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Abstract

The aim of the open distributed processing (ODP) information viewpoint is to describe the semantics of the information and

of the information processing in a system, from a global point of view, without having to worry about other considerations, such

as how the information will be finally distributed or implemented or the technology used to achieve such implementation.

Although several notations have been proposed to model this ODP viewpoint, they are not expressive enough to faithfully

represent all the information concepts, or they tend to suffer from a lack of (formal) support, or both. In this paper, we explore

the use of Maude as a formal notation for writing ODP information specifications. Maude is an executable rewriting logic

language especially well suited for the specification of object-oriented open and distributed systems. We show how Maude

offers a simple, natural, and accurate way of modeling the ODP information viewpoint concepts, allows the execution of the

specifications produced, and offers good tool support for reasoning about them.
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1. Introduction

One of the common ways of dealing with the

inherent complexity of specifying distributed systems

is by dividing the design activity into a number of

areas of concern, each one dealing with a specific
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aspect of the system. Current software architectural

practices define several distinct viewpoints of systems

to accomplish such specification decomposition.

Examples include the viewpoints described in IEEE

standard 1471 [20], the b4+1Q view model [26], the

Zachman’s framework [37], or the Open Distributed

Processing (ODP) Reference Model [22]. In partic-

ular, we are interested in the Reference Model of

Open Distributed Processing (RM-ODP) framework,

which provides five generic and complementary

viewpoints on the system and its environment: enter-

prise, information, computational, engineering, and
aces 27 (2005) 597–620
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technology. They enable different abstraction view-

points, allowing participants to observe a system from

different suitable perspectives [27]. One of the main

benefits of RM-ODP is that, as opposed to other

approaches, it provides precise definitions of a system

of interrelated concepts rather than some, often

imprecise, descriptions of isolated ones.

The ODP viewpoints are sufficiently independent

to simplify reasoning about the complete specification

of the system. The architecture defined by RM-ODP

tries to ensure the mutual consistency among the

viewpoints, and the use of a common object model

provides the glue that binds them all together.

Although separately specified, the viewpoints are not

completely independent; key items in each of them are

identified as related to items in the other viewpoints.

Furthermore, all RM-ODP viewpoints have a common

foundation defining concepts used in all of them (and

therefore, for example, the information viewpoint may

and should use such foundational concepts as compo-

sition, type, subtype, etc.).

One of these viewpoints, the information view-

point, is concerned with information modeling. An

information specification defines the semantics of

information and of information processing in an ODP

system, without having to worry about other system

considerations, such as particular details of its

implementation or the technology used to implement

the system. This viewpoint distinguishes between

instantaneous views of information (static schemata),

statements about the information that must always

hold (invariant schemata), and the description of

information reflecting the behavior and evolution of

the system (dynamic schemata).

To represent the different viewpoints, the ODP

reference model provides abstract languages for the

relevant concepts of each viewpoint. However, such

languages are abstract, in the sense that they define

what concepts should be supported, but not how they

should be represented. Several notations have been

proposed for the different viewpoints by different

authors, which nevertheless seem to agree on the need

to represent the semantics of the ODP viewpoints

concepts in a precise manner [1,4,22,24,25,27,33].

For example, formal description techniques such as

LOTOS and SDL have been proposed for the

computational viewpoint [22], and Z and Object-Z

for the information and enterprise viewpoints [36].
Object-oriented modeling languages such as UML or

Fusion [8] have also been proposed for ODP

information and enterprise modeling.

Z and Object-Z have been traditionally considered

as highly appropriate notations for information mod-

eling, since static, dynamic, and invariant schemata

can be directly mirrored into Z and Object-Z

specifications [25]. Furthermore, Object-Z is object

oriented, as ODP is, and provides a good basis for

relating specifications in other viewpoints [2]. On a

different arena, UML and Fusion [8] are also well

suited for ODP information modeling. Although they

are not formal, they have been used because of their

appealing graphical syntax and because they are part

of fully integrated development methodologies, such

as RUP [23] or Catalysis [9]. However, their loose

semantics represent an impediment for achieving the

precise specification and analysis of systems. In

particular, the semantics of some essential UML

constructs (especially those describing relationships

and types) is not well defined, and thus, the under-

standing of UML specifications has to rely on tacit

assumptions, which may be different for different

writers and readers of the specifications.

