explicitly available for integration with these external systems
(Moreno and Vallecillo, 2005a). Not all MDWE proposals address this issue
at the model level; the integration is mostly achieved at the implementation
level.

Solving all these limitations is not a trivial task. We are currently
observing how some Web Engineering proposals are evolving to cope with
some of these issues. For instance, some of them are developing extensions
to address more and more aspects. Examples include UWE and OO-H,
which have incorporated a process model into their original approaches
(Koch et al., 2004), and are working to deal with the architectural style of

12. An Overview of Model-Driven Web Engineering and the MDA 11

the final application, too (Cáceres et al., 2006). WebML has also evolved to
be able to deal with legacy systems, and for context-awareness (Ceri et al.,
2007). The problem with these incremental extensions is that, unless their
efforts to include new concerns are made in a very well organized and
interoperable manner, we may end up with proposals that have grown by
adding too many new features in an unnatural and artificial way, and
therefore may become too complex and brittle.

Another problem that some of these proposals are also facing is their use
proprietary notations and tools. This forces customers and developers to buy
and use “yet-another” modelling tool (with the learning costs and efforts
involved in the process) if they want to take advantage of them. Even worse,
these proprietary tools do not interoperate with the rest of the tools being
used by the customer, which forces him/her to work with a whole set of
isolated development environments, each one different (and incompatible)
with the rest—something that the customer is not going to tolerate.

Thus, we are witnessing how the Web Engineering community considers
the use of standard UML notation, techniques and supporting tools for
modelling Web systems, including the adaptation of their own modelling
languages, representation diagrams and development processes to UML.
There is a need to be able to be compatible and interoperate with other
notations and tools, and to seamlessly exchange data and models with them.
This is the case for instance of WebML, which is defining UML-based
representations of its modelling language so that the WebML notation and its
development process can be smoothly integrated into standard UML
development environments (Moreno et al., 2006; Schauerhuber et al., 2006).

The advent of the Model Driven Architecture (MDA) initiative may also
bring significant benefits here, and also help to address most of the
limitations cited above in a natural way. As mentioned in the preceding
section, MDA provides an approach for organizing the design of an
application into separate models so that portability, interoperability and
reusability can be achieved through architectural separation of concerns. In
addition, the new modelling notation UML 2.0 incorporates a whole new set
of diagrams and concepts which are more appropriate for modelling the
specific structure and behaviour of software systems, and in particular of
Web applications (e.g., the new structuring mechanisms, or the improved
specification and semantics of state machines and activities).

Of course, the use of UML and MDA for Model-Driven Web
Engineering is not free from problems. As any other initiative, it brings
along both benefits and drawbacks, and also counts with both supporters and
detractors. The next two sections are dedicated to explain these ideas in
detail.

12 Chapter 12

5. MDA-BASED WEB ENGINEERING

MDA provides several interesting opportunities to improve current Web
Engineering approaches, helping them to overcome some of the limitations
cited above.

5.1 Becoming UML and MOF-compliant

As previously mentioned, there is an increasing need to be able to
interoperate and be compatible with other notations and tools, and to
integrate with already existing modelling environments—in particular with
the UML tools that nowadays are commonplace in many customer settings.
Of course, there are other DSM environments already coming—some of
them probably much better than those supporting the UML notation—but the
problem is that they have not reached the level of acceptance and are not as
spread as UML modelling tools are today. And we are faced with the need to
be able to offer a solution to our customers today.

In this sense, a very promising approach is the definition of UML profiles
for representing proprietary Web Engineering modelling languages. This is
the case of WebML, which has recently defined a metamodel and a UML
Profile (Moreno et al., 2006; Schauerhuber et al., 2006) for its notation. This
allows the WebML language and its development process (supported by the
WebRatio tool) to be smoothly integrated with standard UML development
environments.

In addition, counting on a metamodel for WebML will allow its
integration with other MDA tools as soon as they are available (editors,
validators, metric evaluators,…) and also with other MDSD approaches and
tools (using model transformations that allow the conversion of MOF-
metamodels to other metamodelling approaches, such as KM3 or Ecore).

5.2 Organizing models according to the MDA principles

We are also witnessing how other approaches that were originally UML-
based are making use of the new MDA principles to reorganize their models
in a modular manner, in such a way that each model focuses on one specific
concern, and then formulating their development processes in terms of
model transformations and model merges.

Probably the most representative example is UWE, which has
successfully re-structured its original set of models (which represented the
different concerns involved in the design and development of a Web
application) in terms of metamodels, and the UWE development process in
terms of transformations between them (Koch, 2006; Kraus, 2007). This has

12. An Overview of Model-Driven Web Engineering and the MDA 13

significantly enhanced the original proposal with better modularity,
expressiveness and re-use. Furthermore, the use of specification techniques
for the transformations will allow UWE to redefine and improve many of the
aspects of its development process, especially those that were originally
hard-coded in the UWE supporting CASE tool, in order to benefit from
model transformation rules defined at a higher abstraction level, e.g., using
graph transformations or transformation languages.

