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Abstract: In recent years, we have witnessed how the Web Engineering community has started
using the standard unified modelling language (UML) notation, techniques and supporting tools
for modelling Web systems, which has led to the adaptation to UML of several existing modelling
languages, notations and development processes. This interest for being MOF and UML-compliant
arises from the increasing need to interoperate with other notations and tools, and to exchange data
and models, thus facilitating reuse. WebML, like any other domain-specific language, allows one to
express in a precise and natural way the concepts and mechanisms of its domain of reference.
However, it cannot fully interoperate with other notations, nor be integrated with other model-
based tools. As a solution to these requirements, a UML 2.0 profile for WebML which allows
WebML models to be used in conjunction with other notations and modelling tools has been
described. The paper also evaluates UML 2.0 as a platform for Web modelling and identifies
some key requirements for making this version of the standard more usable.
1 Introduction

The UML [1] is a general purpose visual modelling
language for specifying, constructing and documenting
systems, which can be used in all major application
domains and implementation platforms. It has been
widely adopted by both industry and academia as the stan-
dard language for describing software systems. This is
reflected by the fact that it is currently supported by hun-
dreds of model-driven commercial tools, which have been
successfully used in numerous development projects.
However, the fact that UML is a general purpose notation

may limit its effectiveness in modelling some specific
domains (e.g. the hypertext interfaces of Web applications),
for which specialised languages and tools, such as for
example WebML/WebRatio [2], OO-H/VisualWade [3]
and so on may be more appropriate. These domain-specific
languages (DSLs) tend to support higher-level abstractions
than general-purpose modelling languages, and are closer
to the problem domain than to the implementation
domain. Thus, a DSL allows modellers to perceive them-
selves as working directly with domain concepts.
Furthermore, the rules of the domain can be included into
the language as constraints, enabling model-based checking
of illegal or incorrect specifications.
Despite the potential benefits of using specific languages,

in the short term we certainly see a growing interest in
Meta-Object Facility (MOF), UML and UML profiles for
modelling Web applications. This interest for being MOF
and UML-compliant arises from the increasing need to
interoperate with other notations and tools, and to exchange
data and models, thus facilitating and improving reuse. And
although some DSLs (and their supporting environments)
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might be probably more suitable for modelling specific
aspects of Web applications than pure UML, they have
not reached the level of acceptance and diffusion of UML
modelling tools. As a consequence, developers must buy
and use ‘yet-another’ modelling tool (with additional learn-
ing costs and efforts) if they want to take advantage of their
favourite DSL. Even worse, proprietary DSL-based tools
often do not interoperate with other tools, which fragments
the workspace into a a set of isolated development
environments.

Because of these driving forces, the Web Engineering
community has started using standard UML notation, tech-
niques and supporting tools for modelling Web systems,
which has led to the adaptation of several DSLs, represen-
tation diagrams and development processes to UML.
Several authors have proposed their approach to the defi-
nition of metamodels and UML extensions, as illustrated,
for example [4–7]. Especially UML profiles have proved
to be a simple and effective mechanism for representing
proprietary Web Engineering modelling languages.

We provide a contribution to the effort of expressing
state-of-the-practice Web Engineering modelling languages
in UML, by introducing a UML 2.0 profile for WebML,
which allows the WebML language and its development
process (supported by the WebRatio tool) to be smoothly
integrated with standard UML development environments.
In addition, we also describe a metamodel for WebML,
which will allow its integration with other MDA tools as
soon as they are available (editors, validators, metric eva-
luators etc.) and also with other model-driven approaches
and tools (e.g. those using KM3-or Ecore-based
metamodels).

The remainder of the paper is organised as follows.
Section 2 introduces a running example used throughout
the paper, and Section 3 briefly presents WebML and
WebRatio. Then, Sections 4 and 5 define the WebML meta-
model and WebML profile, respectively. Section 6 com-
pares the WebML and UML representations, reviews the
main design choices taken in the definition of WebML
and discusses how they have been impacted by the use of
UML for encoding WebML, and summarises some of the
lessons learnt in the process of mapping WebML to UML.
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Finally, Section 7 examines related work, whereas Section 8
draws some conclusions and outlines future works.

2 Running example

Before illustrating WebML and discussing its represen-
tation in UML, we introduce a simplified running
example: the product catalogue and content management
system of small furniture manufacturing company.

The catalogue is a Web application offered to the general
public that advertises various types of furniture, for example
chairs, tables, lamps and so on, and also special combi-
nations of items sold at a discounted price. Individual
items are described by an image, a textual description,
their price, a set of technical features (dimensions, available
colours etc.), and larger images. Combinations are illus-
trated by a photograph, advertising text and the discounted
price.

Information about the store locations is also made avail-
able, including the address and contact information, an
image of the store and a map. Users are expected to visit
the catalogue home page containing the offer and the
product of the day. From there, they can access the details
of the advertised product and offer, or enter dedicated
areas for navigating the catalogue, using various search
and browsing facilities.

From the page describing a combination, the individual
items forming the combination can be accessed, and conver-
sely, it is possible to navigate from an item to the combi-
nations including it. From the home page, the list of
stores can also be reached.

The employees of the company can login from the home
page into a protected Web application, which enables mana-
ging the content of all the objects displayed in the public
site.

3 WebML and WebRatio in brief

WebML [2] describes Web applications at three levels: the
content objects, the front-end organisation and the look and
feel. Content objects are specified using a simplified
entity-relationship (E-R)data model (or, equivalently, a sim-
plified UML class diagram), comprising classes, entities,
attributes, single inheritance, binary relationships and data
derivation expressions. Fig. 1 shows the data model of the
running case, with the objects mentioned in the
requirements.
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The front-end is specified using the hypertext model,
which has a hierarchical organisation: each application cor-
responds to a site view, internally structured into areas,
which in turn may contain sub-areas and pages. Multiple
site views can be associated to the same data model, for
example to represent applications delivered to different
actors or designed for different access devices (web,
digital television, mobile phones, PDAs). Site views, areas
and pages are not only units of modularisation, but also
govern access, which can be selectively granted to each
individual module based on the user’s identity and subscrip-
tion to groups. A first kind of navigation, which does not
depend on page content, can be expressed over site views,
areas and pages: if a page or area is marked as ‘landmark’
(L), it is assumed to be reachable (through suitable naviga-
tion commands) from all the other areas and pages in the
same module; if a page or area is marked as ‘default’ (D),
it is assumed to be displayed by default when the enclosing
module is accessed; if a page is marked as ‘home’ (H), it is
displayed by default when accessing the application. Fig. 2
shows the hypertext model of the public site view of the
running case, with the areas and pages mentioned in the
requirements, annotated with the navigation markers.
Pages are the basic interface containers: they can be

structured in sub-pages and comprise content units. A
content unit is defined as a component that publishes
some content in a page; the published content can be
extracted dynamically from the objects specified in the
data model or specified statically in the hypertext model
(e.g. an entry form consisting of multiple input fields). In
addition to content units, WebML comprises operation
units, defined as components for executing arbitrary
business logic. Operation units, unlike content units, do
not publish content and thus are positioned outside pages.
Components (content and operation units) may have
input and output parameters (e.g. the OID attribute of the
object to display or to modify, the username and password