In this paper, we explore a new alternative for

specifying the information viewpoint. We propose

Maude [5], an executable formal language based on

rewriting logic specially well suited for the specifica-

tion of object-oriented open and distributed systems

[31]. Maude has already been used for modeling some

of the ODP viewpoints: A proposal for modeling the

enterprise viewpoint was presented in Ref. [13], a first

attempt for modeling the information viewpoint in

Ref. [14], and an approach for specifying the

computational viewpoint has been recently proposed

in Ref. [34]. Rewriting logic has also been used by

Najm and Stefani [32,33] to formalize the computa-

tional viewpoint. In this paper, we shall show how

rewriting logic and its underlying membership equa-

tional logic [30] and, in particular, Maude provide the

expressiveness required for modeling the ODP infor-

mation viewpoint.

As we shall see, this choice not only offers new

benefits over the previous approaches for formalizing

ODP information specifications (and, in particular,

over the Object-Z approach) but also allows to

overcome some of their limitations. Moreover, the

object-oriented nature and simplicity of the Maude
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specifications make them easily understandable,

helping involve stakeholders of diverse backgrounds

in the system specification process. The use of

Maude provides additional advantages: The fact that

rewriting logic specifications are executable will

allow us to apply a flexible range of increasingly

stronger formal analysis methods and tools, such as

run-time verification [18], model checking [16], or

theorem proving [7]. Maude offers a comprehensive

toolkit for automating such kinds of formal analysis

of specifications. Furthermore, the reflective capabil-

ities of Maude will be used to drive the system

execution according to the dynamic and invariant

schemata defined for the system, as we will also

show.

The structure of this document is as follows. First,

Sections 2 and 3 serve as a brief introduction to the

ODP information viewpoint and Maude, respectively.

Then, Section 4 presents our proposal for writing

information specifications in Maude. Section 5 is

dedicated to a case study that illustrates our approach.

Finally, Section 6 compares our work to other similar

approaches, and Section 7 draws some conclusions

and describes some future research activities.
2. The information viewpoint

The information viewpoint is concerned with

information modeling. By factoring an information

model out of the individual system components, it

provides a common view that can be referred to by the

rest of the specifications. In general, the information

language helps answer the questions bwhat kind of

information is managed by the system?Q and bwhat
constraints and criteria need to be applied to access

the information?Q
In the ODP Reference Model [22], prescription in

the information viewpoint is restricted to a small basic

set of concepts and structuring rules. The three basic

concepts are the following:

– Invariant schema: a set of predicates on one or

more information objects that must always be true.

The predicates constrain the possible states and

state changes of the objects to which they apply.

– Static schema: a specification of the state of one

or more information objects, at some point in
time, subject to the constraints of any invariant

schemata.

– Dynamic schema: a specification of the allowable

state changes of one or more information objects,

subject to the constraints of any invariant schemata.

An information specification defines the semantics

of information and the semantics of information

processing in an ODP system in terms of a config-

uration of information objects, the behavior of those

objects, and environment contracts for the objects in

the system. Other considerations about these schemata

include the following:

– Allowable state changes specified by a dynamic

schema can include the creation of new informa-

tion objects and the deletion of information objects

involved in the dynamic schema.

– Allowable state changes can be subject to ordering

and temporal constraints.

– The configuration of information objects is inde-

pendent from distribution; that is, there is no sense

or focus on distribution is this viewpoint.

3. Rewriting logic and Maude

Maude [5,6] is a high-level language and a high-

performance interpreter and compiler in the OBJ [17]

algebraic specification family that supports member-

ship equational logic and rewriting logic specification

and programming of systems. Thus, Maude integrates

an equational style of functional programming with

rewriting logic computation. Because of its efficient

rewriting engine, able to execute three million rewrit-

ing steps per second on standard PCs, and because of

its metalanguage capabilities, Maude turns out to be

an excellent tool to create executable environments of

various logics, models of computation, theorem

provers, or even programming languages. We infor-

mally describe those Maude features necessary for

understanding the paper in this section; the interested

reader is referred to its manual [6] for more details.

