11th IEEE International Enterprise Distributed Object Computing Conference

Adding Behavioral Semantics to Models

José E. Rivera and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computacion
Universidad de Mdlaga, Spain
{rivera,av}@Icc.uma.es

Abstract

Domain Specific Languages (DSLs) play a cornerstone
role in Model-Driven Software Development for represent-
ing models and metamodels. DSLs are usually defined in
terms of their abstract and concrete syntax only. This al-
lows the rapid and inexpensive development of DSLs and
their associated tools (e.g., editors), but does not allow the
representation of their behavioral semantics, something es-
pecially important for model operations like simulation and
verification. In this paper we explore the use of Maude as
a formal notation for describing models and metamodels,
including the specification of their dynamic behavior.

1 Introduction

As software technology becomes a core part of business
enterprises in all market sectors, customers demand more
flexible enterprise systems. This demand coincides with the
increasing use of personal computers and today’s easy ac-
cess to local and global communication networks, that to-
gether provide an excellent infrastructure for building open
distributed systems. However, the specific problems and in-
trinsic complexity of these large systems are currently chal-
lenging the Software Engineering community, whose tra-
ditional methods and tools are finding difficulties for cop-
ing with the new requirements. One common way to deal
with this complexity is by dividing the design activity into
a number of areas of concern, each one dealing with a spe-
cific aspect of the system, and using specialized languages
to specify them. These languages allow not only to raise
the level of abstraction of the specifications produced, but
also make them closer to the IT experts. Domain-Specific
Modeling (DSM) can thus become a key mechanism for
the effective and successful specification of large-scale dis-
tributed enterprise systems.

Domain-Specific Modeling is a way of designing and de-
veloping systems that involves the systematic use of Do-
main Specific Languages (DSLs) to represent the various

1541-7719/07 $25.00 © 2007 IEEE
DOI 10.1109/EDOC.2007.40

169

facets of a system, in terms of models. Such languages tend
to support higher-level abstractions than general-purpose
modeling languages, and are closer to the problem domain
than to the implementation domain. Thus, a DSL follows
the domain abstractions and semantics, allowing modelers
to perceive themselves as working directly with domain
concepts. Furthermore, the rules of the domain can be
included into the language as constraints, disallowing the
specification of illegal or incorrect models.

DSLs play a cornerstone role in DSM. In general, defin-
ing a modeling language involves at least two aspects: the
domain concepts and rules (abstract syntax), and the nota-
tion used to represent these concepts (concrete syntax)—Ilet
it be textual or graphical. Each model is written in the lan-
guage of its metamodel. Thus, a metamodel will describe
the concepts of the language, the relationships between
them, and the structuring rules that constrain the model el-
ements and combinations in order to respect the domain
rules. We normally say that a model conforms to its meta-
model [3]. Metamodels are also models, and therefore they
need to be written in another language, which is described
by its meta-metamodel. This recursive definition normally
ends at such meta-metalevel, since meta-metamodels con-
form to themselves.

This metamodeling approach enables the rapid and in-
expensive development of DSLs and their associated tools
(e.g., editors), and is becoming very popular in all DSM
proposals—both academic and from major vendors and or-
ganizations (the OMG, Microsoft, IBM, etc).

So far, most of the efforts have been focused on the spec-
ification of the structure of models and metamodels, i.e.,
the concepts that comprise the language, and their struc-
turing rules. However, there is something more in meta-
models than these static semantics. In fact, there is also
a growing interest in the Model-Driven Software Develop-
ment (DSDM) community for the specification of the be-
havioral semantics of DSLs—something especially impor-
tant for model operations like simulation and verification.
This kind of semantics would also allow to define a refer-
ence semantics for a given DSL, and could also be used to

IEEE
computer
psoaety

check the behavioral equivalence with different translations
from that DSL to other technical spaces.

As described by Chen et al., the semantics of a DSL
may be either structural or behavioral [6]. The structural
semantics describe the meaning of the models in terms of
the structure of model instances: all of the possible sets
of components and their relationships, which are consistent
with the well-formedness rules, are defined by the abstract
syntax. The behavioral semantics describe the evolution of
the state of the modeled artifacts along some time model.
Hence, the behavioral semantics needs to be formally cap-
tured by a mathematical framework representing the appro-
priate form of dynamics.

In this paper we explore the use of Maude [8] as a for-
mal notation and system for supporting the specification of
both the structural (i.e., the abstract syntax) and the behav-
ioral semantics of models and metamodels, in a natural and
integrated way. This paper builds on our previous work
[21] on how to represent metamodels with Maude, extend-
ing it to cope with the specification of their behavioral se-
mantics. The use of Maude provides additional advantages.
The fact that rewriting logic specifications are executable
allows us to apply a flexible range of increasingly stronger
formal analysis methods and tools, such as run-time verifi-
cation [14], model checking [13], or theorem proving [9].
Maude offers a comprehensive toolkit for automating such
kinds of formal analysis of specifications, efficient enough
to be of practical use, and easy to integrate with software
development environments such as Eclipse. These facili-
ties, together with the capabilities of Maude to serve as a
logical and semantic framework in which many logics can
be smoothly integrated [15], made us think of Maude as an
appropriate notation and semantic framework for specifying
models and metamodels.

The structure of this document is as follows. First, Sec-
tion 2 serves as a brief introduction to Maude. Then, Sec-
tion 3 describes how the abstract syntax of models and
metamodels can be represented in Maude. Section 4 is ded-
icated to show how the behavioral semantics of metamodels
can be naturally added to the syntactical specifications, and
how they become amenable to formal analysis. Finally, Sec-
tion 5 compares our work with other related proposals and
Section 6 draws some conclusions and outlines some future
research activities.