Fig. 1 Data model of the running case
Fig. 2 Hypertext model of the public site view
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for authenticating the user etc.). Parameter passing is
expressed as a side effect of navigation: components are
connected by links, which have a threefold purpose:
enabling the user’s navigation, supporting the passage of
parameters and triggering the execution of components.
Therefore a WebML hypertext can essentially be described
as a graph of parametric components, connected by links,
in which some components publish content and are con-
tained within pages, some other components perform
business actions, and are triggered from links emanating
from pages. Links express the ‘wiring’ of the application.
Five kinds of link are defined: normal links, denoted by
solid arrows, allow both navigation and parameter
passing; transport links, denoted by dashed arrows, allow
only parameter passing and are not rendered as navigation
devices; automatic links, denoted by the symbol [A], are
normal links automatically ‘navigated’ by the system on
page load; OK and KO links are output links of operations,
respectively, followed after execution success or failure. In
Fig. 2, the home page contains two data-driven content
units (for displaying the product and offer of the day)
and one static content unit (an entry form); the entry
form is connected to a login operation (placed outside
the home page), for authenticating the employees before
accessing the protected content management site view.
The outgoing link of the entry unit shows the parameters
transferred to the login operation units. Application devel-
opment with WebML is supported by WebRatio, a tool
enabling the editing of data and hypertext models and the
generation of the application source code. WebRatio also
supports all the technical development tasks: declaring
the data sources and Web services used in the project,
forward and reverse engineering of the data model, presen-
tation specification through page mockups, and code gener-
ation and deployment for different platforms.

4 Metamodel for WebML

A metamodel is the ‘perfect’ way to model a dynamically
evolving notation and maintain it in a homogeneous and
comprehensive way [5]. There are different metamodelling
languages and notations, among which the combination of
MOF and the object constraint language (OCL) constitutes
the Object Management Group (OMG) proposal for speci-
fying metamodels.
Mapping a DSL like WebML to MOF involves represent-

ing each element of the domain – its syntax and semantics –
as a MOF artefact and performing a refactoring process in
order to introduce further MOF-elements such as compo-
sitions/aggregations or abstract classes, which preserve
the original semantics while allowing a better grouping of
concepts with similar attributes.
This task is relatively simple when there is a formal

description of the language syntax and grammar (although
the MOF metamodel generated must be augmented with
several OCL constraints to cover the semantical features
and structural rules of the language). In the WebML case,
a formal Backus-Naur Form (BNF) grammar is available
only for its derivation language (WebML-Object Query
Language, OQL).
A possible starting point for deriving the metamodel

could be the set of document type definition (DTDs)
employed by the WebRatio development tool for storing
WebML projects (see [8]), as done by other authors (cf.
[9]). However, the WebRatio DTDs are low level because
they comprise many auxiliary concepts, necessary to the
tool but redundant with respect to the formal definition of
the language. Therefore we decided to build the MOF
IET Softw., Vol. 1, No. 3, June 2007
metamodel from scratch, starting from the definition of
the basic concepts of the language. Such a metamodel is
described in the remainder of this section.

4.1 WebML metamodel structure

We have represented the WebML concept space by means
of four metamodel packages, as illustrated in Fig. 3:
CommonElemets, DataView, HypertextView and
PresentationView. Complying with a package requires to
comply with its abstract syntax, well-formed rules, seman-
tics and notation.

† The CommonElements package comprises core concepts
used when metamodelling WebML elements, such as data
types or common features (e.g. name, comment, identifier,
properties etc.). The other packages have dependencies on
the CommonElements package because of association and
generalisation relationships.
† The DataView package addresses WebML data model
concepts, such as entities, attributes, relationships, ISA hier-
archies and so on, which are reused by the HypertextView
package.
† The HypertextView package establishes the overall
structure of the WebML hypertexts, in terms of site
views, areas, pages, content units and so on, and shows
how these artefacts can be assembled and interconnected
to constitute a WebML hypertext model.
† Finally, the PresentationView package is concerned with
how WebML represents pages on the screen. Each WebML
page has associated one or more style sheets specifying a
different way of presenting its instances on the screen,
where style sheets are XML documents obeying the
WebML presentation DTDs mentioned in [8].

In the next subsections, each package is described, and all
the entities, relations and constraints instantiated within the
WebML models are progressively introduced.

4.2 CommonElements package

As shown in Fig. 4, the abstract ModelElement metaclass is
the central element of the abstraction. It represents any
WebML modelling element from both the data, hypertext
and presentation models. Its abstract sub-metaclasses rep-
resent the fact that any WebML element may have a
name, an identifier, a comment, a property, a type or a deri-
vation constraint associated to its definition.

WebML data types are represented by the Type meta-
class. In this way, WebML enumeration types and their cor-
responding values have been realised by metaclasses
Domain and DomainElement, whereas WebML primitive
types such as Integer or String have been meta-modelled
by the WebMLType metaclass.

Fig. 3 WebML metamodel packages
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4.3 DataView package

All WebML specifications contain a DataModel describing
the data structures used to represent the information
(content) handled by the application. Content can be mod-
elled using an E-R model (or, equivalently, a simplified
UML class diagram) comprising DataModelElements such
as entities and relationships.

Entities are described by means of typed Attributes where
each entity has at least one attribute namely the OID. The
type of an Attribute may be either a WebMLType or a
Domain defined by the user.

Entities can be organised in generalisation hierarchies,
which express the derivation of a specific concept from a
more general one. In particular, single inheritance and binary
relationships are allowed in the DataModel. Each binary
relationship is characterised by two RelationshipRoles that
can be annotated with minimum and maximum cardinality
constraints.