Another interesting outcome of the work done by the UWE group when
adopting the MDA principles into their proposal is the analysis of the models
(and model transformations) that comprise the MDSD process for Web
applications, focusing on the classification of the model transformations in
terms of type, complexity, number of source models, involvement of
marking models, implementation techniques and execution type (Koch,
2006). This analysis could be very useful to other model-based Web
Engineering methods if they decide to reformulate their proposals in terms of
independent models and transformations between them. Other proposals,
such as MIDAS, have also started to adopt such an approach by specifying
the development process of Web Information Systems in terms of
(meta)models and transformations between them (Cáceres et al., 2006).

5.3 Adding new concerns

That reformulation of model-based Web Engineering proposals is also
proving other benefits, such as the modular addition of further aspects into
their designs. Most of these concerns were not contemplated originally, and
integrating them was difficult because of the (usually ad-hoc) internal
structure of their supporting processes and tools.

One representative example is OO-H, whose authors realized that they
had to be able to deliver Web applications with different software
architectures and to different platforms, depending on the customers’
specific requirements—in this case the customers were the ones demanding
such features. The OO-H team managed to successfully reformulate part of
their internal structure and methods, making the representation of the
software architecture of the system a separate concern that could be captured
as a separate model, and then merged (using QVT transformations) with the
rest of the models of the system (such as navigation, presentation, etc.)
(Meliá and Gómez, 2006).

UWE and OO-H have also investigated the explicit representation of the
business processes of a Web application, as separate models (Koch et al.,
2004). Their joint findings are very encouraging, because they managed to
define a common way for modelling them for both proposals. This shows
that re-use of metamodels across Web Engineering proposals is feasible.

14 Chapter 12

Finally, UWE has also showed recently how other concerns, such as the
user requirements (Koch et al., 2006), can be expressed as UML models and
connected to the approach. This is one of the benefits they have obtained
once they have fully re-organized their proposal as a set of separate models,
related through model transformations (Kraus, 2007).

All these findings support the thesis that a common metamodel is
possible for Web Engineering, as originally proposed by Koch and Kraus
(2003). Furthermore, in the next section we will see how the existence of a
common metamodel could allow the definition of a framework for building
Web applications, which in the context of the MDA would also enable the
exchange of models and tools between MDWE proposals.

6. WEI: A MODEL-BASED FRAMEWORK FOR
BUILDING WEB APPLICATIONS

In this section we shall identify a general set of common concerns
involved in the development of Web applications, and present a Model-
Driven Web Architectural Framework (WEI) for organizing and relating the
different models that represent these concerns. Each WEI model focuses on
one particular concern (navigation, presentation, architectural style,
distribution) and at different levels of abstraction (platform-independent,
platform-specific). The set of metamodels that define such models can be
considered as a common metamodel for MDWE.

WEI is also supported by a development methodology for building Web
applications, which conforms to the MDA principles—in the sense that it is
defined in terms of models and the relationships between them, so
transformations can be easily formalized amongst the models until the final
implementation is reached.

6.1 Identifying reference models for Web applications

In general, the kinds of concerns involved in the development of a Web
application will directly depend on the type of Web application being
designed and also on the project requirements. Web applications have
already been classified by complexity and development history (Kappel et
al., 2006):

1. Document centric Web sites, which are hierarchical collections of static

HTML documents (basically, plain text and images) that offer read-only
information based on a set of structured content, navigation patterns and
presentation characteristics designed and stored a-priori. The simplicity

12. An Overview of Model-Driven Web Engineering and the MDA 15

and stability of these systems limits the scope of Web modelling to three
models: a user interface structure model that deals with the content of
the information delivered to the client, a navigation model that points
out the network of paths within the Web application and a presentation
model that refers to the visual elements that comprise the Web pages.

2. Transactional Web applications, which incorporate support for
persistent data store, information location, concurrency control, failure
and configuration management. In addition to the navigation aspects of
any hypermedia application, development of transactional Web
applications implies the need for an effective information structure
model, which is capable of capturing the processes of inserting, updating
and deleting data, and also a distribution model which enables the
establishment of alternatives for carrying out transactions. A clearer
separation between data design, behavioural aspects of the application,
and from the user interface concerns is required.

3. Interactive Web applications, which are browser-based applications that
allow dynamic content of Web pages, hence providing users with
personalized information. This feature requires a process model that
describes how business classes manage the information stored (i.e., the
elements of the information structure model), and also requires that the
navigation and presentation models are parameterizable to provide
tailor-made information to individual users according to their
preferences, goals and knowledge. Furthermore, this type of application
puts emphasis on modelling not only the information structure itself and
its future consumers (i.e. the users model), but also the relationships or
bridges between the information structure model, navigation model and
business model.

4. Workflow-based Web applications, which provide support for modelling
structured business processes, activity flows, business rules, interactions
among actors, roles, and a high-performance infrastructure for data
storage (content management). Information is needed not only for the
system actors but also for its processes. For this kind of Web
applications, as a minimum the following models are required: a user
interface structure model, a navigation model, a presentation model, an
information structure model, a business model (i.e., the description of
how functionality is encapsulated into business components and
services), a process model (with a description of the behaviour of the
internal processes) and a software architecture model identifying the
subsystems, components and connectors (software and hardware) the
application should have.

5. Collaborative Web applications, which are those executed by different
groups of users that access Web resources to accomplish a specific task.
They entail a modelling decomposition of the Web application design
into views or workspaces based on different user roles. For each group

16 Chapter 12

of users, the functional requirements, task and activities to be performed
must be specified. These issues involve modularity and distribution
requirements on the process model. Finally, the information assets to be
manipulated by views must be also modelled.