2 Rewriting Logic and Maude
2.1 Introduction to Maude

Maude [7, 8] is a high-level language and a high-
performance interpreter and compiler in the OBJ algebraic
specification family that supports membership equational
logic and rewriting logic specification and programming

170

of systems. Thus, Maude integrates an equational style of
functional programming with rewriting logic computation.
Because of its efficient rewriting engine, able to execute
more than 3 million rewriting steps per second on standard
PCs, and because of its metalanguage capabilities, Maude
turns out to be an excellent tool to create executable envi-
ronments for various logics, models of computation, theo-
rem provers, or even programming languages. In addition,
Maude has been successfully used in software engineering
tools in applications [16]. We informally describe in this
section those Maude’s features necessary for understand-
ing the paper; the interested reader is referred to the Maude
book [8] for more details.

Rewriting logic is a logic of change that can naturally
deal with state and with highly nondeterministic concur-
rent computations. A distributed system is axiomatized in
rewriting logic by a rewrite theory R = (3, E,R), where
(3, E) is an equational theory describing its set of states as
the algebraic data type T /¢ associated to the initial algebra
(3,E), and R is a collection of rewrite rules. Maude’s un-
derlying equational logic is membership equational logic, a
Horn logic whose atomic sentences are equalities 7 = ¢ and
membership assertions of the form ¢ : S, stating that a term
t has sort S.

For example, the following Maude functional module
NATURAL defines the natural numbers (with sorts Nat of
natural numbers and NzNat of nonzero natural numbers),
using the Peano notation, with the zero (0) and successor
(s_) operators as constructors (note the ctor attribute).
The addition operation (_+) is also defined, being its be-
havior specified by two equational axioms. The operators
s_and _+ are defined using mixfix syntax (underscores
indicate placeholders for arguments).

fmod NATURAL is
sorts NzNat Nat .
subsort NzNat < Nat .

op O -> Nat [ctor]
op s_ : Nat -> NzNat [ctor]
op _+_ : Nat Nat -> Nat [assoc comm id: 0]
vars M N : Nat .
eq sM+ s N=ss (M +N)
endfm

If a functional specification is terminating, confluent,
and sort-decreasing, then it can be executed. Computation
in a functional module is accomplished by using the equa-
tions as simplification rules from left to right until a canon-
ical form is found. Some equations, like those expressing
the commutativity of binary operators, are not terminating
but nonetheless they are supported by means of operator
attributes, so that Maude performs simplification modulo
the equational theories provided by such attributes, which
can be associative (assoc), commutativity (comm), identity
(1d), and idempotence (idem). The above properties must

therefore be understood in the more general context of sim-
plification modulo such equational theories.

While functional modules specify membership equa-
tional theories, rewrite theories are specified by system mod-
ules. A system module may have the same declarations of
a functional module plus rules of the form 1 — ¢, where ¢
and ¢’ are YX-terms, which specify the dynamics of a system
in rewriting logic. These rules describe the local, concur-
rent transitions possible in the system, i.e., when a part of
the system state fits the pattern ¢ then it can change to a
new local state fitting pattern #. The guards of conditional
rules act as blocking pre-conditions, in the sense that a con-
ditional rule can only be fired if the condition is satisfied.

2.2 Object-Oriented Specifications: Full Maude

In Maude, concurrent object-oriented systems are speci-
fied by object-oriented modules in which classes and sub-
classes are declared. A class is declared with the syn-
tax class C | ay1:S1, ..., a,:S,, where C is the
name of the class, a; are attribute identifiers, and S;
are the sorts of the corresponding attributes. Objects
of a class C are then record-like structures of the form
<0 :C | ai:vi, ..., ay:v, >, where O is the name of
the object, and v; are the current values of its attributes. Ob-
jects can interact in a number of different ways, including
message passing. Messages are declared in Maude in msg
clauses, in which the syntax and arguments of the messages
are defined.

In a concurrent object-oriented system, the concurrent
state, which is called a configuration, has the structure of a
multiset made up of objects and messages that evolves by
concurrent rewriting using rules that describe the effects of
the communication events of objects and messages. The
predefined sort Configuration represents configurations
of Maude objects and messages, with none as empty con-
figuration and the empty syntax operator __ as union of
configurations.

sort Configuration .
subsorts Object Message < Configuration .
op none : -> Configuration [ctor]
op _ _ : Configuration Configuration
-> Configuration [ctor assoc comm id: none]

Thus, rewrite rules define transitions between configura-
tions, and their general form is:

crl [r]
< O Ci1 | attsi > ... < Oy Cy | atts, >
My ... My
=> < Oy Cﬁ | attsa > ... < Oy Ca | atts&
< O1 Cl | atts! > ... < Qp : Cﬁ | attsﬁ >
Mo AQ
if Cond .

171

where r is the rule label, M;...M,, and M’l...M"] are mes-
sages, O1...0, and Q;...0Q, are object identifiers, C;...C,,
lel ...C{k and C’{...CI’,’ are classes, iy...i; is a subset of 1...n,
and Cond is a Boolean condition (the rule’s guard). The re-
sult of applying such a rule is that: (a) messages M...M,,
disappear, i.e., they are consumed; () the state, and possi-
bly the classes of objects O;, ...0;, may change; (c) all the
other objects O; vanish; (d) new objects Q;...Q, are cre-
ated; and (e) new messages M{...M,’I are created, i.e., they
are sent. Rule labels and guards are optional.

For instance, the following Maude module, ACCOUNT,
specifies a class Account with an attribute balance of sort
integer (Int), a message withdraw with an object iden-
tifier (of sort 0id) and an integer as arguments, and two
rules describing the behavior of the objects belonging to
this class. The rule debit specifies a local transition of
the system when there is an object A of class Account that
receives a withdraw message with an amount smaller or
equal than the balance of A; as a result of the application of
such a rule, the message is consumed, and the balance of the
account is modified. The rule transfer models the effect
of receiving a money transfer message.

(omod ACCOUNT is

class Account | balance : Int .

msg withdraw : 0id Int -> Msg .

msg transfer : O0id O0id Int -> Msg .

vars A B : 0id .

vars M Bal Bal’

crl [debit]
withdraw (A, M)

Int .