Rewriting logic [29] is a logic of change that can

naturally deal with state and with highly nondeter-

ministic concurrent computations. A distributed sys-

tem is axiomatized in rewriting logic by a rewrite

theory R ¼ R;E;Rð Þ, where (R, E) is an equational
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theory describing its set of states as the algebraic data

type TR/E associated to the initial algebra (R, E), and

R is a collection of rewrite rules. Maude’s underlying

equational logic is membership equational logic [30],

a Horn logic whose atomic sentences are equalities

t=t V and membership assertions of the form t:S,

stating that a term t has sort S. Such a logic extends

order-sorted equational logic and supports sorts,

subsort relations, subsort polymorphic overloading

of operators, and the definition of partial functions

with equationally defined domains.

For example, the following Maude functional

module defines the natural numbers (with sorts Nat

of natural numbers and NzNat of nonzero natural

numbers), using the Peano notation, with the zero (0)

and successor (s_) operators as constructors (note the

ctor attribute). Then, the addition operation (_+_) is

defined, being its behavior specified by two equa-

tional axioms. The operators s_ and _+_ are defined

using the mixfix syntax (underscores indicate places

for arguments).

fmod MY-NAT is

sort NzNat Nat .

subsort NzNat b Nat .

op 0 : –N Nat [ctor] .

op s_ : Nat –N NzNat [ctor] .

op _+_ : Nat Nat –N Nat

[assoc comm] .

vars M N : Nat .

eq 0 + N = N .

eq s M + s N = s (M + N) .

endfm

If a specification is confluent, terminating, and sort

decreasing, then it can be executed. Computation in a

functional module is accomplished by using the

equations as simplification rules from left to right

until a canonical form is found. Some equations, like

the one expressing the commutativity property, are not

terminating, but nonetheless they are supported by

means of operator attributes. Maude performs sim-

plification modulo the equational theories provided by

such attributes, that can be associative (assoc),

commutativity (comm), identity (id), and idempo-

tence (idem). The above properties must therefore be

understood in the more general context of simplifica-

tion modulo such equational theories.
In Maude, specifications may be generic; that is,

they may be defined with other specifications as

parameters. The requirements that a data type must

satisfy are described by theories. For example, lists

can be constructed on top of any data, which means

that its parameter could be a theory requiring only the

existence of a sort.

fth TRIV is

sort Elt .

endfm

fmod LIST(X D TRIV) is

sort List(X) .

subsort X@Elt b List(X) .

op nil : –N List(X) [ctor] .

op _ _ : List(X) List(X) –N List(X)

[ctor assoc id: nil] .

endfm

XDTRIV denotes that X is the label of the formal

parameter and that it must be instantiated with

modules satisfying the requirements expressed by

the theory TRIV. The sorts and operations of the

theory are used in the body of the parameterized

module, but sorts are qualified with the label of the

formal parameter. Thus, in this case, the parameter

Elt becomes X@Elt in the LIST module.

The way to express instantiations is by means of

views. A view shows how a particular module satisfies

a theory, by mapping sorts and operations in the

theory to sorts and operations in the target module, in

such a way that the induced axioms are provable in

the target module. The following view Nat maps the

theory TRIV to the predefined module NAT of natural

numbers.

view Nat from TRIV to NAT is

sort Elt to Nat .

endv

Then, the module expression LIST(Nat)

denotes the instantiation of the parameterized module

LIST with the above view Nat. Notice that the name

of the sort List(X) makes explicit the label of the

parameter. In this way, when the module is instan-

tiated with a view, like, e.g., Nat above, the sort

name is also instantiated, becoming List(Nat).
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For more information on parameterization and how it

is implemented in the Maude system, the reader is

referred to Ref. [6].