Finally, all DataModelElements must be distinguishable
by means of a unique identifier (the OID). The MOF
WebML metamodel defines this property using a single
special purpose metaclass, called IdentifiedElement.

Fig. 5 represents the E-R data schema metamodelled
from the WebML viewpoint. We would like to point out

Fig. 5 DataView package

Fig. 4 CommonElements package
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that although there are other proposals for metamodelling
the E-R model, they do not reflect precisely the usage of
the data model in WebML and WebRatio. For example, if
we metamodelled RelationshipRoles as meta-attributes of
the Relationship metaclass, we would miss part of the
semantics of WebML.

4.4 HypertextView package

The HypertextView package is sub-structured into the
Core, SiteView, ServiceView, AreaView, PageView,
OperationUnitView, ContentUnitView, TransactionView,
GLParameter, ParameterView and LinkView sub-packages
(see Fig. 6). The former contains the basic core modelling
elements for organising the hypertext structure of Web
applications. The latter depends on the Core package and
it contains further sub-packages for exploiting specific
hypertext elements.
Because of space limitations, we provide only a brief over-

view of the HypertextView package (see Fig. 7). The inter-
ested reader can download the complete MagicDraw
model from [8].
The SiteView metaclass of this package represents a

collection of SiteViewElements allowing users to perform
a set of activities. From the WebML viewpoint, a
SiteViewElement can be a Page, an Area, an
OperationUnit, a GLParameter or a Transaction.
Pages comprise PageElements, an abstract metaclass

representing other Pages and ContentUnits. Each Page has
associated a Choreography that describes the chain of
WebML operations or actions to be performed as a conse-
quence of the invocation of the Units. This Choreography
can be both a predefined sequence represented in the meta-
model by the ChoreographySequence metaclass and a
custom sequence established by the designer and metamo-
delled by the CustomLinkPropagation metaclass.
Pages can be clustered into Areas, dealing with a homo-

geneous subject (e.g. the Amazon Web Store includes a
book area, a music area etc.). Features related to how
SiteViews, Areas and Pages can be reachable from other
SiteViews, Areas or Pages have been metamodelled as
metarelationships between the participant metaclasses.
Units can be classified into two metaclasses: ContentUnits

and OperationUnits. The content displayed in a ContentUnit
typically comes from an Entity of the DataModel, and can be
determined by means of a Selector, which is a logical
Condition filtering the entity instances to be published.
Instances selected for displaying can be sorted according
to OrderingClauses. OperationUnits, unlike ContentUnits,
do not publish content and may have input and output

Fig. 6 Package Structure of the Hypertext WebML Metamodel
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Fig. 7 Excerpt of the HypertextView package
Parameters. The link parameter coupling defines the flow
of parameters from the source unit to the destination
unit of the link, which output parameter of the source
unit provides a value to which input parameter of the
destination unit.
Units are connected to each other through Links. For each

kind of link (NonContextualLinks, Transport, Automatic,
OK and KO) identified in Section 3 a MOF metaclass has
been declared inheriting from the Non-ContextualLink
and ContextualLink metaclasses, respectively. While the
NonContextualLink metaclass captures the semantics and
behaviour of WebML links allowing only the navigation,
the abstract ContextualLink metaclass represents those
others allowing also the parameter passing.
WebML OperationUnits can be grouped into Transactions

describing sequences of operations that are executed
atomically, as they were one unique big operation. In the
WebML, this concept is represented by the Transaction meta-
class, inside which the TransactionElements to be executed
transactionally can be placed.
The context information needed to calculate units that is

not transferred point-to-point during navigation, but must be
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available ‘globally’ to all the pages of a site is metamo-
delled by the GlobalParameter metaclass. LocalParameters
are similar to GlobalParameter, but are locally to a specific
SiteViewElement.

Additionally, well-formed rules complete the semantics
of the metamodel and its elements. We show some of
them but the interested reader can visit the WebML
site [8] for a complete description of the metamodel
constraints.

– A page cannot be nested in a SiteView
– and in an Area at the same time.
context Page inv:
self.isOclKind(AreaElement)
xor self.isOclKind(SiteViewElement)

– Any page marked as ‘landmark’ must be
– nested in a SiteView or in an Area.
context Page inv :
self.landmark implies

self.siteView- . notEmpty()
or self.area- . notEmpty()
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5 Representing WebML using a UML profile

Early attempts at encoding WebML in UML 1.X did not
succeed in producing a completely equivalent profile,
because of the lack of appropriate structuring concepts
and mechanisms of UML, and the semantic gap between
specific Web application concepts and the UML constructs.

However, with the advent of UML 2.0 the situation has
changed, since not only its semantics have been defined
more precisely, but it also incorporates a whole new set of
diagrams and concepts which are more appropriate for mod-
elling the structure and behaviour of Web applications. In
addition, UML 2.0 provides enhanced profiling capabilities,
which allow the precise definition of MOF-based domain-
specific languages.

The OMG offers three approaches for defining a DSL. The
first solution is to develop a metamodel, as we have done in
the previous section. This means creating a new domain
language alternative to UML, using the MOF metamodelling
facilities. In this way, the syntax and semantics of the
elements of the new language are defined to faithfully
match the domain’s specific characteristics. The problem
with metamodel definition is that standard UML tools are
not able to deal with the new language (e.g. to edit models
that conforms to the metamodel, compile them etc.). This
approach has been followed by languages such as CWM
(common warehouse metamodel) and W2000, because
some of their constructs do not match the semantics of the
corresponding UML model elements.

The second and third options provided by the OMG are
based on extending UML. Extensions of the UML can be
either heavyweight or lightweight. The difference between
lightweight and heavyweight extensions comes from the way
in which they extend the UML metamodel. Heavyweight
extensions are based on a modified UML metamodel with
the implication that the original semantics of modelling
elements are changed and therefore the extension might no
longer be compatible with UML tools. Lightweight extensions
are called UMLprofiles and exploit the native extensionmech-
anisms of UML (stereotypes, tag definitions and constraints)
for specialising its metaclasses, without breaking their original
semantics. UML profiles may impose new restrictions on the
extended metaclasses, but they should respect the UML meta-
model, without modifying the original semantics of the UML
elements (i.e. the basic features of UML classes, associations,
properties etc. will remain the same, only new constraints
can be added to the original elements). Syntactic sugar can
also be defined in a profile, in terms of icons and symbols for
the newly defined elements. One of the major benefits of pro-
files is that they can be handled in a natural way by UML
tools. In UML profiles, stereotypes define particularisations
of given UML elements, adding them some semantics.
Perhaps the best known example of profileable UML-based
Web modelling language is UWE [10].

