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Abstract. This paper proposes the use of session types to extend withvineiral information
the simple descriptions usually provided by software congmb interfaces. We show how session
types allow not only high level specifications of complexeiactions, but also the definition of
powerful interoperability tests at the protocol level, rdyncompatibility and substitutability of
components. We present a decidable proof system to vedfethotions, which makes our approach
of a pragmatic nature.

1. Introduction

Component-Based Software Development (CBSD) is gaininggmition as the key technology for the
construction of high-quality, evolvable, large softwaystems, developed in timely and affordable man-
ners. CBSD advocates the development and usage of plugtandeusable software, with the goal of
reducing developing costs and efforts, while improvingftheibility and reliability of the final applica-
tion due to the (re)use of software components alreadydestd validated.

In CBSD, components are prefabricated pieces, perhapsogedeat different times, by different
teams, and possibly with different uses in mind. The devalqt effort now becomes one of gradual
discovery about the components, their capabilities, tinéérnal assumptions, and the incompatibilities
that arise when they are used in concert. Therefore, themotf substitutability and compatibility of
software components play a critical role in CBSD, since wed® be able to check whether a given
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component can successfully replace another in a partiaplalication, or whether the behaviour of two
components is compatible for them to inter-operate.

In general, components are described by means of itliteifaces which define their functionality
and capabilities independently from any particular impatation. Component interfaces currently pro-
vide this information in terms of the signature of the seggioffered by the component, and commercial
component platforms (such as CORBA, EJB, or .NET) providelhsic infrastructure for component
interoperability based on them. This allows to sort out madsthe “plumbing” issues when putting
components together to build applications. However, alligs are starting to recognise that signature
interoperability is not sufficient for ensuring the corréetvelopment of component-based applications
in open systems [23].

Traditional approaches to overcome this limitation try tid @emanticinformation to interfaces,
using different notations (pre/post conditions, tempéwgic, Petri nets, refinement calculus, etc.), and
are also concerned about compatibility and substitutstfi components (see [15] for a comprehensive
survey). However, these proposals share a common drawthecklefinitions of interoperability tests and
of other behavioural properties of components and apitst based on their full semantic descriptions,
are either undecidable or have a high computational contplexhat hinders their practical utility.

Half-way betwen signature and semantics approaches, d@bher possibility that concentrates on
the components’ interactions with other components, dgjitieir service access protocols, and the
way they use other components’ services. More than signatdiormation, this approach allows the
definition of compatibility and substitutability checks any components at a computational cost lower
than other semantic tests.

Some authors have dealt with component interoperabilitpiatievel [5, 14, 22]—usually called the
protocol level—, and have shown its benefits. However, the existilmyaarhes, when decidable, still
present some limitations:

e First, the description of the components’ observable hielavs not modular. each component
is assigned a single protocol description, which definestsalinteractions with the rest of the
components in the system. This mixes up all interactiond, wmually forces the introduction of
irrelevant details into the protocol specification, e.@.ititerleaving among unrelated interactions.

e Second, the computational complexity of most of the testégis, due in part to the fact of having
to check full protocols. Typical (pairwise) component natetions are very simple, and this should
reflect in simpler compatibility tests.

In this paper we use the conceptsafssion typefl1-13, 19] for describing the dynamic behaviour
of components. Sessions are partial protocol specificgtiorwhich we only pay attention to the behav-
iour of a component’s interface. Such an approach allowsutaodpecification of the behaviour of the
components, providing more than just signature infornmatamd permits precise definitions of compati-
bility and substitutability tests. The main strength of approach is that these notions are decidable and
algorithmically checkable, at a low computational cost.