6. Portal-oriented Web applications, which integrate resources (data,
applications, and services) from different sources in a single point. From
an end-user perspective, a portal is a Web site with pages that are
organized by some form of navigation. Pages can either display static
HTML content or complex Web Services. Personalization, behaviour
tracking of users as well as message flows in Web service collaborations
are extremely relevant in portal-oriented Web applications. Therefore, a
choreography model needs to express the expected behaviour of both
the system processes and the external services in order to check their
compatibility and interoperability to compose them to build the portal
aggregated.

7. Ubiquitous Web applications, which need to be accessible at any time,
from anywhere, and in any media, i.e., they must run on a variety of
platforms, including mobile phones, personal digital assistants (PDAs),
desktop computers, etc. This implies that their presentation and
navigational models should be adaptable not only to different kinds of
users, but also to different kinds of platforms and contexts.
Consequently, this kind of application requires modelling the separation
between platform-independent and platform-specific concerns.

Based on the set of concerns identified above, each one represented by

one model, we have built an architectural framework for model-driven Web
application development (WEI). Its basic structure is depicted in Figure 12.4.
It is organized in three main layers (User Interface, Business Logic and
Data), each one corresponding to a viewpoint. In turn, each layer is
composed of a set of models, which specify the entities relevant to each
concern.

Far from being “yet another Web methodology”, the aims of WEI can be
summarized as follows:

(a) to be able to represent, in terms of models and relationships between

them, the concerns required for designing and developing Web
applications—following an architectural separation of concerns as
prescribed by MDA;

(b) to integrate and harmonize the models and practices proposed by
existing approaches, addressing their concerns;

(c) to be extensible so new concerns could be easily added;
(d) to provide as a common framework (and metamodel) in which current

proposals could be integrated and formulated in terms of the MDA

12. An Overview of Model-Driven Web Engineering and the MDA 17

principles, hence allowing them to smoothly interoperate (by defining,
e.g., interoperability bridges between compatible models coming from
different proposals, whenever this is possible) and complement each
other, share tools, etc.

At a high architectural design level, the whole WEI concept space is

captured by thirteen metamodels, organized in three main packages as shown
in Figure 12.4. It is important to note that the models that comprise the
framework have not been arbitrarily chosen, but based on the concerns
covered by existing Web Engineering proposals (see also Table 12.1 later
on) and our previous experience with the development of large distributed
applications.

Figure 12.4. Models representing the concerns involved in the development of Web
applications

At the bottom level, the Data Structure package describes the
organization of the information managed by the application (by means of,
e.g., a database system) and provides a mechanism for storing it persistently.
Information is depicted in terms of the data elements that constitute its

18 Chapter 12

information base and the semantic relationships between these elements.
This level is organized in two models:

(i) The Information Structure model deals with the information that has

to be made persistent, i.e., stored in a database.
(ii) The Information Distribution model describes the distribution and

replication of the data being modelled, since information can be
fragmented in Nodes or replicated in different Locations.

Then, the User Interface focuses on the facilities provided to the end user

for accessing and navigating through the information managed by the
application, and how this information is presented depending on the context
and the user profile. The User interface level is responsible for accepting
persistent, processed or structured data from the Process and Data
viewpoints, in order to interact with the end user and deliver the application
contents in a suitable format. Originally, Web applications were specifically
conceived to deal mainly with navigation and presentation concerns, but
currently they also need to address other relevant issues:

(i) The User Interface Structure model encapsulates the information that

the rest of the models at this level have about the information handled
by the system (i.e., it is the view of such information from this
viewpoint).

(ii) The Navigation model represents the application navigational
requirements in terms of Access Structures that can be accessed via
Navigational Links.

(iii) Navigational objects are not directly perceived by the user; rather, they
are accessed via the Presentation model. This model captures the
presentational requirements in terms of a set of PresentationUnits.

(iv) The User model describes and manages the user characteristics with the
purpose of adapting the content and the presentation to the users’ needs
and preferences.

(v) The Context model deals with Device, Network, Location and Time
aspects, and describes the environment of the application. These are
needed to determine how to achieve the required customization.

(vi) The Adaptation model captures context features and user preferences
to obtain the appropriate Web content characteristics (e.g., the number
of embedded objects in a Web page, the dimension of the base-Web
page without components, or the total dimension of the embedded
components). Adaptation policies are usually specified in terms of ECA
rules.

12. An Overview of Model-Driven Web Engineering and the MDA 19

Finally, the Business Logic package encapsulates the business logic of
the application, i.e., how the information is processed, and how the
application interacts with other computerized systems.

(i) The Business Logic Structure model describes the major classes or

component types representing services in the system
(BusinessProcessInformation), their attributes (Attributes), the signature
of their operations (Signature), and the relationships between them
(Association). The design of the Structure model is driven by the needs
of the processes that implement the business logic of the system, taking
into account the tasks that users can perform.

(ii) The Internal Processes model specifies the precise behaviour of every
BusinessProcessInformation or component as well as the set of
activities that are executed in order to achieve a business objective. For
a complete description of a business process, apart from the Structure
model, we need information related to the Activities carried out by the
BusinessProcessInformation, expressing their behaviour and the Flows
that pass around objects or data.