< A : Account | balance : Bal >
=> < A : Account | balance : Bal - M >
if M <= Bal

crl [transfer]
transfer (A, B, M)
< A : Account | balance : Bal >
< B : Account | balance : Bal’ >
=> < A : Account | balance : Bal - M >

< B : Account | balance : Bal’ + M >
if M <= Bal
endom)

When several objects or messages appear in the left-hand
side of a rule, they need to synchronize in order for such a
rule to be fired. These rules are called synchronous, while
rules involving just one object and one message in their left-
hand sides are called asynchronous rules.

Class inheritance is directly supported by Maude’s order-
sorted type structure. A subclass declaration ¢ < ¢, indi-
cating that C is a subclass of C’, is a particular case of a
subsort declaration ¢ < C’, by which all attributes, mes-
sages, and rules of the superclasses, as well as the newly
defined attributes, messages and rules of the subclass char-
acterize its structure and behavior. This corresponds to the
traditional notion of subtyping: A is a subtype of B if every
<X> that satisfies A also satisfies B. Multiple inheritance
is also supported in Maude [7, 8].

StateMachine

+initialState | 0..1 tcurrentState
+containedStates * 1

State +target +incomingl Transition
7 -

+name : String +src +outgoing|+name : String
1 B
+triggery, 0..1
EventOcurrence
Event
+args : String 1

Figure 1. Simple State Machine Metamodel.

3 Formalizing models and metamodels with
Maude

There are several notations to represent models and
metamodels, from textual to graphical. One of particular in-
terest to us is KM3, a specialized textual language for spec-
ifying metamodels, whose abstract syntax is based on Ecore
and MOF 2.0. Thus, KM3 resembles the Ecore terminology
and has the notions of package, class, attribute, reference
and datatype. The following is a possible KM3 specifica-
tion of a metamodel for simple state machines, which is
also depicted in Figure 1.

package SimpleStateMachine {
class State {

attribute name : String;

reference stateMachine : StateMachine
oppositeOf containedStates;

reference incoming [*] : Transition
oppositeOf target;

reference outgoing [*] : Transition

oppositeOf src;

}

class StateMachine {

reference initialState [0-1] : State;
reference currentState : State;
reference containedStates [*] container : State

oppositeOf stateMachine;

}

class Transition {
attribute name : String;

reference target [1] : State
oppositeOf incoming;
reference src [1] : State

oppositeOf outgoing;
reference trigger [0-1] : Event;
class Event ({
attribute name :
class EventOccurrence {
attribute args : String;
reference event : Event;

String;

172

There are many interesting benefits of using KM3, such
as: it is simple and easy to learn and to understand; it al-
lows precise and easy definition and modification of the
metamodels; it is possible to convert MOF, Ecore, and
other metamodel languages to/from KM3 descriptions; and
KM3 offers good tool support and is integrated with a
proven and widely accepted MDSD environment, the AT-
LAS Model Management Architecture (AMMA). In addi-
tion, KM3 metamodels can be included into model reposi-
tories (zoos) and be ready to allow mega-modeling [4].

However, KM3 is not the only notation for specifying
the syntax of models and metamodels. In [21] we pre-
sented a proposal based on the use of Maude, which not
only was expressive enough for these purposes, but also of-
fered good tool support for reasoning about models. In par-
ticular, we showed how some basic operations on models,
such as model subtyping, type inference, and metric eval-
uation, can be easily specified and implemented in Maude,
and made available in development environments such as
Eclipse. This section presents just a brief summary of that
proposal.

In Maude, models are represented by configurations of
objects. Nodes are represented by Maude objects. Nodes
may have attributes, that are represented by Maude objects’
attributes. Edges are represented by Maude objects’ at-
tributes, too, each one representing the reference to the tar-
get node of the edge.

Due to the way of representing models, we have two
ways of representing metamodels. Firstly, we can represent
a metamodel as a Maude object-oriented module, which
contains the specification of the Maude classes to which
the Maude objects that represent the corresponding models
nodes belong. In this way, models conform to metamodels
by construction.

Secondly, since metamodels are models too, they can
be represented by configurations of objects. The classes
of such objects will be the ones that specify the meta-
metamodels, for example, the classes that define the KM3
metamodel.

To illustrate the first option of representing metamodels,
the following piece of Maude specifications describe Sim-
ple State Machine metamodel as a Maude module.

(omod SimpleStateMachines is

protecting STRING .

class State |
name : String,
stateMachine : 0id,
incoming : Set{0id},
outgoing : Set{0id}

class StateMachine |
containedStates : Set{0id},
currentState : 0id,
initialState : Maybe{0id}

class Transition |

name : String, target : 0id,

src : 0id, trigger : Maybe{0id}
class Event |
name : String .

class EventOccurrence |

args : String , event : 0id .

endom)

Then, KM3 classes correspond to Maude classes. At-
tributes are represented as Maude attributes. References are
represented as attributes too, by means of sets of Maude ob-
ject identifiers. Depending on the multiplicity, we can use:
a single identifier (if the multiplicity is 1); a Maybe{0id}
which is either an identifier or a null value, for represent-
ing a [0-1] multiplicity; a Set{0id} for multiplicity [*];
ora List{0id} in case the references are ordered. Notice
that this representation abstracts away some KM3 notions,
such as oppositeOf. This and other KM3 aspects will be
considered in the alternative way of representing metamod-
els below.

The instances of such classes will represent models that
conform to the example metamodel. For instance, the con-
figuration of Maude objects shown in Figure 2 represents
a possible state machine model that conforms to that meta-
model. It represents a simple state machine with two states,
named St1 and St2, and one transition (Tr) between them.
St 1 is the initial state of the state machine, and also its cur-
rent state. Tr is triggered by the occurrences of event Ev.

The validity of the objects in a configuration is checked
by the Maude type system. In addition, the valid types of the
objects being referenced is expressed in Maude in terms of
membership axioms that define the well-formedness rules
that any valid model should conform to: a configuration is
valid if it is made of valid objects, with valid references. In
our example, the well-formedness rules of the simple state
machines metamodel are shown in Figure 3.