In this section, we describe the UML profile for WebML.
In building the profile, we have pursued two main goals:

1. To provide UML modellers with a UML profile that can
help them structure their Web application specifications
according to a mature Web Engineering proposal. In this
way, UML modellers can reuse their knowledge of standard
UML, exploit any tool that supports UML for editing the
specifications and export the application model to
WebRatio for generating a complete implementation.
2. To provide WebML modellers with a UML profile for
expressing their specifications in a standard way, decou-
pling the abstract syntax and semantics of the modelling
element from its specific representation, hence allowing
its use within any standard UML tool environment.
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Table 1 shows the main elements of the profile for
WebML that we are going to describe in the next subsections.

5.1 WebML data model in UML 2.0

As illustrated in Fig. 5, the data modelling is supported in
WebML by means of the classical E-R model with general-
isation hierarchies, typed attributes and cardinality con-
straints. The essential elements of the E-R model are
entities, defined as containers of structured data, and
relationships, representing semantic associations between
entities. Since the semantic equivalence between the E-R
model and its corresponding in UML is very clear, we
justify the selection of UML metaclasses in those cases in
which it may not seem so intuitive for the reader.

5.1.1 Entities: Following a UML-based approach, each
Entity of the WebML data model will be mapped to a
UML class. In UML, classes are classifiers that have a set
of features that characterise their instances. Consequently,
each typed attribute of the entity will be considered as a
typed structural feature, that is, one of its properties. Its
associated type may correspond to a predefined WebML
type or a specific type defined by the user. In this last
case, we will consider that each WebML Domain represents
a UML enumeration datatype where the set of possible
values are the UML literals of that datatype.

5.1.2 Relationships: Relationships are characterised by
cardinality constraints, which impose restrictions on the
number of relationship instances an object may take part
in. WebML represents N-ary relationships as a combination
of entities and binary relationships. Consequently, all
relationships in the WebML data model are binary relation-
ships characterised by two relationship roles, each one
expressing the function that one of the participating entities
plays in the relationship.
At first sight we may consider that WebML Relationships

have the same semantics as UML associations given that
they model connections between entities. However,
because of to the role that relationships have on both the
WebML data model and the hypertext model this would
be a poor solution (neither behavioural descriptions nor
attributes can be associated with a UML association).
Alternatively, UML association classes could be used to
represent WebML Relationships, which does permit an
appropriate semantic definition to be supplied. However,
note the reader that WebML Relationships may be par-
ameters of a unit, may have derivation constraints sub-
setting and/or concatenating existing relationships, their
instances can be created, modified or deleted as a conse-
quence of user interactions and so on. Therefore defining
a �Relationship� stereotype for a Class can make the
use of WebML Relationships easier.

5.1.3 Derivation constraints: The value of some of the
attributes or relationships of a WebML entity can be deter-
mined from the value of some other elements of the schema.
The computation rule that defines the derived attribute or
relationship is specified as an expression added to the
declaration of the attribute or relationship. UML 2.0 deri-
vation mechanisms for attributes and associations can be
used to naturally represent WebML derivations.
Applying these correspondences to our running example,

Fig. 8 shows a WebML data model for the Acme application
and its corresponding representation in UML using our
UML profile.
IET Softw., Vol. 1, No. 3, June 2007



Table 1: Subset of the UML Profile for WebML

WebML Concept UML Base Element Stereotype

DataModel Model �DataModel�

Domain Enumeration �Domain�

DomainElement EnumerationLiteral �DomainElement�

Entity Class �Entity�

Attribute Property �Attribute�

Relationship Class �Relationship�

RelationRole Property �RelationRole�

HypertextModel Model �HypertextModel�

SiteView Package �SiteView�

ServiceView Component �ServiceView�

Port Port None

GlobalParameter Class �GlobalParameter�

Area Package �Area�

Page StructuredClasiffier �Page�

HomePage StructuredClasiffier �HomePage�

Default Package, Component, Struct.Clasiffier �Default�

Landmark Package, Component, Struct.Clasiffier �Landmark�

Secure Package, Component, Struct.Clasiffier �Secure�

Localized Package, Component, Struct.Clasiffier �Localized�

Protected Package, Component, Struct.Clasiffier �Protected�

DataUnit Component �DataUnit�

MultiDataUnit Component �MultiDataUnit�

IndexUnit Component � IndexUnit�

MultiChoiceIndexUnit Component �MultiChoiceIndexUnit�

HierarchicalUnit Component �HierarchicalUnit�

Level Class, Association �Level�

EntryUnit Component �EntryUnit�

CustomContentUnit Component �CustomContentUnit�

ValidationRule Constraint �ValidationRule�

CreateUnit Component �CreateUnit�

DeleteUnit Component �DeleteUnit�

ModifyUnit Component �ModifyUnit�

ConnectUnit Component �ConnectUnit�

DisconnectUnit Component �DisconnectUnit�

LoginUnit Component �LoginUnit�

LogoutUnit Component �LogoutUnit�

ChangeGroupUnit Component �ChangeGroupUnit�

SendEmailUnit Component �SendEmailUnit�

AdapterUnit Component �AdapterUnit�

SetUnit Component �SetUnit�

OKLink Connector �OKLink�

KOLink Connector �KOLink�

AutomaticLink Connector, Association �AutomaticNavigation�

TransportLink Connector, Association �Transport�

LinkParameterCoupling Port �LinkParCoupling�

Parameter Port �UnitParameter�

Condition Constraint �Condition�

SelectorCondition Constraint �SelectorCondition�

Property Property �WebMLProperty�
5.2 WebML hypertext model in UML 2.0

The profile must express three essential aspects of the the
WebML hypertext model: the modularisation structure of
site views, the specification of components (content and
IET Softw., Vol. 1, No. 3, June 2007
operation units) and the interconnection of components
through links supporting parameter passing. For data-
centric content and operation units, it is also important to
express how a component draws or updates the content of
the data model objects.
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5.2.1 Modularisation: WebML groups hypertext model
elements into site views and areas. The grouping function-
ality for better understanding and management of models
is supported in UML by means of packages. Therefore we
will represent WebML site views and areas as UML
packages. At a second level of modularisation, pages are
also containers of sub-pages or of units that can involve
multiple individual operations. WebML suggests that the
default behaviour of a Web page can be defined only once
and reused in the rest of the projects using it.