(iii) The Choreography model defines the valid sequences of messages and
interactions that the different objects of the system may exchange. The
choreography may be individually oriented, specifying the contract a
component exhibits to other components (PartialChoreography) or, it
may be globally oriented, specifying the flow of messages within a
global composition (GlobalChoreography).

(iv) The Distribution model describes how its basic entities, the Nodes, are
connected by means of point to point connections or Links. While the
Information Distribution model of the Data layer specifies the
distribution of the data, this model describes the distribution of the
processes that achieve the business logic of the system.

(v) The Component+Architectural Style model defines the fundamental
organization of a system in terms of its components, their relationships,
and the principles guiding its design and evolution, i.e., how
functionality is encapsulated into business components and services.

The emphasis in each of these levels will depend on the kind of Web

application being modelled (data-intensive, user-interface oriented, etc.)
A central model of the WEI framework is the Conceptual Model, which

can be used for both specifying the basic structure and contents on the Web
application (so the rest of the “views” can relate to the elements of that
model), and also to maintain the consistency of the model specifications
establishing how the different viewpoints merge and complement each other.

Please note that, in addition to the models, the framework predefines
some dependencies between the models which determine those cases in

20 Chapter 12

which the definition of a model requires the previous specification of some
other models. At a different level, the dependencies may also imply how the
framework instantiation process should be carried out. Furthermore, these
dependencies also specify correspondences between the elements from
different models of the framework, especially when they may have been
independently developed by different parties, or when they represent the
system from different viewpoints, and therefore the same element is
specified in different ways in different models (each one offering a partial
view of the whole). In these cases, correspondences between model elements
may be also subject to certain consistency rules, which check that the views
do not impose contradictory requirements on the elements they share.

6.2 Modelling these concerns

In order to formally define the framework, we have built a MOF
metamodel for each model, which describes its entities and their
relationships (http://www.lcc.uma.es/~nathalie/WEI/). MOF was selected as
metamodelling language because our interest in being MDA-compliant.
Other alternatives were of course possible (using, e.g., KM3 or Ecore) but it
was important for us to try to use OMG’s notations and tools, to exercise the
MDA approach. MagicDraw was selected as modelling tool. The selection
of a UML tool is something really important, because they do not
interoperate well and therefore the tool you use may greatly condition your
project.

But the metamodels are just one part of the puzzle. Unlike other
approaches, OMG does not provide a solution for directly building correct
models from metamodels. Instead, you have to define your own DSL
associated to these metamodels. In our case we defined light-weight
extensions of UML, i.e., UML profiles, for representing these models
(Moreno et al., 2005). As an example of it, Figure 12.5 shows the profile for
the WEI presentation metamodel.

12. An Overview of Model-Driven Web Engineering and the MDA 21

Figure 12.5. The WEI Presentation profile

6.3 How the framework is used

WEI can be instantiated both to build Web applications from scratch, and
to build Web applications based on existing models (including those defined
using other methodologies, e.g., UWE, WebML or OOH).

6.3.1 Building applications from scratch with WEI

The straightforward application of the framework in the context of MDA
to develop a Web system from scratch has already been documented in detail
(Moreno et al., 2005a; Moreno et al., 2005b; Moreno and Vallecillo, 2005c),
and successfully applied to define and implement several kinds of Web
applications such as the Conference Review System or the Travel Agency
Application.

As a brief summary, the WEI methodology process involves the
definition of at least three PIMs, each one corresponding to a viewpoint as
illustrated in Figure 12.6(b). Each PIM is composed of the set of models
described in the previous section, and is developed following the process
depicted in Figure 12.6(a).

Once we have the three top-level PIMs are appropriately defined, we
need to mark them using the appropriate profile(s) for the target platform(s)
and technologies. Once marked, we need to follow the MDA transformation
process from PIMs to PSMs, applying a set of mapping rules (one for each

22 Chapter 12

mark and for each marked element). The result of the application of such
mapping rules are a set of UML models of the application according to the
target technologies (e.g. Java, JSP, Oracle, etc.). Finally, the PSMs are
translated to code applying a transformation process again.

It is important to note that bridges should be specified between the three
PIMs and between their corresponding PSMs, and for which transformations
are also required. Bridges are the key elements to maintain consistency
between the different models at the same level of abstraction, and to be able
to provide links between them. A very interesting work by the group of
Alfonso Pierantonio at the University of L’Aquila (Chicchetti et al., 2006)
shows how model weaving can be effectively used to specify and implement
such bridges, being able to connect the different artifacts and models
produced during the development of Web applications—in particular the
models describing the data, navigation, and presentation aspects, whose
connections are usually defined in an ad-hoc manner, and their consistency
manually maintained. Although their work is carried out using non-OMG
notations and standards, it can be easily ported to the MDA context, using
MOF metamodels and QVT transformations for establishing
correspondences between elements from different views.

12. An Overview of Model-Driven Web Engineering and the MDA 23

Figure 12.6. The WEI process

6.3.2 Designing Web applications by reusing models from other
methodologies

One of the major advantages of our proposal is its ability to design and
implement applications reusing both models and tools (e.g., model
compilers) defined by other Web methodologies. Thus, a Web application
developer could use, for instance, UWE or OO-H for designing the models
of the User Interface layer, and WebML for designing the Data layer or vice-
versa. Furthermore, models could be already defined for other applications
and reused here for building fast prototypes.