Our second way of modeling metamodels is considering
them as models, too. Therefore, they can also be repre-
sented as configurations of objects. The classes of such ob-
jects will be the ones that specify the meta-metamodels—
for example, the classes defined in the KM3 metamodel.

To illustrate this approach, the configuration of Maude
objects shown in Figure 4 represents the Simple State Ma-
chine metamodel. The Maude specification of the classes
of these objects corresponds, of course, to the KM3 meta-
model represented in Maude.

It is important to note that these two different represen-
tations of a metamodel are not completely equivalent. In
fact, the second one contains all the information about the
metamodel, while the former one describes just informa-
tion about the models themselves—i.e., as a configuration
of objects of certain classes with references to other objects.
Thus, some information not relevant at this level is omit-
ted, or checked with Maude equations, such as whether a
class is abstract or not, or whether a reference is a container
or the opposite of other. This is similar to the information

173

captured by UML object diagrams, in which the relevant
information are the object identifiers, their classifiers, and
the links between them—but no information is shown about
how the classifiers of such objects are organized into pack-
ages or structured in an inheritance hierarchy, or the kinds
of associations of their links.

Then, in our proposal we use both approaches, because
they are useful for different reasons. In all cases we rep-
resent metamodels as configurations of Maude objects (i.e.,
the second option above) to be able to capture all their rele-
vant information, and to be able to reason about them using
Maude (see [21]). But we also represent them as Maude
specifications (i.e., using the first option that we have de-
scribed) in order to be able to instantiate models from them
in a natural way, and to add the behavioral semantics to
them, as we shall see in next section. There is a clear re-
lationship between these two representations: we can easily
obtain the first representation from the second one.

In fact, using both representation in combination is a
clear advantage of our proposal when compared to other
approaches that use Maude for formalizing UML models
(e.g., Moment [5] or Riviera [22]), as we discuss later in
Section 5. The fact that each alternative representation is
more appropriate for different usages allows us always work
with the one that better suits each situation.

4 Semantics

As we have previously mentioned, there are many pro-
posals that use metamodeling techniques (e.g., metamodel-
ing languages, metamodels, or UML profiles) to describe
the abstract syntax of DSLs. Such abstract syntax is ex-
pressed in terms of the concepts of the language, their rela-
tionships, and a set of structural (or well-formedness) rules.

However, explicit and formal specification of a model
behavioral semantics has not received much attention by the
MDSD community, despite the fact that this creates a pos-
sibility for semantic mismatch between design models and
modeling languages of analysis tools. While this difficulty
exists in virtually every domain where DSLs are used, it is
more common in domains in which behavior needs to be
explicitly represented. Furthermore, this issue is particu-
larly problematic in safety-critical real-time and embedded
system domains, where semantic ambiguities may produce
conflicting results across different tools.

For instance, it is not clear from the
SimpleStateMachines metamodel what happens if
an event occurs and there is no transition that can be
triggered. Is the event lost, or is it held until the state
machine reaches a state with a transition that can be
triggered by the event? What is the behavior of the system
when it contains internal transitions (i.e., those that do not
require the occurrence of any event to be triggered)? How

< 'S : StateMachine | containedStates : (’A, ’B), initialState : 'A, currentState : 'A >
< 'A : State | name : "Stl", stateMachine : 'S, outgoing : ‘T, incoming : empty >

< 'B : State | name : "St2", stateMachine : 'S, incoming : ‘T, outgoing : empty >

< 'T : Transition | name : "Tr", src : ‘A, target : ‘B, trigger : 'E >

< 'E : Event | name : "Ev" >

Figure 2. Simple State Machine model.

vars MODEL CONF CONF1l CONF2 : Configuration
vars O S T C E SM : 0Oid

vars CS IN OUT : Set{oid}

vars i TR : Maybe{0id}

subsort ValidStateMachine < Configuration
cmb CONF : ValidStateMachine if validRefs (CONF)

op validRefs : Configuration -> Bool
op validRefs : Configuration Configuration -> Bool

eq validRefs (CONF) = validRefs (none, CONF)

ceq validRefs (CONF1l, < O : State | stateMachine : SM, incoming : IN, outgoing
= 1sKindOf (SM, StateMachine, MODEL)
and-then isSetOf (IN, Transition, MODEL)
and-then isSetOf (OUT, Transition, MODEL)
and-then validRefs (CONF1 < O : State | >, CONF2)
if MODEL := CONF1l < O : State | > CONF2

ceq validRefs (CONF1l, < O : StateMachine | initialState : I, currentState : C,
containedStates : CS > CONF2)
= isNullOrKindOf (I, State, MODEL)
and-then isKindOf (C, State, MODEL)
and-then isSetOf (CS, State, MODEL)
and-then validRefs (CONF1l < O : StateMachine | >, CONF2)
if MODEL := CONFl < O : StateMachine | > CONF2

OUT > CONF2)

ceq validRefs (CONF1l, < O : Transition | target : T, src : S, trigger : TR > CONF2)

= i1sKindOf (T, State, MODEL)

and-then isKindOf (S, State, MODEL)

and-then isNullOrKindOf (TR, Event, MODEL)

and-then validRefs (CONF1l < O : Transition | >, CONF2)
if MODEL := CONFl < O : Transition | > CONF2

ceq validRefs (CONF1, < O : Event | > CONF2) = validRefs(CONF1l < O : Event | >, CONF2)

ceq validRefs (CONF1l, < O : EventOccurrence | event : E > CONF2)
= i1sKindOf (E, Event, MODEL)
and-then validRefs (CONF1l < O : EventOccurrence | >, CONF2)

if MODEL := CONFl < O : Transition | > CONF2
eq validRefs (CONF1, none) = true
eq validRefs (CONF1l, CONF2) = false [owise]