Furthermore, session types aypes and therefore supported by a type discipline. This is a key
element of the structuring method that provides typabitigcks between a program implementing a
protocol and a session type describing its intended useedder, the framework also permits checking
component substitutability based on the concept of sessibtyping, which is decidable and computa-
tionally tractable, in contrast to the—when decidable—emgntial tests that result from the use of traces
or process algebras in protocol descriptions.
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protocol Auctioneer {
session withASeller =
+{ selling: ![string , float];
&{ sold: ?(float ); end
| notSold; end

}
}
session withABidder =
+{ register: &{ wannaBid: ?(string , float); ![boolean ]; Bidding} }
Bidding =
&{ wannaBid: ?(string , float); ![boolean ]; Bidding
| itemSold: ?(string ); Unregistering
| youGotlt: ?(string , float ); Unregistering
}
Unregistering =
+{ unregister: end }

Figure 1. Distributed auction bidding.

Our work builds on that by Hondat al. [12, 13, 19], which initially introduced session types for
describing structured communication. Protocol complétiiidnd substitutability tests are defined using
the subtyping relation defined by Gay and Hole for sessioagypl]. In this paper we first complement
those works by introducing the notion cdmpatibilitybetween session types, prove some of its proper-
ties, and then study how session types can be successfpligémot only at the theoretical level, but
also in a commercial environment such as the one that CORB®ides. In addition, we also discuss
some implementation details, namely how to check that angblgect implementation conforms to a
session type that supposedly describes its behaviour.

The structure of this paper is as follows. After this introtlon, Section 2 introduces the language we
propose for describing component interactions, using amgke application that will be used throughout
the paper. Section 3 introduces the type discipline supmpthe language, including an algorithmic
subtyping relation for session types. This relation alsweseis to define the notion of compatibility
between components. The application of our theoreticallteeso the particular case of CORBA is
presented in Section 4. In Section 5 we discuss the sortstsftteat can be carried out with our proposal,
both statically and during run-time. Finally, Section @atek our work to other similar approaches, and
Section 7 points to future work.

2. [Expressing component interactions via protocols

We illustrate the usage of the language via an example. Genaidistributed auction system, with three
kinds of playerssellersthat want to sell items, aauctioneerthat sells items on their behalf, abitlders
that bid for an item being auctioned.
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The protocol that describes the interactions of the auedomwith a seller (Figure 1) is simple: there
is only one operation that sellers may invoke on an auctierselling—where they provide the bidder
with a description of the item to be sold ¢aing ), and the minimum price they are willing to sell the
item for (afloat). This accounts for the{ selling: ![string , float]; part of the protocol. Sellers then wait
on the outcome of their request. Two things can happen: rditigeitem was sold (in which case the
seller gets the price the item was sold for), or the item wdssotl. The first case is modeled by the
acceptance of operatiamold; the second by the operationtSold. In either case the protocols halts, as
indicated by theend mark.

We describe protocolsentered on the clientsellers and bidders in this case. The distinction be-
tween the outbound operatieffselling: ... }, and the inbound operatid{sold: ... | notSold: ...} must
be stressed: the former denotes an operation invoked byediey @nd thus provided by the auctioneer),
the latter describes an operation provided by a seller (aunslihvoked by an auctioneer).

The auctioneer’s protocol with a bidder is slightly more gdex. Bidders start by registering them-
selves at the auctioneer, then enter an interactive bidgéagion, and eventually unregister, thus leaving
the protocol. Register is an operation without argumentporiegistering, the bidder gets a bidding
proposal yannaBid) containing a description of an item ¢&ing ) and a price (dloat); to which they
answer “l am interested” or “I skip” (aoolean ). This accounts for th&{ wannaBid: ?(string , float);
I[boolean ]; part of the protocol. The interactive session starts themleacribed by thBidding “loop™:
the bidder must be ready for three different kinds of recaiesiming from the auctioneer: nevannaBid
challenges (either for the same item or for a distinct onad, tavo different acknowledgments. The auc-
tioneer requestemSold says that the given item is no longer for sale (it may have lsedéh or the the
price may have got below the minimum required by the sell@guestyouGotit comes with the item
description and the final price. Notice thadnnaBid operations brings the protocol back to idding
loop, whereas the two acknowledgments take the protocbigtainregistering phase and then to halt.