We illustrate the use of membership axioms with

the following ORD-NAT-LIST module, in which we

define ordered lists of natural numbers. In order-

sorted equational specifications, subsorts must be

defined by means of constructors, but it is not possible

to have a subsort of ordered lists, e.g., defined by a

property over lists. Membership equational logic

allows subsort definition by means of conditions

involving equations and/or sort predicates. In the

following example, we use this technique to define a

subsort OrdNatList, containing sorted lists of

natural numbers, of List(Nat). Notice the way

the sort is defined: The empty and singleton lists are

always ordered (first membership axiom and subsort

declaration Nat b OrdNatList), and any other list

is ordered if the first element is less than or equal to

the second and the list without the first element is

also ordered (last membership axiom).

fmod ORD-NAT-LIST is

protecting LIST(Nat) .

sort OrdNatList .

subsort Nat b OrdNatList

b List(Nat) .

vars N M : Nat .

var L : List(Nat) .

mb nil : OrdNatList .

cmb N M L : OrdNatList

if N b = M /\ M L : OrdNatList .

endfm

We illustrate the reduction of terms (using equa-

tions and membership axioms) in Maude with the

command reduce.

MaudeN reduce in ORD-NAT-LIST :

0 1 2 3 4 .

result OrdNatList : 0 1 2 3 4

Notice that, although no equation has been applied,

the system has calculated the right sort using the

membership axioms.

The dynamics of a system in rewriting logic is then

specified by rewrite rules of the form tYt V, where t

and t V are R terms. These rules describe the local,
concurrent transitions possible in the system; that is,

when a part of the system state fits the pattern t, then it

can change to a new local state fitting pattern t V. The
guards of conditional rules act as blocking precondi-

tions, in the sense that a conditional rule can only be

fired if the condition is satisfied.

Let us consider the following system module

(mod . . .endm), in which a rule switches elements

out of place.

mod SORTING is

protecting ORD-NAT-LIST .

vars N M : Nat .

var L : List(Nat) .

crl N L M =N M L N if N N M .

endm

The command rewrite reduces terms using

rules, equations, and membership axioms.

MaudeN rewrite in ORD-NAT-LIST :

4 3 2 1 0 .

result OrdNatList : 0 1 2 3 4

The module SORTING is confluent and terminat-

ing. However, system modules need not be confluent

nor terminating, and thus, some general ways to

control the execution of rules may be required. These

are called rewriting strategies, and we will come back

to them in Section 4.5.

In Maude, object-oriented systems are specified by

object-oriented modules in which classes and sub-

classes are declared. A class is declared with the

syntax class C|a1:S1,. . ., an:Sn, where C is the name

of the class, ai are attribute identifiers, and Si are the

sorts of the corresponding attributes. Objects of a class

C are then record-like structures of the form

bO:C|a1:v1,. . .,an:vnN, where O is the name of the

object, and vi are the current values of its attributes.

Objects can interact in a number of different ways,

including message passing. Messages are declared in

Maude in msg clauses, in which the syntax and

arguments of the messages are defined.

In a concurrent object-oriented system, the con-

current state, which is called a configuration, has the

structure of a multiset made up of objects and

messages that evolves by concurrent rewriting using

rules that describe the effects of the communication
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events of objects and messages. The general form of

such rewrite rules is

crl [r ] :

b O1 : C1 | atts1N . . . bOn : Cn | attsn N

M1 . . . Mm

=N b Oi1:Ci1V |attsi1V N ...b Oik:CikV |attsikV N
b Q1 : C1W | atts1W N . . . b Qp : CpW | attspW N

M1V . . . MqV
if Cond .

where r is the rule label (rule labels are optional),

M1. . .Mm and M1V. . .MqV are messages, O1. . .On and

Q1. . .Qp are object identifiers, C1. . .Cn, Ci1
V. . .Cik

V,
and C1W. . .CpW are classes, i1. . .ik is a subset of 1. . .n,
and Cond is a Boolean condition (the rule’s guard).

The result of applying such a rule is that: (a) messages

M1. . .Mm disappear; that is, they are consumed; (b)

the state, and possibly the classes of objects Oi1
. . .Oik

,

may change; (c) all the other objects Oj vanish; (d)

new objects Q1. . .Qp are created; and (e) new

messages M1V. . .MqV are created; that is, they are

sent. Rule labels and guards are optional.