Moving WebML page requirements to a UML approach,
we can consider it as an autonomous unit that is replaceable
within its environment and which functionality is provided
and/or required by means of the combination of provided
and/or required funtionalities of the content units
nested inside the page. In this case, we find that this
concept corresponds to the UML concept of component.
However, this is not exactly what represents a page in
WebML. Pages in WebML act not only as containers of
units but also they represent a composition of intercon-
nected WebML elements, whose instances collaborate at
run-time to achieve some common objective. Therefore
this semantics fits much better with UML structured
classes. Consequently, pages are more appropriately rep-
resented as structured classes, comprising the content
units nested inside them.

5.2.2 Visibility level: Some properties of site views, areas
and pages, such as home, default and landmark properties,
allow the designer to fine-tune the visibility level of these
constructs inside the hierarchical structure of a site view.
Other properties, such as secure, protected or localized,
provide information required for code generation. UML
stereotypes have been defined to ‘mark’ the appropriate
model elements with such properties, allowing the annota-
tion of the corresponding models with these characteristics.
Alternatively, we could have considered to represent pre-
vious properties as tag definitions of their corresponding
stereotypes. From our viewpoint, the approach selected
improves its practical application adding more visual
clarity to UML4WebML models as WebML does by
means of the (L), (H) and (D) marks.

Fig. 8 UML 2.0 data model of the Acme application
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5.2.3 Content and operation units: Content and oper-
ation units are components that can be assembled together
to obtain arbitrary complex hypertext pages. Their essence
is the capability of executing business actions and interope-
rate through the exchange of parameters. This notion is
most closely reflected by the concept of UML 2.0 com-
ponent. As shown in Table 1, specific stereotypes have
been defined for each type of content and units supported
by WebML taking as base UML element the component
notion.
As a UML component, WebML units may optionally

have an internal structure and own a set of ports that formal-
ise their interaction points. Ports can formalise the input and
output of a unit: one port allows the environment of the
component to supply parameter values; another port
allows the the environment of the component to extract par-
ameter values.

5.2.4 Links and parameter passing: Pages and units do
not stand alone, but are linked to form a hypertext structure.
Links express the possibility of navigating from one point to
another in the hypertext, and allow the passage of par-
ameters from one unit to another. Several alternatives
have been considering for representing this WebML
feature in UML. Links can be visualised as basic UML
associations, dependency relationships, traces, usage
relationships and so on. Although they can all be labelled
with suitable stereotypes such as �TransportLink� ,
�NavigationLink� or �KOLink� to denote the
classes of links, a more precise semantic definition can be
provided by the use of UML assembly connectors. An
assembly connector is a UML connector between two com-
ponents that defines how one component provides the ser-
vices that another component requires. It is defined from a
provided port (i.e. an output WebML parameter) to a
required port (i.e. an input WebML parameter) of the
units involved.

5.2.5 Realisation of data-centric units: Content and
operation units may operate on objects specified in the
data model. This is represented by specifying the internal
realisation structure of components, which may exploit
auxiliary classes to represent a view over the data model
entities. At least, for each content unit there will be two
auxiliary classes: one class stereotyped as � focus�
that defines core logic or control behaviour of the unit and
another class that selects content from the datamodel.
Appropriate OCL invariants in the auxiliary classes rep-

resent the selector condition determining the instances
upon which they operate, and UML delegation connectors
link the input and output ports of the component to the
auxiliary classes, granting parameters flow.

5.2.6 Global and local parameters: WebML par-
ameters denote small pieces of information, which can be
‘recorded’ during the user navigation, to be later retrieved
and exploited in the computation of the content of some
page. A parameter will be represented as a singleton
UML class that contains: a public class-scope (static) prop-
erty, a class constructor declared as private so that no other
object can create a new instance and finally a class method
that returns a reference to the single instance of the class.
The above-mentioned mappings are pictorially illustrated

in Fig. 9, which represents the UML specification equival-
ent to the WebML page of Fig. 10.
The StorePage, represented as a classifier, contains an

index unit component and a data unit component, linked by
an assembly connector with the �AutomaticLink�
IET Softw., Vol. 1, No. 3, June 2007



Fig. 9 UML 2.0 representation equivalent to the page of Fig. 10
stereotype. The internal structure of the index unit is realised
by a focus class, comprising methods for sorting the index
instances and for selecting one instance. The focus class is
connected by a one-to-many part of association to class
StoreView1, which represents a view over the data model
entity Store. Instances of class StoreView1 contain the
address attribute, necessary to build the index and the
hidden attribute OID, necessary for parameter passing. A del-
egation connector links the output port of the focus class to
the outport port of the component, and specifies that the
output value of the select( ) method is emitted by the index
unit component’s output port. The parameter associated
with the �AutomaticLink� connector is received at the
input port of the data unit component, which delegates its
treatment to an inner focus class. The focus class contains
on instance of class StoreView2, which represents another
view over the data model entity Store. An OCL invariant in
the focus class enforces the contained instance of class
StoreView2 to have the value of the OID attribute equal to
the parameter value received at the input port.
As a conclusive example, Fig. 11 overviews the UML 2.0

representation of the public site view of the running case
expressed with the WebML profile; this should be compared
to the native WebML representation of Fig. 2.

6 Comparison of the WebML and UML
representations

This section compares the WebML representation in UML
against its native encoding. We first compare in Section
6.1 how compact the two representations are, using the
running application as an example. Then, Section 6.2

Fig. 10 Page with an index unit for selecting a store and a data
unit for displaying its details (left). Same page with abbreviated
notation (right)
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reviews the main design choices taken in the definition of
the WebML model and tool. Finally, Section 6.3 discusses
how these design principles have been impacted by the
use of UML for encoding WebML, and summarises some
of the lessons learnt.

6.1 Compactness and complexity comparison

The proposed encoding of WebML as a UML 2.0 profile has
been validated and used to compare the complexity of the
two approaches.