Consider now the protocol for a potential seller: it intésawith an auctioneer willing to accept the
description of the item to be sold é&ring ), and its minimum price (8oat ). Then it waits for the client
to provide the outcomesold or notnotSold. Below is a possible description.

protocol Seller {

session withAnAuctioneer =
&{ selling: ?(string , float);
+{ sold: ![float]; end
| notSold: end

}

}

There is a close relationship between sesgiantioneer::withASeller and sessiorseller::withAn-
Auctioneer: where one says select (+) the other says branch (&), whezesays output (!) the other
says input (?). In fact, the two sessions eseplementarpr dual (the exact definition is in Section 3).
Duality is what guarantees thsg¢ssions do not go wrond precludes the standard “message not under-
stood” error (operation not provided, wrong number of argots, or wrong sort for an argument), and
also problems derived from misunderstandings of the nestatipn in a protocol (both partners output
at a given point; one partnends the protocol whereas the other requests a different opeyat

As a last example consider a more apt seller, that afteafim the selling process, is able to process
three kinds of requests: the familiswld/notSold, as well as the nevowerYourPrice, to which the seller
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Protocol ::= protocol X {Session}
Sessions ::= session X =7T'... session X =T
T = &{mi:Ty |- |mp:Tn} | H{mi:Ty |- | my: Ty} |
2T);T | [T);T | ?(sor);T | ![sor§;T | X | uX.T | end
sort == string | float | boolean

Figure 2. A grammar for describing protocols.

may refuse or assent. In the latter case the seller sends priveywand the selling process restarts. Here
is a possible definition.
protocol SuperSeller {
session withAnAuctioneer =
&{ selling: ?(string , float); Selling }

Selling =
+{ sold: ![float]; end
| notSold: end

| lowerYourPrice:
&{ ok: ?(float); Selling
| noWay: end}
}
}

Can aSuperSeller try to sell an item to auctioneer? TheSuperSeller has more behaviour than
the Seller: he can conduct all the sessionSedler conducts (basicallyelling-sold andselling-notSold),
but also more sophisticated sessions (sucketiig-lowerYourPrice-ok-lowerYourPrice-ok-sold). Es-
sentially, SuperSeller::withAnAuctioneer has more-or-equal selections (+), and less-or-equal biage
(&); sessionSuperSeller::withAnAuctioneer is a subtypeof sessiorSeller::withAnAuctioneer: we write
SuperSeller::withAnAuctioneer < Seller::withAnAuctioneer (the exact definition is in Section 3).

What makesessiorsuperSeller::withAnAuctioneer compatiblewith sessiomuctioneer::withASeller?
The fact that the former is a subtype of a ty@ller::withAnAuctioneer) that is dual to the latter.
In this case we writeSuperSeller::withAnAuctioneer <1 Auctioneer::withASeller. Finally we may say
that protocol SuperSeller is compatiblewith protocol Auctioneer since there is a session in the former
(withAnAuctioneer) that is compatible with a session in the latteitifASeller). SuperSeller is compatible
with Auctioneer, only that part of its programmed behaviour never gets eddity the basi@uctioneer.

3. Atype discipline for sessions
Two are the key concepts we are interested in this pajpenponent substitutabiliigndcomponent com-

patibility. The former refers to the ability of a component to replaastizer in such way that the change
goes unnoticeable by the clients. The latter defines whercomgponents can work properly together,
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T<SeX

SFT<S (S-AssumP)
Y Fend <end (S-END)
YET L
— — SN (S-soRTIN)
Yk ?(sort); T < ?(sort); S
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———— SN (S-SORTOUT)
Y+ ![sorf; T <![sorf; S
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Figure 3. Subtyping system.

if connected. These concepts can be considered as the tvgiditip of the component interoperability
coin. In this section we precisely define these conceptdmitie framework of a type discipline.

The language of types The language we use to describe protocols is generated hyrdinemar in
Figure 2, whereP describes a sequence of zero or mBreThe intended meaning of most constructors
is exemplified in the previous section. The recursive typestroctory X.T' constitutes the only binder
in the language, binding variabl€ in typeT'. SubstitutionT'[S/X], of a typeS for a variableX in a
typeT, is defined accordingly, and so is alpha-equivalence. W& wptto alpha-equivalence.