For instance, the following Maude definitions

specify a class Account with an attribute balance

of sort integer (Int), a message withdraw with an

object identifier (of sort Oid) and an integer as

arguments, and two rules describing the behavior of

the objects belonging to this class. The rule debit

specifies a local transition of the system when there is

an object A of class Account that receives a with-

draw message with an amount smaller or equal than

the balance of A; as a result of the application of such a

rule, the message is consumed, and the balance of the

account is modified. The rule transfer models the

effect of receiving a money transfer message.

omod ACCOUNT is

protecting INT .

class Account | balance : Int .

msg withdraw : Oid Int –N Msg .

msg transfer :

Oid Oid Int –N Msg .

vars A B : Oid .

vars M Bal Bal’ : Int .

crl [debit] :

withdraw(A, M)

b A : Account | balance : Bal N
=N b A : Account |

balance : Bal - M N

if M b= Bal .

crl [transfer] :

transfer(A, B, M)

b A : Account | balance : Bal N

b B : Account | balance : Bal’ N

=N b A : Account |

balance : Bal - M N

b B : Account |

balance : Bal’ + M N

if M b= Bal .

endom

When several objects or messages appear in the left-

hand side of a rule, they need to synchronize for such a

rule to be fired. These rules are called synchronous,

while rules involving just one object and one message

in their left-hand sides are called asynchronous rules.

Maude distinguishes two kinds of inheritance,

namely, class inheritance and module inheritance.

Class inheritance is directly supported by Maude’s

order-sorted type structure. A subclass declaration C b

CV, indicating that C is a subclass of CV, is a particular
case of a subsort declaration C b CV, by which all

attributes, messages, and rules of the superclasses, as

well as the newly defined attributes, messages, and

rules of the subclass, characterize its structure and

behavior. ODP’s notion of subtyping—A is a subtype

of B if every bXN that satisfies A also satisfies B—

corresponds to Maude’s class inheritance. On the

other hand, the ODP’s notion of inheritance, which

allows the suppression and modification of the

attributes and methods of the base class (Ref. [22],

Part 2-9.21), corresponds to Maude’s module inher-

itance. Throughout the paper, by Maude inheritance,

we shall mean Maude’s notion of class inheritance,

i.e., ODP’s subtyping. Multiple inheritance is also

supported in Maude [5].
4. Writing information specifications in Maude

In the ODP Reference Model, the information

language uses a basic set of concepts and structuring

rules, including those from ITU-T Recommendation

X.902, ISO/IEC 10746-2, and three concepts specific

to the information viewpoint: invariant schema, static
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schema, and dynamic schema. The different schemata

may apply to the whole system, or they may apply to

particular domains within it.

Then, an ODP information specification consists of

the specification of information objects, the behavior

of those objects, and environment contracts for the

system.

The concepts used in an information specification

are explained below, together with their corresponding

representation in Maude and a justification of the

mapping rules used. To distinguish between the ODP

and the Maude concepts, we will use names within

their naming context whenever confusion is a danger

(e.g., ODP class vs. Maude class).

4.1. Structural concepts

ODP systems are modeled in terms of objects. An

object is a model of an entity in the real world; it

contains information and offers services. A system is

therefore composed of interacting objects.

In the information viewpoint, we talk about

information objects, which model the entities defined

in an information specification. Information objects

are abstractions of entities that occur in the real world,

in the ODP system, or in other viewpoints [22].

Information objects can be either atomic or

represented as a composition of information objects.

Basic information elements are represented by atomic

information objects. More complex information is

represented as composite information objects express-

ing relationships over a set of constituent information

objects. When an information object is a composite

object, the associated schemata are composed as well.

Information objects have types. A type of an

information object is a predicate characterizing a

collection of information objects. ODP objects may

have several types. Some of these types may be

dynamically acquired and lost [24].

Out of the multiple types of an object, the template

type is essential because it expresses the requirements

that the instantiations of a template are intended to

fulfil; a template of an object specifies the common

features of a collection of objects in sufficient detail

that an object can be instantiated using it.