Validation was performed by implementing an Extensible
Stylesheet Language Transformation (XSLT) translator from
the XMI representation [Note: In the experiment, we used the
XMI output of MagicDraw version 10.5.] of the model
encoded in the UML profile into the native WebML format
(which has its own XML Schema) and then: (1) verifying
the correctness of the synthesised WebML specifications by
means of the model checker of WebRatio; (2) generating
the Java2EE code of the application from the the synthesised
WebML specifications and comparing the obtained codewith
the one produced by using native WebML. Both assessments
proved the equivalence of the UML 2.0 profile and the native
WebML representation.

Next, the complexity of the UML representation was
compared to that of native WebML, with respect to multiple
dimensions. Table 2 shows the result of the comparison.
[Note: The editing time has been estimated by assigning
fixed time in seconds to the base editing actions: insertion
of a node, arc and editing of a property.]

6.2 Design of WebML

The original principles adopted in the design of WebML put
special emphasis on three aspects, which were considered
prominent for achieving developers’ acceptance: (1) expres-
sive power: the model should be capable of expressing
Web applications comparable in complexity to industrial-
strength systems developed manually; (2) ease of use: the
model should be easy-to-learn for developers not skilled
in software engineering; (3) implementability: the model
should encompass enough information to permit the gener-
ation of code for all the tiers of a dynamic Web application.
Code generation should produce optimised code as far as
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Fig. 11 Hypertext model represented with the WebML UML profile
possible. In the following paragraphs, we comment on the
essential choices taken in the design of the language.

6.2.1 Model boundaries: The approach to define model
boundaries has been rather crude: the model contains the
minimal number of concepts necessary to generate code.
This led to the partition of the concepts into the three per-
spectives of the data model, hypertext model and presen-
tation; the latter perspective gathers all those aspects that
have to do with aesthetics and interface usability and is
not expressed diagrammatically, but by means of annotated
examples.

A notable feature of WebML is the absence of a separate
sub-model for the business logic. Server-side business logic
is partly encoded in the data model (in the form of declara-
tive specifications of derived data) and partly in the hyper-
text model (in the form of black-box content and operation
units, which can represent components with arbitrary func-
tionality. This choice simplified dramatically the model, to
the price of two (not necessarily negative) unforeseen
phenomena: (1) the proliferation of custom units for encod-
ing non-standard server-side business logic; (2) the com-
plexity growth of the presentation model, which was used
to capture, beside aesthetics, also client-side behaviour
(e.g. JavaScript event handling), not expressible otherwise.

This restriction of the model boundaries reduced the
model concepts necessary for building real-world dynamic
web sites. For instance, the initial version of the
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Acer-Euro web applications was specified and automati-
cally built using only simplified E-R diagrams and 14
WebML units (six content units: index, data, multidata,
scroller, entry, get; and eight operation units: create,
delete, modify, connect, disconnect, set, login, logout).
Clearly, not all applications can be represented by the orig-
inal WebML components; in time, a wealth of ad hoc com-
ponents has been developed to manage further requirements
(messaging, web service interaction, sophisticated input
etc.), but they have been treated as black-box plug-ins to
the three existing sub-models, rather than constituents of
an independent modelling layer. As a further simplification,

Table 2: Comparison of the running casemodel in native
WebML and in the UML WebML profile

Parameter Native

WebML

UML 2.0

WebML Profile

number of modelling concepts 10 9

number of instances of the

modelling concepts

23 90

number of constraints on model

elements

6 10

size of XML file of the model 22 kbytes 505 kbytes

estimated editing time 345 s 1350 s
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no explicit architectural model is provided. Physical
resources (data sources, application servers, web services,
identity repositories etc.) are not modelled diagrammati-
cally, but simply declared as project resources in the
development tool, and referred to by the model concepts
that use them.
Another essential aspect of model definition is the

compact representation and efficient management of inter-
model references, which are ubiquitous: the hypertext
diagram references the data model (e.g. for data extraction
and update), and the presentation refers to the hypertext
model (e.g. for content positioning in pages). Fig. 10
shows a reference from the hypertext model to the data
model: the AllStores index unit and the StoreDetails data
unit refer to entity Store, which provides the components’
content. The reference to the data model element is
simply realised by means of a typed property in the hyper-
text model.

6.2.2 Level of abstraction: A WebML specification is
far more abstract than an object-oriented representation of
the generated code. A model concept is normally mapped
onto multiple software arteifacts, possibly residing at differ-
ent tiers. For example, a WebML page, its unit and links are
indeed a compact representation of multiple arteifacts: (1)
the data extraction code in the data tier (stored procedures,
queries, Enterprise JavaBeans (EJB) finder methods etc.);
(2) the object(s) storing the content in the business and/or
presentation tier (entity EJB, javabeans); (3) the action
class decoupling the request from the business tier
objects; (4) the business service orchestrating the compu-
tation of the page content; (5) the JavaServer Pages (JSP)
executable tags translating object content into page markup.
The decision of keeping a high level of abstraction traded

realism for compactness. To the developer’s eye the
WebML model of a page mixes things that in reality
stand apart. However, if the ultimate purpose of modelling
is to generate the code, the ease of building up a complete
model should prevail on the realism of the representation,
provided that the meaning of each abstract concept is
known and the behaviour of element composition predict-
able. Considering that a small-size project may typically
consist of tens of pages comprising hundreds of com-
ponents, it is easy to see that raising the level of abstraction,
while preserving semantics, is crucial to achieve practical
usability.

6.2.3 Behavioural semantics: A non-obvious aspect of
model design, which distinguishes WebML from traditional
OO modelling, is the absence of a separate behavioural
model. Behavioural aspects are embedded in the hypertext
model, which has a fixed operational semantics that
applies to all WebML applications, and therefore need not
be specified explicitly by the designer. In essence, a hyper-
text model is represented by an extended finite state
machine [11], in which events capture user’s interactions
and system generated events, and transitions describe the
propagation of computation from one component to
another one. Conditions on transitions express the flow of
control, for example the order in which components must
be executed depending on the availability of user’s input
or of system-provided parameters. The provision of a stan-
dard, application-independent operational semantics is a
cornerstone of the design of WebML: the ‘in the large’
semantics describes the general functioning of the Web
application as a network of cooperating components; the
‘in the small’ semantics describes how individual com-
ponents work. The former is standardised and developers
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need not address it; the latter is treated as a plug-in to the
model: developers are requested to understand how the pre-
defined WebML components work and define their own
components by respecting a few basic rules requested by
the ‘in the large’ semantics (essentially, each component
should declare its input and output parameters and optional
default rules). This approach proved quite effective. The
cases in which the default ‘in the large’ semantics proved
inadequate for capturing application requirements are very
limited (we estimate less 1% of the cases) and we coped
with these situations in the design tool, where the developer
that understand the computation semantics can alter the
components’ execution sequence. Another lesson we
learned is that standardising the model semantics does not
reduce the expressive power. The range of implemented
applications demonstrates this claim; developers were
always able to partition requirements into what can be
achieved using standard components and behaviour and
what requires the construction of ad hoc components.
This approach resembles the notion of framework at the
coding level, raised to a more abstract level.