The examples in the previous section are defined with equatrather than with explicit recursion.
Here we adopt explicit recursion, since it simplifies theotlye For example, sessicBuperSeller::
withAnAuctioneer is translated into

&{ selling: ?(string , float); T }
whereT is uX. + { sold: ![float]; end | notSold: end | lowerYourPrice: 7" }
andT’ is &{ ok: ?(float); X | noway: end }.
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ST =ISET
ST =2(3): T
&{my:Ty |- |mp:Tp}=+{m1:T1 |- | mp:Ty}
H{my Ty | [ my Tt =&{ma Ty |- | my Ty}
end = end
X=X
uX.T =pX.T

Figure 4. The dual of a type.

Subtyping Figure 3 defines a subtyping relation for session types, HOIn As usual T is a subtype

of S, writtenT < S, if T can be used in any context whefdés used. Thereford should havenore-or-
equal selection$+) andless-or-equal branching&). Branching and selection behave in a co-variant
manner with respect to subtyping, which is also co-variantte input, but (as usual) contra-variant for
the output.

The rules for algorithmic subtyping are of the fobh- 7' < S, whereX is finite set of inequal-
ities T < S, meaning that typd" is a subtype of type5, assuming the inequalities 1, and where
unwind(uX.T) d:efT[,uX.T/X]. When{) - T' < S'is derivable, we simply writd" < S.

Using this operator, in our context, an expressi@h < S’ will (indistinctly) mean: “T" is more
restrictive thanS”; “ S is more general thaff™; “ T can (safely) replac&™; or “ S is substitutable by™.

Type duality Section 2 hints that sessioAsctioneer::withASeller and Seller:: withAnAuctioneer are
dual because where one says select (+) the other says branch li&jewne says output (!) the other
says input (?). To obtain the dual tyffeof a typeT, we use the inductive definition in Figure 4, taken
from [13], whereS stands for a sort or for a type. To check that two given tyfesd.S’ are dual to
each other, we obtain the dugilof S, and check that both < S’ andS’ < S.

Substitutability and Compatibility = Based on the subtyping relation, we are finally in a positmn t
define the concepts of substitutability and compatibiliggvieen session types. Substitutability is simply
subtyping;T is compatible withS is T is a subtype of the dual .

Definition 3.1. LetT" andS be session types. We say that:
1. T can safely substitut§, if T < S,

2. T is compatible withS, and writeT > S, if T < S.

Example: SupperSeller is compatible with Auctioneer According to the discussion in Sec-

tion 2, we show that sessidhf def SuperSeller::withAnAuctioneer can safely substitute sessich def

Seller::withAnAuctioneer, and that sessiofl is compatible with sessiofl %7 Auctioneer::withASeller.
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For the subtype part, recall th&tis

&{ selling: ?(string , float); S’ }
whereS’ is +{ sold: ![float ]; end | notSold: end }

and thatT is

&{ selling: ?(string , float); 7" }
whereT" is uX.+{ sold: ![float]; end | notSold: end | lowerYourPrice: 7" }
andT” is +{ ok: ![float]; X | noway: end }.

To show thatl" < S, apply first the rule SSRANCH, followed by SsSORTIN. We are left to prove that
T’ < 5'. Applying rule SReCL, yieldsunwind(7") < S’. Finally, applying SSELECT we are left with
I[float ]; end < ![float]; end (which follows by SSORTOUT; S-END), andend < end (which follows by
S-END). Notice how the recursive structure &ipperSeller was accounted for by rule 8ecL, and how
its extra branchlg¢werYourPrice) was ignored by rule SELECT.

For duality, recall thal/ is

+{ selling: ![string , float]; U’ }
wherelU' is &{ sold: ?(float ); end | notSold: end }.

To show thafl’ < U we computd/, using the rules in Figure 4, to obtafh and we are done, since we
have already proved thdt < S.