Figure 3. Well-formedness rules

174

< 'SMP KM3Package | name "SimpleStateMachine", metamodel MM,
contents (" STATE, 'STATEMACHINE, 'TRANSITION, 'EVENT, ’'EVENTOCCURRENCE), package null >
< 'STATE KM3Class | name "State", isAbstract false, package 'SMP, superTypes empty,
structuralFeatures (" STATENAME, ‘STATESTATEMACHINE, ’STATEINCOMING, ‘STATEOUTGOING) >
< ' STATENAME KM3Attribute | name "name", package 'SMP, type " STRING,
owner 'STATE, lower 1, upper 1, isOrdered false, isUnique false >
< 'STATESTATEMACHINE KM3Reference | name "stateMachine", type ' STATEMACHINE,
package 'SMP, owner 'STATE, lower 1, upper 1, isOrdered false,
isUnique false, opposite ' STATEMACHINECONTAINEDSTATES, isContainer false >
< 'STATEINCOMING KM3Reference | name "incoming", type 'TRANSITION,
package ’SMP, owner "STATE, lower 0, upper *, 1sOrdered false,
isUnique false, opposite 'TRANSITIONTARGET, isContainer false >
< 'STATEOUTGOING KM3Reference | name "outgoing", type 'TRANSITION,
package 'SMP, owner "STATE, lower 0, upper *, 1sOrdered false,
isUnique false, opposite 'TRANSITIONSRC, isContainer false >
< 'STATEMACHINE KM3Class | name "StateMachine", >
< 'TRANSITION KM3Class | name "Transition",

Figure 4. Simple State Machine KM3 model expressed as Configuration of Maude objects

do they exactly behave? When are they triggered? These
are the sort of issues that require to be precisely clarified by
a behavioral specification.

The need for the specification of the behavioral seman-
tics of models was also recently raised by Robin Milner in
[17], where he mentioned that a (meta)model “consists of
some concepts, and a description of permissible activity in
terms of these concepts.” (The emphasis is ours.) The ques-
tion is then: how do we represent such activities and for-
malize them so they are amenable for reasoning about the
properties of the system being specified?

4.1 Behavior as rewrite rules

Behavioral semantics are specified in Maude in terms of
rewrite rules, which are added to the corresponding Maude
specifications that contain the description of metamodels.
Therefore, given a Maude module with the specification of
the abstract syntax of a metamodel, we can “extend” it (by
adding the appropriate rewrite rules) with the semantic in-
formation.

To illustrate this approach, the following
Maude module SsSMWithBehaviorl extends the
SimpleStateMachines specification with two rules.

(omod SSMWithBehaviorl is
pr SimpleStateMachines

vars S T E A B X 0id
rl [AnEventOccurs]
< 8 StateMachine | currentState : A >
< T Transition | src A, target B,
trigger E >
< X EventOccurrence | event E >
=> < S StateMachine | currentState B >
< T : Transition | >
rl [InternalTransition]
< S StateMachine | currentState : A >

175

< T Transition | src A, target B,
trigger null >
=> < 8 StateMachine | currentState : B >
< T : Transition | >
endom)

First, rule AnEventOccurs specifies the behavior of the
system when an event occurs, and the state machine is in
a state with a transition that can be triggered by an event
of that kind. In this case, the transition takes place (i.e.,
the current state of the state machine is changed) and
the event occurrence is consumed: it disappears in the right
hand side of the rule. (Please notice that in Maude, the at-
tributes of an object which are unchanged by a rule do not
need to be specified.)

Second, rule InternalTransition specifies the be-
havior of internal transitions. If the state machine is in a
state that allows a transition to be triggered without the oc-
currence of any event, the transition takes place.

Note that if we do not add any further rule, the seman-
tics of the rewriting rules in Maude precisely specify what
happens if there is no transition that can be triggered when
an event occurs: it is held until an state is reached in which
a transition for that event occurrence can be triggered. Sim-
ilarly, the rest of the behavioral aspects of the system are
dictated by the semantics of Maude rewriting rules. Thus,
in case that several rules can be fired under the occurrence
of an event, only one will be fired in an indeterministic way.
Of course, this behavior can be changed by the inclusion of
the appropriate rules, or by the use of Maude’s strategies for
controlling the execution of the system [7].

Furthermore, several alternative behaviors
can be specified by extending the original
SimpleStateMachines specification in different ways.
For instance, we could define another Maude modules
SSMWithBehavior2 and SSMWithBehavior3 that in-
clude simpleStateMachines and extend it with different

[]

SimpleStateMachines p,

- T =
-~
=arefings== =krefing== “zarefing==
-~ 1 T
~ 1 .
1 = 11 1
SSMWithBehavior! s, SSMWithBehaviorZ2 » SSMWithBehaviord a
7l ® Fll
7 23
={rgﬁne== ==kefing== {ﬁreﬁne==
g h r
I 1

SSMWithBehaviorh »

SSMWithBehaviorB 4

Figure 5. Different behavioral specifications for a metamodel.

rules (see Figure 5). Moreover, Maude defines a complete
module algebra [12] which, among other operations, allows
for module inheritance. This therefore becomes a very
powerful mechanism in this context for refining behavioral
specifications.

4.2 Formal Analysis

Once the system specifications are written using this
modeling approach, what we get is a rewriting logic spec-
ification of the system. Since the rewriting logic specifica-
tions produced are executable, this specification can be used
as a prototype of the system, which allows us to simulate it.
Notice however that when executing the system we only get
one of the possible executions, and this might not be enough
in many situations. But then, Maude offers tool support for
other interesting possibilities such as reachability analysis,
model checking [13], or theorem proving [9].

For example, we could check whether a given state
is reached in the state machine, starting from an initial
state and a set of event occurrences. Then, suppose that
we want to search for those executions in which the state
of a state machine is ’B, starting from the initial con-
figuration initialConf. Given a variable C of sort
Configuration, the search command can be used for
such a search as follows.

(search initialConf =>*

< 'S : StateMachine | currentState : ‘B > C .)