6.2.4 Ergonomics: The success of a model-driven
method is tightly connected with its practical usability. If
editing the model is more cumbersome than implementing
functionality in the code, developers will hardly switch to
model-driven development (MDD). The evolution of
WebML is characterised by innumerable revisions aimed
at optimising the performance of modelling, whose
common principle is ‘everything that can be reasonably
inferred from the context must not be specified explicitly’.

A notable example occurs with parametric components
and parameter passing along links. Such a feature is the
backbone of hypertext modelling and occurs repeatedly in
any application model. To alleviate the developer’s task,
WebML provides default rules whereby 80% of parameter
passing is inferred from the context. The notation on the
right part of Fig. 10 exemplifies this idea. The AllStores
index unit has a single output parameter (X) of type
(Store), the entity underlying the component; the
StoreDetails data unit has a parametric selection condition
(i.e. a query) determining the object to display
([OID=X]), which makes use of the parameter associated
with the input link: in this way, the data unit shows
exactly the object chosen in the index unit. By inference,
the model in the left-hand side of Fig. 10 is equivalent to
that in the right-hand side of Fig. 10, in which the para-
metric selection condition and the parameter passing on
the link are omitted. This simple default rule spares two
editing actions per link, which results into a substantial
reduction of the model editing effort.

6.2.5 Openness: The last far-reaching design choice con-
cerned the evolution of the model. Being a DSL, WebML
was initially conceived as a closed language, comprising
all the primitives deemed necessary for building Web appli-
cations. This choice soon proved ineffective: the extension
of application functionality constantly demanded for language
revisions. A major breakthrough was achieved with the defi-
nition of a standard model extensionmechanism, which trans-
formedWebML into an open component-assembly language.
The semantics was revised so that developers could define
their own components, by wrapping any existing piece of
software, and mix them freely with the built-in WebML
units. This required a simple standardisation of the component
external behaviour to make it comply to the (very minimal)
requirements of the standard component orchestration seman-
tics; each content and operation unit must simply declare its
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input and output interfaces, and the rules for inferring par-
ameter passing and content selection conditions. After such
revision, the standard component orchestration semantics,
coupled to libraries of domain-specific components, proved
adequate to the modelling and automatic implementation of
applications in the most disparate domains: mobile, digital
television, Web service interaction, workflow management
and so on.

6.3 Lessons learned on UML as a Web modelling
language

The definition of an UML 2.0 profile equivalent to WebML
demonstrates practically the suitability of UML for encod-
ing the requirements and generating the complete code of
complex real-world Web applications. However, several
issues were encountered in representing WebML with
UML 2.0, both of general nature and specific to the encod-
ing of WebML.

6.3.1 Expressive power: The UML profile for WebML
provides the same expressiveness as the native represen-
tation: all WebML concepts were mapped into the corre-
sponding UML (stereotyped) elements and the resulting
UML profile proved sufficient to describe complete Web
applications that could be successfully processed by the
WebRatio model checking and code generation engine.
This result, which was not achieved in the previous attempts
at encoding WebML in UML 1.X, has been granted by the
new features of UML 2.0. For example, ports and connec-
tors as defined in UML 2.0 have provided the necessary
expressive power to represent the interconnection of com-
ponents and the associated flow of parameters, which is
essential to hypertext specification. Furthermore, OCL
invariants, involving ports, realisation and view classes,
can express the semantics of data-centric Web components
in quite a natural and compact way. The notion of connec-
tor, although criticised elsewhere [12] for its lack of beha-
vioural semantics, proved sufficient for expressing the
linking of Web components, where parameters are simply
transferred from one component to the other.

6.3.2 Complexity: Only a limited number of UML con-
cepts proved necessary to model and implement a
WebML application. UML seems to contain far more con-
cepts and mechanisms than needed for Web modelling.
The main advantage of the UML profiling mechanism has
not been found in the extension of the UML metamodel
(which is already too large and complex to be used in
full), but in the possibility of ‘restricting’ the set of UML
elements that are relevant to a given domain, tailoring
their semantics so as to capture the behaviour and well-
formedness rules of the domain-specific concepts they rep-
resent. In this respect, the complexity of UML is greatly
alleviated by the use of a well-designed profile.

6.3.3 Required skills: Using UML properly requires deep
knowledge of specialised concepts (e.g. ports, connectors,
structured classes, collaborations etc.). These concepts are
mostly alien to the Web engineer, who thinks in terms of
Web-specific entities (Web pages, links, forms etc.). The
use of stereotypes, possibly represented with icons that
exploit visual objects familiar to the domain expert,
lowers the skill-level necessary to make practical use of
UML in implementing Web applications, because it helps
bridging the gap between the domain concepts and the
UML constructs and mechanisms.
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6.3.4 Behaviour modelling: Representing behaviour in
UML, and generally in MDD, is much more complex than
representing structure. UML structural diagrams have a
clear semantics and can easily be customised to fit most
domains. At present, UML dynamic models (collaboration,
sequence and activity) are more frequently used as a docu-
mentation for the human reader than as a specification
usable for code generation. Other models (statecharts) are
more formal and naturally suited for code generation, but
are hard to master for practitioners.
There is a current lack of a concrete syntax for actions in

UML, which hinders the specification of executable code.
The progress of tools in the field of executable UML and
action semantics [13] may change this situation, by allow-
ing the direct execution or compilation into code of arbitra-
rily sophisticated behavioural models. This approach, which
demonstrated effective in such application domains like
real-time embedded systems, is still be proven in the Web
domain, where the interplay of dynamic behaviour with
user interfaces and business logics is more intricate.
In this sense, the approach taken by WebML of not repre-

senting explicitly the behaviour of their elements (as dis-
cussed in Section 6.2) has proved its benefits, exploiting
the domain-specific meaning of business components
without loss of expressive power. For instance, all the data-
centric content and operation units have a well-defined
behaviour: they are just the basic CRUD (content read,
update, delete) operations familiar to any data designer,
and thus it would make no sense representing their beha-
viour in a high-level diagram; their transformation into
platform-dependent code can easily be delegated to a tool.
The same is true for user-defined components: their seman-
tics is known to the developer and need not be expressed
when specifying their usage in a hypertext model. They
can be modeled and coded elsewhere and treated as a
plug-in in the Web design model.