Reusing models conforming to other Web methodologies requires the
definition of interoperability bridges between “compatible” models coming
from different methodologies and the appropriate models of our framework.
Usually, the source and target entities defined in different approaches do not
differ much. In addition, neither the models nor the entities described in our

24 Chapter 12

framework were arbitrarily chosen: instead, they try to generalize the entities
and models defined by most Web Engineering proposals (see Table 12.1).
Thus, the interoperability bridges between models from different proposals
are a priori feasible and even quite straightforward using WEI as a reference
framework.

Layer Model OOHDM W2000 UWE WebML WSDSM OOWS OOH

Structure √ ~ √ ~ ~ √ √
User ~ √ √ √ √
Context ~ √ √
Adaptation √ √ √
Navigation √ √ √ √ √ √ √

User

Inter-

face

Present. √ √ √ √ √ √ √
Structure ~ ~ √ √ ~
Processes √ √ √ √
Choreogr. √
Architect. √ √ √

Busi-

ness

Logic

Distribution
Inf.Struct. √ √ √ √ √ √ Data

Inf.Distrib.

Table 12.1. Concerns and models covered by current Web Engineering proposals

There are however some issues that need to be addressed, which are
similar to the traditional problems that appear when integrating models that
represent different views of the same system. In the first place we may find
models using different names to refer to the same elements. Second, we may
find that one model may assume the existence of other models that either
provide some services (e.g., the precise behaviour that needs to be executed
when a navigation link is traversed) or represent external systems or legacy
applications that our Web system should be able to work with (by, e.g.,
exchanging data o invoking services). Third, the majority of Web
Engineering proposals apply (almost the same) separation of concerns but
the problem is that their levels of abstraction and granularity do not always
coincide. Fourth, some of the models that we want to reuse may deal with
more than one of our framework concerns. And finally, we may find some
aspects and concerns that have not been modelled, because they are
implicitly assumed in the proposals’ models (the most typical example is
behaviour).

The way in which we address the first four issues is by specifying bridges
(either correspondences or transformations) between the elements living in
different models. Such bridges have been defined using QVT relations. The
last issue, i.e., the lack of models for representing some concerns, needs to

12. An Overview of Model-Driven Web Engineering and the MDA 25

be addressed by the explicit specification of such elements, in order to
supply the “missing” information. This case currently happens when models
to be re-used come from methodologies which do not have all their
information explicitly modelled, but hard-wired into their supporting CASE
tools. Thus, the models to be re-used assume some information and
semantics which is not available if we try to use them in a different
environment. This problem is alleviated by the explicit representation of all
concerns in the WEI framework, because all the information has to be
supplied there.

7. ISSUES AND CHALLENGES FOR MDWE AND
MDA

So far we have discussed how MDA and its related concepts and
mechanisms can help in the effective design and development of Web
applications. This section describes the major challenges faced by the
introduction of MDA in the Web Engineering domain.

7.1 Maturity of MDA standards and tools

One of the major problems that any person approaching MDA discovers
is the lack of maturity of the current standards and tools. For example, some
standards considered key to MDA are not currently supported by tools, and
some others have not even been finalized. Probably the most representative
example is QVT, for which there is not a complete implementation available
as of today. This is really frustrating, and needs to be urgently addressed in
order to avoid the dissatisfaction it produces to potential users.

7.2 Lack of interoperability between UML tools

Despite the interoperability goals of the OMG, current UML modelling
tools cannot properly interoperate, and exchanging models and diagrams
between them is almost impossible. XMI is supposed to provide the solution
to this problem, but most UML tool vendors fail to generate fully XMI-
compliant specifications of the models they produce. What we currently see
is that most vendors add proprietary extensions to the XMI tags, which
cannot be understood by other tools. This is another sign of the current
immature status of the MDA initiative, which we expect can be resolved
soon (otherwise the vendors may kill this opportunity with their
incompatibilities).

26 Chapter 12

7.3 Need to improve the support for DSLs

As mentioned above, UML profiles are a very interesting option to define
DSLs, not only because they are relatively simple to define, but also because
once defined they can be (in theory) used by any UML tool to produce
models that conform to that profile.

The current situation is not so bright, however. Actually, most UML tools
provide support for defining UML profiles (in terms of their corresponding
stereotypes, tag definitions and constraints), but fail to be able to guarantee
the constraints on the models because they do not support OCL checks.
Therefore, you can specify a UML profile that represents a given application
domain (that is, a DSL for that domain), but then there is no way of checking
that the models that users produce respect the structuring rules of that DSL,
i.e., users can easily create wrong models. It is similar to defining a language
but without providing a compiler that could check the grammar of the
programs produced.

Another improvement that is also required is a better support for relating
MOF metamodels with profiles, i.e., to map the metamodel of a DSL to its
corresponding profile, as suggested in Section 3.2. This would allow
importing metamodels from other sources, and then being able to use
standard UML tools to easily draw models that conform to them. There are
some academic proposals in this respect (Abouzahra et al., 2005), although
this kind of mechanisms should be implemented in most UML tools as part
of their profiling facilities.