Results The main contribution of this paper is the decidability of tivo notions we propose, compo-
nent substitutability and component compatibility. Beftinat, we show a few other important properties
of these notions.

Proposition 3.1. Subtyping< is a preorder.

Proof:
Reflexivity follows by induction on the structure of the tgpavolved, taking: = 0 in both SBRANCH
and SseLECTrules. Gay and Hole ([11], Lemma 5) show that subtyping isditave. O

It follows directly from the definition that duality is symrmie. Furthermore, it has an interesting
relationship with subtyping.

Proposition 3.2. T < Sifand only if S < T.

Proof:
A straightforward induction on the structure of the types. O

We show that compatibility is also a symmetric relation;sialso preserved by subtyping. Notice
that compatibility is neither reflexive nor transitive. $tmot reflexive because duality is obviously not
reflexive. It is not transitive because a session is nevepeatitiie with itself.
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Proposition 3.3.
1. Compatibilitys< is symmetric.

2. If T SandU < T, thenU < S.

Proof:
The first clause is a direct consequence of lemma 3.2. Thedextause is a consequence of the transi-
tivity of subtyping, lemma 3.1. O

Finally, the decidability of the notions of substitutatyiliand of compatibility of components result
from a suitable reading of the rules in Figure 3.

Theorem 3.1. Subtyping and compatibility are decidable.

Proof:
For subtyping, read the rules in Figure 3 upwards, with thditehal constraint that sssump must be
used if applicable, and that 8ecL must be used in preference torR&CR. To check thaf” < S, apply
the algorithm td) - T' < S. Termination of the algorithm is ensured by a suitable retiee [10] for
details.

To check the compatibility of typeE andS, we build the duab of S, using the definition in Figure 4,
and then check the subtype relatibr< S. O

4. A case study

In this section we study how session types can be succegssfytlied not only at the theoretical level,
but also in a commercial environment such as the one that GQR®ides.

CORBA is one of the major distributed object platforms. Frsgd by the OMGHttp: //wuw.omg.
org), the Object Management Architecture (OMA) attempts torgefiat a high level of description,
the various facilities required for distributed objectemted computing. The core of the OMA is the
Object Request Broker (ORB), a mechanism that providespanency of object location, activation and
communication. The Common Object Request Broker ArchiteofCORBA) specification describes the
interfaces and services that must be provided by compli®B<]18].

In the OMA model, objects provide services, and clientsasseguests for those services to be
performed on their behalf. The purpose of the ORB is to delreguests to objects and return any
output values back to clients, in a transparent way to trentlkand the server. Clients need to know
the object referencef the server object. ORBs use object references to ideatity locate objects to
redirect requests to them. As long as the referenced objits ethe ORB allows the holder of an object
reference to request services from it.

Even though an object reference identifies a particularabbjedoes not necessarily describe any-
thing about the object’s interface. Before an applicatian make use of an object, it must know what
services the object provides. CORBA defines an Interfacerjg®n Language (IDL) to describe object
interfaces, a textual language with a syntax resemblingah&++. The CORBA IDL provides basic
data types (such aort , long , float ), constructed typesituct , union ) and template typeséquence ,
string ). These are used to describe the interface of objects, defingypes, attributes and signatures
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(parameters, return types and exceptions raised) of tleetinjethods, all grouped inbaterface defin-
itions. As an example, thauctionner component presented in Section 2, is described in CORBAdYy th
following interface.

interface Auctioneer {
void selling (in string itemDesc, in float minPrice);
string register (in Bidder b); // returns an id for the bidder
void unregister (in string id);

}

As we can see, the CORBA IDL allows us to describe the sigaatfithe operations implemented
by a component, but it falls short in several respects: apéschot mention whom the operations are
targeted atgelling is for sellersyegister andunregister are for bidders); b) it does not describe the order
in which operations must be invokeckgister first; unregister then); c) it does not allow specifying the
external operations required by the component (sellers pragidesold andnotSold operations).