Information objects, as any other ODP objects,

exhibit behavior, state, identity, and encapsulation.

The behavior of an object is determined by the
collection of actions in which the object can take

part, together with a set of constraints on when they

may occur. The set of actions associated with an

object can be partitioned into internal actions and

interactions. An internal action always takes place

without the participation of the environment of the

object. An interaction takes place with the participa-

tion of the environment of the object. A communica-

tion is defined in ODP as the conveyance of

information between two or more objects as a result

of one or more interactions, possibly involving some

intermediate objects.

The traditional object model imposes a mindset of

using a single hierarchy of subclasses of isolated

objects exchanging messages and typically under-

estimates relationships between objects. It also

requires properties of collections of objects (both

collective state and collective behavior) to be

expressed in terms of their refinement using attributes

of individual objects. In contrast, a more general

object model, such as the one followed by ODP, does

not require invariants and operations to be bownedQ by
a single object; rather, it uses collective state for

invariants, and collective behavior for operation and

interaction specifications [25]. For instance, an ODP

action is associated with at least one object and, thus,

is not necessarily a message; an ODP contract is

defined as an agreement governing part of the

collective behavior of a set of objects; enabled

behavior is defined in ODP as behavior characterizing

a set of objects; and so on. Thus, a classical object

model may not be the best option for specifying ODP

constructs [24]. In this sense, Maude’s object model is

far more general and, therefore, more suitable for

modeling ODP concepts, as we shall later see.

The following mapping rules will be used for

representing such ODP concepts in Maude.

– Information object types will be represented by

Maude classes. In Maude, each class is defined by

a name and a set of attributes (of certain sorts) that

describe the state of the objects of such a class.

– Information objects will then be represented by

Maude objects. In Maude, each object belongs to a

class, although it may change during the object’s

lifetime. In ODP, an object may have several types.

Maude’s multiple inheritance can be used in that

case.
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– In ODP, a class of information objects is the set of

all information objects satisfying a given type.

Notice, however, that the Maude concept of class is

different. A Maude class is a bdescriptionQ of a set
of objects, while an ODP class is the set of objects

itself.

– ODP action types will be represented by Maude

rules. The left-hand side and guard of the rule

describe the configuration of objects involved in

the action and the conditions for the action to take

place, while the right-hand side of the rule specifies

the effects of such an action. This allows the

representation of the collective behavior of a set of

objects in a very natural way.

– Finally, Maude messages can be useful for

representing the information exchanged in ODP

communications, i.e., the information conveyed in

object interactions.

4.2. Relationships between information objects

A relationship between information objects estab-

lishes a semantic connection between them. Some

relationships, such as subtyping and composition, are

defined in the RM-ODP foundational part, and

invariant schemata are natural and appropriate for

specifying them (see Section 5.4). Subtyping relation-

ships between objects can be modeled in Maude by

using Maude inheritance.

There is also the General RelationshipModel (GRM

[21]), the ISO standard that precisely defines and deals

with relationships. Following the GRM, a relationship

between information objects is a collection of informa-

tion objects together with an invariant referring to the

properties of those objects. The relationship invariant

defines the bcollective stateQ of the relationship

participants. Although not part of RM-ODP, some

system designers could may well like to use the GRM

concepts for modeling relationships. In this case, one

natural way for representing such kind of relationships

in the ODP information viewpoint is in terms of

invariant schemata (see Sections 4.5 and 5.4).

Finally, according to the ODP information view-

point, a relationship among information objects can be

modeled as part of the state of such objects (Ref. [22],

Part 3-6.2). To represent such relationships in Maude,

we can use a Maude class with the name of the

relationship as its name and whose attributes are the
identifiers of the participants and the relationship’s

attributes.

4.3. Static schemata

A static schema is defined as the bspecification of

the state of one or more information objects, at some

point in time, subject to the constraints of any

invariant schemataQ [22]. Examples of static schemata

include the specification of the initial state of the

system (i.e., the initial state of its objects and their

initial relationships) or any other specific state of the

system of particular relevance to the specifier or to

any of the system stakeholders.