7.4 The complexity of UML

The size and technical complexity of UML has been held responsible for
hampering its wide adoption in many industrial environments. UML is a
general-purpose modelling language for software-intensive systems, which
is designed to support many kinds of applications. Consequently, in contrast
to specific DSM languages, UML is used for a wide variety of purposes
across a broad range of domains. Thus, it counts with many modelling
elements and diagrams, and even provides support to cope with different
semantic variants, through the semantic variation points defined for some of
its elements. This mechanism increases the potential adoption of UML in
many different kinds of environments, but at the high cost of increasing its
complexity and introducing lack of focus and precision (“maximizing reuse
minimizes use”). This kind of mechanisms has also a strong impact on the
learning curve of UML, and on the efforts required by system modellers to
master and effectively use the UML notation.

12. An Overview of Model-Driven Web Engineering and the MDA 27

7.5 The ways in which modellers work

Many of today’s modellers are still casual in their approach; MDSD (and
in particular MDA) requires increased rigor to produce models which are
amenable to automatic generation of code. This means that users need to be
very precise when designing their models—which in MDA implies plenty of
training in UML modelling.

Please notice that this issue and the previous one could be greatly
alleviated by the use of UML profiles which restricted the set of UML
elements that can be used to model a domain-specific application, and only
allowed users to draw correct models with regard to the DSL metamodel
(i.e., the profile). This is why very compact, precise and specific UML-based
DSLs, with a reduced number of elements and strong structuring rules are
being perceived as key factor to the success of MDSD (Bézivin et al., 2005).
However, current UML tools do not provide complete support for UML
profiles (including the validation of their OCL constraints) as mentioned
above. In addition, the use that average modellers make of UML stereotypes
and profiles is not always correct, especially because this extension
mechanism is not as simple as it might seem at first sight. Different studies
have tried to analyse the way in which stereotypes are currently used, and
the most common mistakes made by modellers when defining and using
them (Atkinson et al., 2003; Henderson-Sellers and González-Pérez, 2006).

Another tendency that we also perceive in normal modellers is the use of
DSLs that support agile methodologies and rapid prototyping for designing
and developing Web applications. For instance, the use of Ruby is gaining
acceptance in many areas (Schwabe, 2006), and the experiences show that
the increase in development performance and reduction in costs might be
worth its use, especially when combined with frameworks such as Rails
(Thomas et al., 2006).

7.6 MDA is not just about modelling

It is unrealistic to expect 100% code generation for every computing
problem, and no vendor today can realistically offer a complete MDA
solution. Thus, if you expect too much of MDA, it will fail. What MDA
offers is just a way of approaching the design and development of systems,
using a set of standard notations and tools to achieve interoperability and
reuse across vendors, and platform independence. But to realize the full
benefits of MDA, organizations should not just introduce some modelling
practices in their development processes; they must support the full software
lifecycle development process, from analysis and requirements management

28 Chapter 12

through design, development, implementation, deployment, and
maintenance. Otherwise the full advantages of MDA will be lost.

7.7 Modelling further concerns

Finally, and specially in the case of more data-intensive Web applications
(usually called Web-based Information Systems) we see a trend towards the
incorporation of emerging initiatives like the Semantic Web, with supporting
technologies such as (Semantic) Web Services, and (Semantic) Web Rule
Languages, which aim at fostering application interoperability. Semantic
Web languages (like RDF(S) or OWL) facilitate the description of models
for such domains. However, the integration of all these models with the rest
of the model-based Web Engineering approaches is still unresolved. This is
not only a problem for MDA, but for any MDSD approach.

Further concerns, such as user requirements, as well as the role that the
Computation Independent Model (CIM) defined by MDA plays in MDWE,
need to be investigated too.

8. CONCLUSIONS

In this chapter we have presented an overview of the current state of
Model-Driven Software Development, and of Model-Driven Web
Engineering in particular, especially in the context of MDA. We have
analyzed which are the key concepts and mechanisms that these approaches
provide, and how the development of Web systems can benefit from them.
Apart from introducing the advantages and opportunities that MDA can
bring to MDWE, we have also discussed the current problems and threats
that MDA faces for its successful adoption in industrial settings. Addressing
and resolving them properly is possibly the major challenge for MDA
nowadays.

In summary, we have seen that there is a real need to integrate with UML
environments, which are the ones currently demanded in many customer
settings nowadays, and that MDA can help re-formulating and re-organizing
current Web Engineering proposals in terms of models and transformations
between them. MDWE can significantly benefit from the facts that each
model can address a concern, that these concerns can be explicitly
represented, and that they can be specified in a platform independent
manner—hence achieving the modularity, portability, reusability and
interoperability required for any competitive Web Engineering proposal.
MDWE solutions cannot survive isolated any longer, they need to
interoperate among themselves and be integrated into the customers’

12. An Overview of Model-Driven Web Engineering and the MDA 29

development environments. And these are precisely the issues that MDA can
help them address in a very successful way.