The rest of this section concentrates on how to add protedoiration to the description of the
CORBA object interfaces, using the language defined in Ge&ti

CORBA objectprotocolsare defined by two collections of interfaces and a collectibisession
types. The first collection describes the CORBA interfgoewided(i.e. implemented) by the compo-
nent, each one undermgovides heading. Second, we have the collection of external irdtegfdhat the
componentrequiresfrom other objects when implementing its supported sesyiegpressed byses
headings (there may be none in case the component does nireragy external services). Finally,
we find the specification of each role the component playssitiniteractions with other components,
expressed in terms of a collection of session types, eacheof indicated by aession clause. The
first two collections contain information at the signatuegdl only, while the last one is in charge of
specifying the dynamic aspects of the behaviour of the covapb The grammar for describi@ORBA
protocolsis obtained from that in Figure 2 by replacing the first prdaucby the one below.

Protocol ::= protocol X {(provides X)" (uses X)* Sessionk

The modelling technique that we propose for describing C2BBject interactions is the following.

1. Inthe CORBA IDL, methods have a return value and three &frasigumentsin, out andinout . In
a method invocation from a client al andinout arguments are sent in the same order they were
declared in the IDL (which is reflected in the server’s inpetian ?(...). In the method response
(i.e. thel[...] output action from the server) the first sort is the sort ofrétarn value, followed
by the sorts of thénout andout arguments, in the same order they were declared. Likewise fo
method acceptance and reply.

2. Methods with no arguments are considered as if having mnerent of sorvoid , to be added to
those in Figure 2.

3. Special labediuit is used in reactive servers to indicate the moments in whaieat may discon-
nect from the session.

1p* describes a sequence of zero or mB® PT is PP*.
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protocol Bidder {
provides Bidder
uses Auctioneer
session withAnAuctioneer =
&{ register: ?(Bidder); ![string ];
+{ wannaBid: ![string , float]; ?(boolean ); Bidding}
}
Bidding =
+{ wannaBid: ![string , float ]; ?(boolean ); Bidding
| itemSold: ![string ]; ?(void ); Unregistering
| youGotlt: ![string , float]; ?(void ); Unregistering
}
Unregistering =
&{ unregister: ?(string ); ![void ]; end }

Figure 5. The CORBAidder protocol.

4. The client’s invocation of methods“m(s,...,s;)” is modelled as t:?(s;,...,s.);![s];” inside a
branch(&{...}) structure in the server side of the protocol.

5. Analogously, the server’s invocation of methosl fh(s;,...,s;)” is modelled by ‘:![sy,...,
sk];?(s);” inside aselect(+{...}) structure in the server protocol.

6. In case of methods that may raise exceptions, the retualmanem is different. Normal termi-
nation is modelled by a special lalmlccess , followed by an output action with the sort of the
return argument. Exception raising is modelled by selgaifabel with the name of the exception,
followed by the output of the sort of the parameters that fwepgtion returns. If a method may
raise several exceptions, one label is used for each of them.

With this techniques, the protocol that defines the dynareltaliiour of objecBidder is shown in
Figure 5, whereBidder components make use of the services provided bywationeer component,
whose interface is shown above.

It is important to note that session types describing CORBAractions follow a reduced set of
communication patterns, which are given by a sub-languagiat in Figure 2. This is due to the fact
that CORBA imposes restrictions on the communication padtased by its objects, since client-server
method invocation is the only mechanism allowed. Thus, geseran only offer its methods within a
branch structure, then accept input parameters, outpuethits, and become either a client or a server
again. But it can never start alternating inputs and outipuss arbitrary manner.

Another issue worth noticing is the need to accommodate thREA particulars when describing
protocols with session types. For instance, comparing theogols in Figures 1 and 5 we see that
CORBA methods return a value (thévoid ) not present in Figure 1), and that all arguments appearing in
the CORBA IDL interfaces must be present in the protocol deton (theBidder parameter of method
register, and the return of the string identifying the bidder, to bedugvith unregister). Although not
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needed in generiprotocol s, they are necessary when describing the behaviour of tHRB&bjects
implementing a particular CORBA interface.