The result will be a collection of solutions that fulfil the
given search pattern. In this way we can search for execu-
tions leading to undesirable states that we want to avoid in
the system, or for situations that violate any of the proper-
ties that we want to prove on the system.

176

writeFile

openFile

writeFile

Error

Figure 6. A File Simple State Machine.

closeFile

For instance, suppose that we have the state machine
model depicted in Figure 6. It is a simple state machine
for Files with three states: Open, Closed and Error. Op-
erations openFile, closeFile and writeFile can be
issued. This state machine model can be represented in
Maude as shown in Figure 7.

Thus, if Error is considered as an undesirable state,
we would like to know if there exists a possible execu-
tion that reaches it starting, for example, from a couple of
writeFile and openFile operation calls on a File in the
Closed state. Firstly we define our initialConf as the
union of the configuration shown in Figure 7 and these two
event occurrences.

< ’'OFOC : EventOccurrence | event : 'OF,
args : "" >

< ’'CFOC : EventOccurrence | event : 'WF,
args : "Hello world ." > .

Then, given a variable C of sort Configuration, we
can use the search command as follows:

(search initialConf =>*

< 'SM : StateMachine \ containedStates : (’CS, ’'0OS, ’'ES), initialState : ’'CS, currentState : 'CS >
< 'CS : State | name : "Closed", stateMachine : ’'SM, outgoing : (’C20, ’‘C2E), incoming : ’'02C >
< '0OS : State | name : "Open", stateMachine : ’SM, outgoing : (’020, ’'02C), incoming : (’C20, ’'020) >
< 'ES : State | name : "Error", stateMachine : 'SM, outgoing : empty, incoming : ‘C2E >
< ’C20 : Transition | name : "Closed20pen", src : ’'CS, target : ’'OS, trigger : ’'OF >
< '02C : Transition | name : "Open2Closed", src : ’'OS, target : 'CS, trigger : 'CF >
< 020 : Transition | name : "Open20pen", src 0S8, target : '0OS, trigger : 'WF >
< 'C2E : Transition \ name : "Closed2Error", src : 'CS, target : 'ES, trigger : 'WF >
< 'OF : Event | name : "openFile" >
< 'CF : Event | name : "closeFile" >
< 'WF : Event | name : "writeFile" >
Figure 7. The File Simple State Machine configuration of objects.
< ’SM : StateMachine | currentState : 'ES > C .) 5 Related work

Figure 8 shows the results of this command (the object
' SM is not included in the resulting Maude term since it is
part of the query). As expected, Maude obtains one pos-
sible execution that reaches such a state. It happens if the
writeFile event occurrence ' CFOC is consumed (by rule
AnEventOccurs) before the openFile event occurrence
" OFOC is consumed, i.e., if the write operation happens be-
fore the file is opened. (The opposite sequence would lead
us to the Open state).

The search commands are very useful, and usually help
to uncover many undesired situations. However, by search-
ing we cannot reach any definitive conclusion, we can
only gain certain level of confidence in the specification.
Maude also offers a linear temporal logic explicit-state
model checker [13], which also allows us to check whether
every possible behavior starting from a given initial con-
figuration satisfies a given (temporal) logic property. Fur-
thermore, the theorem prover can be useful in case there is
the need to thoroughly prove other properties (see [9] for
useful examples and potential usages of the Maude model
checker).

4.3 Tool Support

One of the main advantages of Maude is the possibil-
ity of using its execution environment, able to provide ef-
ficient implementations of the specifications—comparable
in resource consumption to most commercial programming
languages’ environments. Our work so far consists of de-
veloping an Eclipse plug-in, called Maudeling [20], that al-
lows to provide the formal specifications of KM3 models
and metamodels. ATL (the ATLAS Transformation Lan-
guage) is used by the tool to automatically transform the
KM3 models into their corresponding Maude representa-
tions. Then the desired behavioral semantics can be added,
and the corresponding operations can be executed in the
Maude environment.

177

There are several lines of research that are closely related
to ours. Firstly, there are some works that formalize some
of the UML models using Maude. Among them, RIVIERA
[22] is a framework for the verification and simulation of
UML class diagram models and statecharts. It is based on
the representation of class diagrams and statecharts as terms
in Maude modules that specify the UML metamodel.

MOMENT [5] is a generic model management frame-
work. It uses Maude modules to automatically serialize
software artifacts. It supports OCL queries (but not OCL
constraints over UML models). MOMENT is integrated in
Eclipse, an open platform for tool integration. The specifi-
cation of OCL queries is done manually, and it requires a
deep understanding of both Maude and the MOMENT spe-
cific representation of UML diagrams.

Finally, ITP/OCL [10] is a rewriting- based tool that sup-
ports automatic validation of UML static class diagrams
with respect to OCL invariants. From a conceptual point of
view, the ITP/OCL tool is directly based on the equational
specification of UML+OCL class diagrams in which class
and object diagrams are specified as membership equational
theories (and not as terms); invariants are represented as
Boolean terms over extensions of those theories; and check-
ing invariants over object diagrams is reduced to inspecting
whether the corresponding Boolean terms rewrite to true or
false.

We differ from those proposals mainly in three aspects:
(1) other Maude proposals tend to define models in a fixed
formalism (mainly UML) directly instead of explicitly dis-
cussing the metamodel definition too; (2) for those who use
OCL, OCL allows to specify structural semantics through
invariants, and behavioral semantics through the definition
of pre- and post- conditions on operations, but does not al-
low (being side-effect free) to alter the state of a model, i.e.,
OCL is not sufficient for expressing rich behavioral seman-
tics; and (3) we have dual representation of metamodels as
both Maude specifications and Maude terms, being there-
fore able to handle them in the most appropriate way de-

rewrites: 1052 in 4344030914ms cpu
search in SSMExample :

(88ms real)