9. ACKNOWLEDGEMENTS

We would like to acknowledge the work of many MDSD, MDA and
MDWE experts who have been involved in investigating and addressing the
problems of model-Web Web Engineering. Although the views in this paper
are the authors’ solely responsibility, they could not have been formulated
without the many long and clarifying discussions with these experts. In
particular we would like to thank Nora Koch, Jaime Gómez, Vicente
Pelechano, Piero Fraternali, Oscar Pastor, Daniel Schwabe, Gustavo Rossi,
Geert-Jan Houben, Joaquin Miller, Jean Bézivin, Alfonso Pierantonio, Bryan
Wood, and many others too numerous to be named here. We would also like
to thank both the organizers and the participants of the past editions of the
Model-driven Web Engineering (MDWE) workshop at the last ICWE
conferences, where some of the issues presented here were originally raised
and discussed.

This work has been supported by Spanish Projects TIN2005-25886-E and
TIN2005-09405-C02-01.

10. REFERENCES

Abouzahra, A., Bézivin, J., Del Fabro, M.D. and Jouault, F. 2005. A Practical Approach to
Bridging Domain Specific Languages with UML profiles, in: Proc. of the Best Practices
for Model Driven Software Development at OOPSLA’05, San Diego, California, USA.

Atkinson, C., Kühne, T. And Henderson-Sellers, B. 2003. Systematic stereotype usage.
Software and Systems Modelling, 2(3) pp. 153–163.

Baresi, L., Colazzo, S., Mainetti, L. and Morasca, S. 2006a. Model–Based Web Application
Development, in: Web Engineering, Germany, Springer-Verlag, pp. 303–334.

Baresi, L., Colazzo, S., Mainetti, L. and Morasca, S. 2006b. W2000: A Modelling Notation
For Complex Web Applications, in: Web Engineering: Theory and Practice of Metrics
and Measurement for Web Development, Springer-Verlag, pp. 335–408.

Bézivin, J., Jouault, F., Rosenthal, P. and Valduriez, P. 2005. Modelling in the Large and
Modelling in the Small, in: Proc. of the European MDA Workshops: Foundations and
Applications, MDAFA 2003 and MDAFA 2004, Springer-Verlag, LNCS 3599, pp. 33–
46.

Bézivin, J. 2005. On the Unification Power of Models. Software and Systems Modelling
(SoSym), Springer Verlag, 4(2) pp.171–188.

Cáceres, P., De Castro, V., Vara, J.M. and Marcos, E. 2006. Model transformations for
hypertext modelling on web information systems, in: Proc. of the ACM/SAC 2006 Track
on Model Transformations (MT2006), Dijon, France pp. 1256–1261.

30 Chapter 12

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S. And Matera, M. 2002.

Designing Data-Intensive Web Applications, Morgan Kaufmann.
Ceri, S., Daniel, F., Matera, M. and Facca, F. 2007. Model-driven Development of Context-

Aware Web Applications. ACM Trans. on Internet Technology (TOIT), 7(1).
Chicchetti, A., Di Ruscio, D. and Pierantonio, A. 2006. Weaving Concerns in Model-Based

Development of Data-Intensive Web Applications, in: Proc. of the ACM/SAC 2006
Track on Model Transformations (MT2006), Dijon, France, pp. 1256–1261.

De Castro, V., Marcos, E. and López Sanz, M. 2006. A Model Driven Method for Service
Composition Modelling: A Case Study, Int. Journal of Web Engineering and
Technology, 2(4) pp. 335–353.

De Troyer, O. and Leune, C. J. 1998. WSDM: A User Centered Design Method For Web
Sites, in: Proc. of the 7th International Conference on World Wide Web, Amsterdam,
The Netherlands, Elsevier Science Publishers B. V., pp. 85–94.

Di Ruscio, D., Muccini, H. and Pierantonio, A. 2004. A Data Modelling Approach to Web
Application Synthesis, International Journal of Web Engineering and Technology, 1(3)
pp. 320–337.

Frasincar, F., Houben, G. and Vdovjak, R. 2001. An RMM–Based Methodology for
Hypermedia Presentation Design, in: Proc. of the 5th East European Conference on
Advances in Databases and Information Systems ADBIS ’01, London, UK, Springer-
Verlag, pp. 323–337.

Fuentes, L. and Vallecillo, A. 2004. An Introduction to UML Profiles. UPGRADE, The
European Journal for the Informatics Professional, 5(2) pp. 5–13.

Garzotto, F., Paolini, P. and Schwabe, D. 1993. HDM - A Model-based Approach to
Hypertext Application Design, ACM Transactions on Information Systems, 11(1) pp. 1–
26.

Gómez, J. and Cachero, C. 2003. OO-H Method: Extending UML to Model Web Interfaces,
Idea Group Publishing, pp. 144–173.

Greenfield, J. and Short, K. 2004. Software Factories: Assembling Applications with Patterns,
Frameworks, Models & Tools, Wiley Publishing, Inc.

Henderson-Sellers, B. and González-Pérez, C. 2006. Uses and abuses of the stereotype
mechanism in UML 1.x and 2.0, in: Proc. of MODELS 2006. Italy.

Jouault, F. and Kurtev, I. 2006a. On the Architectural Alignment of ATL and QVT, in: Proc.
of the ACM Symposium on Applied Computing, Dijon, France. ACM Press.

Jouault, F. and Kurtev, I. 2006b. Transforming models with ATL, in: Proc. of the Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica.
Springer-Verlag, LNCS 3844, pp. 128–138.