5. Checking protocols

As mentioned in the introduction, we are specially intedsh checking component substitutability

and compatibility, based on the information now availalée distinguish between static and dynamic
checks. The first ones are carried out during the design tintieecapplications and are based on the
description of their constituent components. Dynamic kbheare needed when there is no behavioral
information available, as it happens when dealing with Ha@k component instances—whose internals
are not accessible—but we still want to check that its belasanforms to a given protocol.

Statically checking a component against a session type @sido type check the program code
describing the component; Honda, Vasconcelos, and Kuboddsribe a type system formacalculus
based language; Vasconcelos, Ravara, and Gay [20] presgme ahecking algorithm for a functional
multithreaded language.

There are many situations in which protocol compatibiliag o be checked at run time, as it happens
for instance when we are programming in a language for whiell@vnot know how to type check con-
formance, or when we do not have access to the source coslés(thé common case in component-based
development environments, specially if we are using offghelf binary components, whose internals
cannot be accessed). In these cases, protocol computilit be checked by intercepting exchanged
messages and verifying their correctness with regard toulrent state of the components. This sort of
information can be used in order to prevent illegal or incatiige messages to reach destination com-
ponents, avoiding incompatibility issues. In this way,teys inconsistency situations can be detected
before they happen, and the appropriate exceptions oseraor be raised.

Such a mechanism can be implemented in CORBA using a refidetiility that some ORB vendors
provide: interceptors [18] (also callditters) that allow the interception and observation of the message
exchanged among components. This mechanism allows a prograto specify additional code to be
executed before or after the normal execution of an operatach code may perform security checks,
provide debugging traps or information, maintain an audit,tetc. In our case, for each CORBA object,
a filter can be defined that captures incoming and outgoingages, reproduces its run-time trace, and
checks that received messages are compatible with the ibelufined for that object. Basically, the
interceptor for a particular session type builds an autaméditose arcs are labeled with the constructors
of typesT in Figure 2 and checks that every incoming or outgoing messgagalid with regard to this
automata. In case a violation of the protocol is found, tlvalid message is returned to the originator,
using the interceptors mechanisms. Reference [6] provid#ger information on this sort of tools.

The schema described above can also be used to chefdrmance to specificationthat is, check
that an implementation of a component conforms to a givenipation of its intended behavior. This
is specially important when we are dropping a new compormneatgiven system, and we want to check
that it will not violate the protocols of the components inomunicates with. Even if programming
language used to code the new component provides for sesion type-checking, we may still need
run-time checks, for the “rest of the system” may be compaddaack-box components, whose code is
inaccessibly.
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6. Related work

As mentioned in the introduction, several authors haveigealya number of proposals that try to over-
come the limitations that current IDLs present, definingeagtons that usually cope with the semantic
aspects of component interfaces and behaviour. We do moheit the proposals that try to deal with
the full operational semantics of components (the intecestader can consult [15]), just the ones that
cover the specification of the components’ service accexeqwls.

These proposals use different notations for specifyingogmis, from finite state machines to process
algebras (see, e.g., [3,5,14,17,21,22]). However, theghalre some limitations. First, they do not
allow the modular description of the protocols. Second,chmpatibility and substitutability tests that
they provide either are not decidable or do not have a trectaimputational complexity. Finally, none
of them are directly supported by a type discipline. Our peapb helps solve these problems, at the cost
of sacrificing some expressiveness—just pairwise comgantractions can be expressed in terms of
session types (see Section 7).

Some representative examples of approaches that usediffestations for representing the observ-
able behaviour of components follow. In the first place, Dbeg proposed PSL [14], an extension of
the CORBA IDL to describe the protocols associated to anabbjenethods. This approach is based on
logical and temporal rules relating situations, each ofchtdescribes potential states with respect to the
roles of components, attributes, and events. Althoughahigxpressive approach, it does not account
for the services an object may need from other objects, exitlis supported by standard proving tools.

Protocol Specifications [22] is a more general approachdeci§ying component service protocols
that describe both the services offered and required by oaergs. It is based on using finite state
machines and allows components to be easily checked fopqmiotompatibility. The simplicity that
allows the easy checking also makes it too rigid and lackikpressiveness for general usage in more
complex open and distributed environments.