(0 rewrites/second)

initialConf =>* C:Configuration < ’SM : StateMachine | currentState : 'ES > .
Solution 1 C:Configuration -->
< 'C2E : Transition \ name : "Closed2Error", src : 'CS, target : 'ES, trigger : 'WF >
< ’C20 : Transition | name : "Closed20pen", src : ’'CS, target : 'OS, trigger : 'OF >
< '02C : Transition | name : "Open2Closed", src : ’'OS, target : 'CS, trigger : ’'CF >
< 020 :Transition | name : "Open20pen", src : 'OS, target : ’'OS, trigger : 'WF >
< 'CS : State | incoming : ’02C, name : "Closed", outgoing :(’C2E, ’'C20), stateMachine : 'SM >
< 'ES : State | incoming : ’C2E, name : "Error", outgoing : empty, stateMachine : 'SM >
< 'OS : State | incoming : (’C20, ‘020), name : "Open", outgoing :(’02C, ‘020), stateMachine : ’'SM >
< 'CF : Event | name : "CloseFile" >
< 'OF : Event | name : "OpenFile" >
< 'WF : Event | name : "WriteFile" >
< 'OFOC : EventOccurrence | event : 'OF,args : "" >

No more solutions.

Figure 8. Search command solution

pending on the operations we want to apply on them.

The proposals that represent models as Maude terms
(namely MOMENT and RIVIERA) make a heavy use of
the reflective capabilities of Maude, defining and handling
most model operations at the meta-level. This approach has
several drawbacks. For example, it heavily increases the
complexity of the specifications, makes them much more
difficult to write and to maintain, and also has a strong
impact on performance. The fact that we define both the
model operations and the model behavior as natural exten-
sions of the Maude modules greatly simplifies the descrip-
tion of the specifications (and hence their understandabil-
ity and maintenance), and is much more efficient when it
comes to evaluating the operations or simulating the system
behavior. Regarding the ITP/OCL tool, the approach it fol-
lows can be compared to our first way of representing meta-
models. However, we have shown the benefits that repre-
senting models and metamodels as configuration of objects
too (and not only as theories) can bring along. In particu-
lar, this dual representation allows the natural definition and
evaluation of model operations on them, greatly simplifying
their specification and also the way to reason about them.

Secondly, we have the works that try to provide formal
support for KM3. So far it is quite limited. There is a very
interesting proposal to formalize the semantics of KM3 us-
ing the Abstract State Machines notation [11], but there is
no connection yet to any formal toolkit to reason about the
formal specifications produced, nor have all the potential
benefits of having a formal representation of the models and
metamodels been fully exploited. And there is also a recent
initiative by Thirioux et al. [23], who propose a framework
to give a formal foundation of the Model-Driven Engineer-
ing (MDE) approach. They define the notions of model and
reference model based on typed multigraphs, and formal-
ize the two operations that are fundamental to the MDE ap-

178

proach, conformsTo that indicates whether a model is valid
with respect to a reference model, and promotion which
builds a reference model from a model. However, they just
deal with the static semantics of metamodels, applied on
EMOF. The way to deal with operational semantics is left
open as future work, although they mention that it would
allow to define a reference semantics for a given DSL, and
could be used, for instance, to check the behavioral equiv-
alence with different translations from this DSL to other
technical spaces. This is precisely what we have shown that
can be done with our proposal.

Thirdly, there are already several proposals for express-
ing the behavioral semantics of models and metamodels.
Examples of such works specification include, among oth-
ers, the transformational approaches that specify the opera-
tional semantics of DSLs using graph transformations (e.g.,
[1, 24]), or the semantic anchoring method developed at
the Vanderbilt University [6], which represents an important
step in this direction. Semantic anchoring relies on the use
of well-defined “semantic units” of simple, well-understood
constructs and on the use of model transformations that map
higher level modeling constructs into configured semantic
units. This approach uses Abstract State Machines as a se-
mantic framework, and Microsofts Abstract State Machine
Language (AsmL) and associated tools for programming,
simulating and model checking ASM models [6]. Our work
can be considered to be in this line too, but using Maude for
both as a logical and semantical framework [15], and for
specifying and reasoning about the models, avoiding in this
way the definition of mappings between them.

6 Conclusions

According to the MDSD principles, models and meta-
models become first-class citizens in the software engineer-

ing process. Several notations have been proposed to spec-
ify them, although the kind of formal and tool support they
provide is quite limited. In this paper we have shown how
Maude provides an accurate way of specifying both the ab-
stract syntax and the behavioral semantics of models and
metamodels, and offers good tool support for reasoning
about them.

There are several lines of work in which we are cur-
rently engaged, or that we plan to address in the near fu-
ture. Firstly, we are working on the specification on more
model operations, such as deep model copy [19], match,
diff, merge, compose, or apply [2]. Our plan is to make
them all available as part of the Maude model management
tool-kit, in addition to the ones presented in [21].

Secondly, We are also working on improving the inte-
gration with other tools, being able to deal not only with
KM3 models, but also with, e.g., MOF or Ecore metamod-
els. Although it is possible to convert MOF and Ecore
to/from KM3 descriptions, these metamodels incorporate
new elements (operations and more kinds of associations)
that need to be taken into account in our algorithms. We are
also working on the reverse transformations (from Maude
to KM3, Ecore) in order for other tools to be able to use the
results produced by Maude.

Finally, we also want to study the expressiveness of our
approach when compared to other similar proposals, such
as the one previously mentioned [6]. In particular, we want
to use it to add semantic information to model transforma-
tions (at the end of the day they are models, too) and then
be able to prove other kind of properties, such as behavior
preserving of model transformations [18].

Acknowledgements The authors would like to thank the
anonymous referees for their insightful comments and very
constructive suggestions. This work has been supported by
Spanish Research Project TIN2005-09405-C02-01.

References

[1] A. C. abd Reiko Heckel and U. Montanari. Graphical
operational semantics. In Proc. of the ICALP 2000
Satellite Workshops, pages 411-418, 2000.

[2] P.Bernstein. Applying model management to classical
metadata problems. In Proc. of Innovative Database

Research, pages 209-220, 2003.
[3]

J. Bézivin. On the unification power of models. Jour-
nal on Software and Systems Modeling, 4(2):171-188,

2005.