Kappel, G., Pröll, B., Reich, S. and Retschitzegger, W. 2006. Web Engineering – The
Discipline of Systematic Development of Web Applications, Wiley & Sons.

Koch, N. 2001. Software Engineering for Adaptive Hypermedia Systems: Reference Model,
Modelling Techniques and Development Process, Softwaretechnik- Trends, 21(1).

Koch, N. and Kraus, A. 2003. Towards A Common Metamodel For The Development of Web
Applications, in: Proc. of 3rd International Conference on Web Engineering, ICWE
2003. Springer-Verlag, LNCS 2722, pp. 497–506.

Koch, N., Kraus, A., Cachero, C. and Meliá, S. 2004. Integration of Business Processes in
Web Applications Models, Journal of Web Engineering (JWE), 3(1) pp. 22–49.

Koch, N., Zhang, G. and Escalona, M.J. 2006. Model Transformations from Requirements to
Web System Design, in: Proc. of the 6th International Conference on Web Engineering,
ICWE 2006, Palo Alto, USA, ACM Press, pp. 281–288.

12. An Overview of Model-Driven Web Engineering and the MDA 31

Koch, N. 2006. Transformations Techniques in the Model-Driven Development Process of

UWE, in: Proc. of the 2nd Model-Driven Web Engineering Workshop, MDWE 2006,
Palo Alto, California.

Kraus, A. 2007. Model Driven Software Engineering for Web Applications, PhD Thesis.
Institut für Informatik, Ludwig-Maximilians-Universität München.

Lange, D. B. 1994. An Object-Oriented Design Method For Hypermedia Information
Systems, in: Proc. of 27th Annual Hawaii International Conference on System Sciences
(HICSS-27), Maui, Hawaii. IEEE Computer Society, pp. 366–375.

Meliá, S. and Gómez, J. 2006. The WebSA Approach: Applying Model-Driven Engineering
To Web Applications, Journal of Web Engineering (JWE), 5(2) pp. 121–149.

Miller, J. and Mukerji, J. 2003. The MDA Guide. Draft v. 2.0, OMG doc. ab/2003-01-03.
Moreno, N. and Vallecillo, A. 2005a. A Model-Based Approach For Integrating Third Party

Systems With Web Applications, in: Proc. Proc. of 5th International Conference on Web
Engineering, ICWE 2005, Springer-Verlag, LNCS 3579, pp. 441–452.

Moreno, N., Romero, J.R. and Vallecillo, A. 2005b. Incorporating Cooperative Portlets in
Web Application Development, in: Proc. of the first Model-Driven Web Engineering
Workshop, MDWE 2005. Sydney, Australia, pp. 70–79.

Moreno, N. and Vallecillo, A. 2005c. Modelling Interactions between Web Applications and
Third Party Systems, in: Proc. of IWWOST 2005. Porto, Portugal, pp. 441–452.

Moreno, N., Fraternalli, P. and Vallecillo, A. 2006. A UML 2.0 Profile for WebML
Modelling, in: Proc. of the 2nd Model-Driven Web Engineering Workshop, MDWE
2006, Palo Alto, California.

OMG. 2005a. MOF QVT Final Adopted Specification, OMG doc. ptc/05-11-01.
OMG. 2005b. UML 2.0 Superstructure Specification v. 2.0, OMG doc. formal/05-07-04.
OMG. 2006. OCL 2.0, OMG doc. ptc/06-05-01.
Pastor, O., Gómez, J., Insfran, E. and Pelechano, V. 2001. The OO-Method Approach for

Information Systems Modelling: from Object-Oriented Conceptual Modelling To
Automated Programming, Information Systems, 26(7) pp. 507–534.

Pastor, O., Fons, J., Abrahao, S. and Pelechado, V. 2006. Conceptual Modelling of Web
Applications: the OOWS approach. Web Engineering. Eds. Emilia Mendes and Nile
Mosley. Springer, pp. 277–302.

Sánchez, J. and García-Molina, J. 2006. A plugin-based language to experiment with model
transformation, in: Proc. of the 9th International Conference MoDELS 2006, Genova,
Italy. Springer-Verlag, LNCS 4199, pp. 336–350.

Schauerhuber, A., Wimmer, M. and Kapsammer, E. 2006. Bridging existing Web Modelling
Languages to Model- Driven Engineering: A Metamodel for WebML, in: Proc. of the
2nd Model-Driven Web Engineering Workshop, MDWE 2006, Palo Alto, California.

Schwabe, D., Pontes, R. A., Moura, I. 1999. OOHDMWeb: An Environment for
Implementation of Hypermedia Applications in the WWW, SigWEB Newsletter, 8(2).

Schwabe, D. 2006. Rapid Prototyping of Web Applications combining Domain Specific
Languages and Model Driven Design, in: Proc. of the sixth International Conference on
Web Engineering, ICWE 2006, Palo Alto, California. ACM Press.

Thomas, D. and Heinemeier, D. 2006. Agile Web Development with Rails: A Pragmatic
Guide. Second Edition, Pragmatic Bookshelf.

Vdovjak, R., Frasincar, F., Houben, G. and Barna, P. 2003. Engineering Semantic Web
Information Systems In Hera, Journal of Web Engineering (JWE), 2(1-2) pp. 3–26.