Such specification of the state of the objects in the

system and their relationships is provided by theMaude

configurations representing the information objects at

eachmoment in time. Therefore, static schemata will be

represented by Maude object configurations.

Static schemata should always fulfill the system

constraints imposed by the invariant schemata. This is

guaranteed because the execution of the system is

driven by Maude rewriting strategies (see Section

4.5), which will check that the initial state satisfies the

invariants and will not allow invalid system states to

be reached.

4.4. Dynamic schemata

A dynamic schema describes the allowable state

changes of the system. Dynamic schemata will be

represented by making use of the fact that behavior in

an information system can be modeled as transitions

from one static schema to another (Ref. [22], Part 3-

6.1.3). Thus, dynamic schemata will be represented by

Maude rules, whose left- and right-hand sides

represent, respectively, the configuration of objects

and messages before and after the state change of the

system. They describe the allowed state changes of

one or more information objects.

4.5. Invariant schemata

In the information viewpoint, an invariant schema

establishes constraints that must always hold for the

information objects.

Basically, an invariant is a predicate that a

specification or program always requires to be true.
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However, we can distinguish two kinds of invariants,

depending on whether they can be proved (or

inferred) from the specifications or they form part of

the specifications themselves (hence restricting the

behavior of the system). We shall refer to the first kind

of invariants as deducible or external invariants, and

to the second kind as constraining invariants.

External invariants are usually used to verify

specifications and programs against them. This

verification process may be achieved in different

ways—and using different techniques and tools—

depending on the logic in which the invariant

predicates are expressed and the logic supporting the

specification notation used. Notice that these two

logics may not coincide; in fact, they do not coincide

in most cases—we may be interested, for example, in

verifying whether a certain program written in C

satisfies a given property expressed in some temporal

logic.

In general, not all specifications need to be

executable (e.g., declarative specification such as

business models), but in the case of executable

specifications of systems, we can also use a dynamic

approach to verify a given specification against an

external invariant, by checking that the execution

traces of the specification satisfy such an invariant.

Then, we talk about model checking, if we study and

check all the possible system execution traces, or

about monitoring, if we just consider the actual

execution trace of the system, checking that the

invariant always holds for such a trace.

On the other hand, constraining invariants cannot

be deduced from the specification of the system; on

the contrary, they are part of the specification

themselves, constraining the behavior of the system.

Therefore, dealing with such invariants implies a

completely different approach.

In the case of executable specifications, the fact

that constraining invariants restrain the possible

configurations and behavior of the system forces to

take them into account when executing or simulating

the system being specified. In this case, we do not

want to stop the execution of the program when we

reach a state in which the invariant is not satisfied, as

we can do when monitoring. On the contrary, what we

want is to drive the system execution using such

invariants, hence preventing the system from getting

into any invalid state.
The execution or simulation of specifications with

constraining invariants is typically based on integrat-

ing somehow the invariants into the system code.

However, such an integration is sometimes unsatis-

factory, specially if the invariants get lost amidst the

code and become difficult to locate, trace, and

maintain. If the specification language is not directly

executable, as happens, e.g., with Object-Z and UML,

the specifications and the invariants or constraints on

them must be translated to (and combined in) a

different language, which make things worst. More-

over, as we have mentioned above, the programs and

the invariants to be satisfied are usually expressed in

different formalisms and live at different levels of

abstraction. Having support for expressing invariants

over our specifications, being able to directly execute

them, and having the possibility of using different

formalisms for expressing invariants are, therefore,

important requirements.

Finally, we see the convenience of expressing some

of the constraining invariants in a modular way. In this

way, the system specifier could define those invariants

without having to hard-wire them into the actions

specification, hence improving the readability, mod-

ularity, traceability, and maintainability of the system

specification. In any case, the decision on whether to

specify an invariant as part of the specification of an

action, or independently from it, is a design decision

(usually very difficult) that falls beyond the scope of

this paper. Our main concern in this article is to

explain the Maude mechanisms that will allow system

designers to specify the invariants in either way; now,

it is up to them to make the decision in each case and

for each invariant.