[4] J. Bézivin, F. Jouault, P. Rosenthal, and P. Val-
duriez. Modeling in the large and modeling in the

small. In U. ABmann, M. Aksit, and A. Rensink,

179

editors, Model Driven Architecture, European MDA
Workshops: Foundations and Applications (MDA-FA
2003/2004), volume 3599 of Lecture Notes in Com-
puter Science, pages 33—46. Springer-Verlag, 2005.

[5] A.Boronat, J. A. Carsi, and I. Ramos. Automatic sup-
port for traceability in a generic model management
framework. In D. Kreische, editor, Proc. of Model
Driven Architecture: Foundations and Applications
(ECMDA-FA 2005), volume 3748 of Lecture Notes in
Computer Science, pages 316-330. Springer-Verlag,

2005.

[6] K. Chen,J. Sztipanovits, S. Abdelwalhed, and E. Jack-
son. Semantic anchoring with model transformations.
In Proc. of Model Driven Architecture: Foundations
and Applications (ECMDA-FA 2005), volume 3748 of
Lecture Notes in Computer Science, pages 115-129.

Springer-Verlag, 2005.

[71 M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and J. Quesada. Maude: specifica-
tion and programming in rewriting logic. Theoretical

Comput. Sci., 285:187-243, Aug. 2002.

[8] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-
Oliet, J. Meseguer, and C. Talcott. All About Maude
— A High-Performance Logical Framework. Number
4350 in Lecture Notes in Computer Science. Springer-

Verlag, Heidelberg, Germany, 2007.

M. Clavel, F. Durén, S. Eker, and J. Meseguer. Build-
ing equational proving tools by reflection in rewriting
logic. In K. Futatsugi, A. Nakagawa, and T. Tamai, ed-
itors, CAFE: An Industrial-Strength Algebraic Formal
Method, pages 1-31. Elsevier, 2000.

[10] M. Clavel and M. Egea. ITP/OCL: A rewriting-based
validation tool for UML+OCL static class diagrams.
In M. Johnson and V. Vene, editors, Proc. of AMAST
2006, volume 4019 of Lecture Notes in Computer Sci-

ence, pages 368—373. Springer-Verlag, 2006.

[11] D. di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and
A. Pierantonio. Extending AMMA for supporting dy-
namic semantics specifications of DSLs. Technical
Report 06.02, Laboratoire d’Informatique de Nantes-
Atlantique (LINA), Nantes, France, Apr. 2006. Sub-

mitted for publication.

[12] F. Duran and J. Meseguer. Maude’s module algebra.
Science of Computer Programming, 66(2):125-153,

Apr. 2007.

[13] S. Eker, J. Meseguer, and A. Sridharanarayanan. The
Maude LTL model checker. In F. Gaducci and

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

U. Montanari, editors, Proc. of the 4th International
Workshop on Rewriting Logic and its Applications
(WRLA 2002), volume 71 of Electronic Notes in Theo-
retical Computer Science, pages 115-142, Pisa, Italy,
Sept. 2002. Elsevier.

K. Havelund and G. Rosu. Monitoring programs us-
ing rewriting logic. In Proc. of Automated Software
Engineering 2001 (ASE’01), pages 135-143, Califor-
nia, Nov. 2001. IEEE CS Press.

N. Marti-Oliet and J. Meseguer. Rewriting logic as
a logical and semantic framework. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophi-
cal Logic, volume 9, pages 1-87. Kluwer Academic
Publishers, 2 edition, 2002.

N. Marti-Oliet and J. Meseguer. Rewriting logic:
roadmap and bibliography. Theoretical Comput. Sci.,
285(2):121-154, 2002.

R. Milner. Memories of Gilles Kahn, and the In-
formatic Future. Coloquim in memorial for Gilles
Kahn. http://www.inria.fr/gilleskahn/
presentation/milner.pdf, Jan. 2007.

A. Narayanan and G. Karsai. Using seman-
tic anchoring to verify behavior preservation in
graph transformations. In Proc. of the Second
International Workshop on Graph and Model
Transformation (GraMoT 2006), volume 4 of Elec-
tronic Communications of the EASST, pages 1-14,
Brighton, United Kingdom, Sept. 2006. http:
//eceasst.cs.tu-berlin.de/index.
php/eceasst/article/viewFile/22/12.

I. Porres and M. Alanen. A generic deep copy al-
gorithm for MOF-based models. In Proc. of Model
Driven Architecture: Foundations and Applications
(MDA-FA 2003), pages 49-60, Enschede, The Nether-
lands, July 2003. http://crest.abo.fi/
publications/public/2002/TR486.pdf.

J. E. Rivera, F. Duran, A. Vallecillo, and J. R. Romero.
Maudeling: Herramienta de gestiéon de modelos us-
ando Maude. In JISBD’ 2007: Actas de XII Jornadas
de Ingenieria del Software y Bases de Datos, Sept.
2007.

J. R. Romero, J. E. Rivera, F. Duran, and A. Valle-
cillo. Formal and tool support for model driven engi-
neering with Maude. In B. Meyer and J. Bézivin, ed-
itors, Proc. of TOOLS Europe 2007, Zurich, Switzer-
land, Apr. 2007.

J. Saez, A. Toval, and J. L. Fernandez Aleman. Tool
support for transforming UML models to a formal

180

(23]

[24]

language. In J. Whittle et al., editors, Proc. of the
International Workshop on Transformations in UML
(WTUML), pages 111-115, Genoa, Italy, Apr. 2001.

X. Thirioux, B. Combemale, X. Crégut, and P. loic
Garoche. A framework to formalise the MDE foun-
dations. In R. Paige and J. Bézivin, editors, Proc. of
the TOWERS 2007 Workshop at TOOLS Europe 2007,
Zurich, Switzerland, May 2007.

D. Varré. Automated formal verification of visual
modeling languages by model checking. Journal of
Systems and Software, 3(2):85-113, May 2004.