Bastide, and Sy [3] use Petri nets to describe the behavib@ORBA objects, providing their
full operational semantics, and supported by proving toolsis is a very powerful and expressive ap-
proach, that has been successfully used to detect incemsiss in some CORBA services commercial
implementations [2]. Bastide’s proposal allows much ricinormation to be included in the objects’
behaviourally descriptions, which may be required in soases. However, the main problems of this
proposal are the lack of modularity in the description of phatocols, and the decidability and compu-
tational complexity of the tests.

Message Sequence Charts (MSC) is also a notation that pethmitdescription of the interactions
among components, and is now part of UML 2.0. MSCs are veryessjve for describing protocol
interactions, but they do not allow to prove properties @& #lystem. An interesting line of research
would be to “type” MSCs using session types, hence allowingsstutability and compatibility tests
between components whose observable behaviour is dedevileMSCs.

Braciali, Brogi, and Turini [4] also sacrifice expressivesén order to achieve modularity and com-
putational tractability, when describing and reasoningualtomponent interactions. The authors use
a sugared subset of thecalculus for describingnteraction patterns sets of interactions that describe
the finite interactive behaviour that a component may (reguiy® show to the external environment. In
opposition to our work, patterns allow for describing firiiteeractions only. Canadt al. [6, 7] useroles
for defining partial protocol specifications. Although ®taay alleviate some of the computational com-
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plexity of the substitutability tests, they are still NPrthaIn this sense our more lightweight approach
represents an improvement, despite of losing some expeeess.

Finally, Architectural Description Languages (ADLSs) ubyanclude the descriptions of the proto-
cols that determine the access to the components they défiaey ADLs use standard notations for
describing component interactions (such as CSP, CC&catculus), which allow the simulation of the
application’s behaviour, or the formal derivation of sori@sosafety or liveness properties. Forinstance,
the Rapide ADL is well known as a rich pattern language fordineulation of architectural behaviour.
Wright [1] uses CSP for specification, and as a consequersigorted by model-checking tools such
as FDR. Darwin [16] and LEDA [7] are examples of ADLs that make of ther-calculus for describing
the behaviour of the components of a system. One of the beoéfising standard calculi is that reason-
ing about the system behaviour and correctness can be dimigeappropriate tools. Our focus is slightly
different, since we are more concerned with the specificaifatCOTS components independently from
the applications they will be part of. What we have shown lethat we can achieve the similar tests
to those carried out by software architects with their AD&soh as those described in [8, 9]), right from
the objects’ protocol specifications. In addition, our prsgl not only contemplates compatibility tests
but it also studies substitutability between componentsther novelty of our work is the dynamic tests
that can be carried out with the interceptors, checkingratime that the behaviour of a CORBA object
conforms to its declared protocol. They help detect incdibjisy issues and possible violations to the
protocols.

7. Future work

Session types allow the description of pairwise interastibetween components. There are however
situations where dyadic sessions are not expressive enatingie information on how separate sessions
interleave is needed. This fact has surfaced, for instanagork-flow applications, for which the order
among the various events in sessions is critical. Anothecem related to the information conveyed by
session types is the impossibility of proving particulast@ll properties of applications, such as absence
of deadlocks among three or more partners. Session typésitlegairwise interactions, so they only
allow to prove that local, dyadic, interactions are erreef

The search for alternative uses of session types to degmobacols with multi-party interactions that
allow useful compatibility and substitutability tests igrently under way. We are working dviulti-
Party Session TypgMPST), an extension that allows the specification intésacamong more than
two components. With MPST we also help in solving the commade-off between incorporating all
the component interactions into one large protocol desorighence producing unwieldy and complex
protocols), and breaking it into unrelated pairwise sessighus loosing information on how separate
sessions interleave). MPST permits mixing protocols atingrto the system’s particular requirements,
allowing the component specifier to decide the level of extéon described by each session.
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