6.3.5 Usability: WebML native representation is far more
compact than its UML counterpart (see Section 6.1). This is
obviously unavoidable, when comparing a general purpose
language such as UML and a DSL that has been refined
for years in search of compactness and notational
economy. However, the disproportion shows that there is
ample room for making UML more concise. One of the
areas of possible improvement is in the cross-references
between models. One aspect in which UML 2.0 proved
rather cumbersome is the specification of the internal realis-
ation of set-oriented content units (e.g. index units). Here,
three classes (the component realisation class, its focus
class and a data view class) were necessary to express the
trivial concept of ‘select-project’ view (a subset of the
objects of a class, possibly with a restricted set of attributes).
Clever mechanisms for abbreviating the expression of view
relationships between classifiers in different models could
dramatically reduce the complexity of diagrams. Another
area where usage proves rather cumbersome in the specifica-
tion of parametric conditions, a fundamental issue in
component-based applications. Suitable abbreviations and
a better scope mechanism for OCL variables within struc-
tured classifiers could greatly simplify the task.

7 Related work

Several authors in the Web Engineering community have
exploited metamodelling and UML extensions in defining
their DSLs and Web models [4–7, 9, 14]. The pioneering
work of Conallen [4] uses, in conjunction with the standard
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UML diagrams, the Web application extensions (WAE),
which comprise the typical Web arteifacts (server pages,
client pages, forms, frames, etc.). The main advantage of
WAE proposal is that its simplicity allows an efficient
reflect the design artefacts of a Web Interface, as well as
to drive the implementation of such interface. On the
other hand, this same simplicity evidences a lack of
elements for modelling navigation and representing tech-
nology and device independent requirements. Basically,
WAE is a too low-level proposal for capturing the complex-
ity a high level of abstraction of the navigation and presen-
tation viewpoints.
In order to solve these limitations, Góomez and Cachero

proposed in [7] a set of new views that extended UML dia-
grams to provide a Web interface model. Built up departing
from a UML-compliant use-case and a business class
diagram, the navigation and presentation models are
described using a mix of UML and proprietary primitives,
not compatible with current UML tools.
Also similar in goals to our work, Koch [6] and Baresi [5]

independently define a conservative extension of the UML
1.4 metamodel, aimed at allowing the easy definition of pro-
files. The shortcomings of using UML 1.4 make it difficult
to use the resulting profiles for modelling complex distrib-
uted Web systems. However, these works show that
‘although alternative Web models use different notations,
they could be based on a common metamodel, which
could help the unification of modelling constructs and
allow easier comparison and integration’ [6].
UML 1.4 has been criticised also for its scarce support to

represent architectural styles. In the Web domain, architec-
ture specification is elaborated in [14], where a UML 2.0
profile based on the new composite structure model is
exploited to specify the architecture of Web applications.
As in our work, [14] uses UML components and connectors
for Web modelling. However, the authors exploit these con-
structors to express the architectural view of the system,
which adds up to the functional view embodied in the struc-
ture and navigation diagrams. The result is a proliferation of
models and stereotypes, which can be difficult to integrate
into a well-structured code generation process.
Generally, both the definition of metamodels and UML

profiles are very laborious tasks made by hand by an
expert on the corresponding DSL. There are not many
works that address the automatic generation of metamodels
or profiles from DSLs descriptions. In this regard, we find
very interesting the proposal of [9] which present a semiau-
tomatic approach that allows to generate MOF-based meta-
models from DTDs. Also very interesting results can be
found in [15]. The author addresses the validation of the
semantics equivalence between UML profiles and the orig-
inal DSLs from which they arise (e.g. by means of rules for-
malising the correspondences between the mapped models).
Bezivin described a tool that can bridge an UML profile and
an equivalent DSL, whereby it is possible to produce auto-
matically the UML profile from the DSL, and vice versa.
Such tool could automatically convert WebML models
into their corresponding UML diagrams, following the
mapping rules described.

8 Conclusion and future work

We have presented both a metamodel and a UML profile for
WebML, with the aim of integrating WebML into the MDA
approach – hence allowing UML modellers to make use of
a Web Engineering mature proposal for designing and
developing Web applications, and also allowing WebML
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modellers to use their notation and tool (WebRatio)
within a UML modelling environment.

This work clearly shows that UML 2.0 has the potential
to be used for industrial-strength Web development,
especially if some simplifications on model cross-references
and declarative semantics specifications are introduced. The
standardisation of Web development platforms and technol-
ogies, rather than making MDD/MDA less attractive [16],
multiplies its potential, making the long-envisioned benefits
of software engineering more concretely attainable. The
definition of an UML profile alleviates the issues of
model complexity, required skills and semantics, because
a profile helps tailoring the subset of UML used to model
a specific application domain, makes UML elements and
models closer to the language of the domain expert, and
helps customising the ‘loose’ semantics of UML to better
fit the meaning of domain concepts.

Our future work will concentrate on completing the UML
profile of WebML with presentation and architecture
features, and complementing the code generation process
currently implemented by WebRatio with a novel approach
closer to the declarative model-transformation paradigm
advocated by MDA. In this way, it will be possible to elim-
inate any dependency between the WebML models and the
final implementation technologies (currently Java 2
Enterprise Edition), and realisemore flexible code generators
capable of exploiting a declarative specification of the target
architecture. In addition, the WebML metamodel will allow
us to perform formal reasoning and transformations on
WebML models for solving a broader classes of problems,
related to other phases of the development process, for
example, the estimation of the size and cost of a project
from its conceptual model and the derivation of optimal
test sets directly from the model of a Web application.
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15 Abouzahra, A., Bézivin, J., Del Fabro, M., and Jouault, F.: ‘A practical
approach to bridging domain specific languages with UML profiles’.
Proc. Best Practices for Model Driven Software Development at
OOPSLA’05, San Diego, CA, October 2005

16 Haywood, D.: ‘MDA in a Nutshell’, 2004. http://www.theserverside.
com/articles/article.tss?l=MDAHay-wood
IET Softw., Vol. 1, No. 3, June 2007