More precisely, in this section, we will discuss the

two main issues involved in the specification of

constraining invariants in Maude: (a) how to express

them and (b) how to take them into account when

executing the Maude specifications.

Let us first say that Maude does not provide direct

support for expressing invariants, as, e.g., Z does.

However, Maude has very good properties as a logical

and semantic framework in which to express many

different languages, logics, and models of computa-

tion [28]. Thus, it turns out to be a very good

candidate for giving support to different types of

invariants, which may be expressed in different

formalisms, as shown in Section 4.5.2.
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Second, Maude specifications can be executed, and,

thanks to its reflective capabilities, the Maude system

provides very powerful and flexible ways of control-

ling the executions. Our proposal is then simple: Let us

use rewriting strategies that take into account the

constraining invariants representing the invariant sche-

mata of the information viewpoint specifications.

Section 4.5.1 proposes a general method for executing

specifications, which is parameterized by the specifi-

cation that we want to execute, the logic in which the

invariants are expressed, and the invariants them-

selves. Although it could have been done in a

monolithic way, this offers, among others advantages,

the possibility of decoupling the specification of the

systems and the invariants on them, which may, in

addition, be given in different formalisms.

Section 4.5.1 shows how to define execution

strategies for dealing with invariants, and Section

4.5.2 shows how to express such invariants in Maude.

4.5.1. Defining execution strategies that deal with

invariants

Maude provides two built-in strategies for executing

rewrite theories, namely, a top–down lazy rule-fair

strategy and a position-fair bottom–up strategy [6].

However, since we may need different ways of

execution in some cases, it also provides facilities for

defining new rewriting strategies [5], thus guiding the

rewrites in the desired direction, depending on our

specific needs.

Maude provides key metalevel functionality for

metaprogramming and for writing execution strategies,

so that strategies can be defined using statements in a

normal module. In general, strategies are defined in

extensions of the predefined module META-LEVEL by

using predefined functions in it, like metaReduce,

metaApply, metaXapply, etc., as building blocks.

META-LEVEL also provides sorts Term and Module,

so that the representations of a term T and of a module

M are, respectively, a term T
P

of sort Term and a term

M
P

of sort Module.

Of particular interest for our current purposes are the

partial functions metaReduce and metaXapply.1
1 We have simplified the form of these functions for presentation

purposes, since we do not need here their complete functionality.

See Ref. [5] for the actual descriptions.
op metaReduce :

Module Term ~N Term .

op metaXapply :

Module Term Qid ~N Term .

metaReduce takes a module M
P

and a term T
P

and

returns the metarepresentation of the normal form of T

in M, i.e., the result of reducing T as much as possible

using the equations in M. Partial function metaXap-

ply takes, as arguments, a moduleM
P̄

, a term T
P̄
, and a

rule label L and returns the metarepresentation of the

term resulting from applying the rule with label L inM

on the term T. Note that these operators are declared

using ~N, meaning that they will return an error term in

the kind [Term], associated to the sort Term, if the

term is not reduced. One can think of a kind as an error

bsupersortQ, where, in addition to correct well-formed

terms, there are undefined or error terms.

Let us suppose first that we are interested in a

strategy that rewrites a given term by applying on it

the rules in a given module, in any order. The strategy

should just try to apply the rules one by one on the

current term until it gets rewritten. Once a rule can be

applied on it, the term resulting from such an

application becomes the current term, and we start

again. If none of the rules can be applied on a term,

then it is returned as the result of the rewriting

process. Such a strategy can be specified as follows:

op rew : Module Term –N Term .

op rew : Module Term QidList

QidList –N Term .

eq rew(M, T)

= rew(M, T, labels(M) , nil) .

eq rew(M, T, L LL, LLV)
= if metaXapply(M, T, L) D Term

then rew(M, metaXapply(M, T, L),

LLV LL L, nil)

else rew(M, T, LL, LLV L)
fi .

eq rew(M, T, nil, LL) = T .

In these equations, we assume a function labels

that takes a module and returns a list with the labels

(quoted identifiers, of sort Qid) of the rules defined in

such a module. We also assume a sort QidList of

lists of quoted identifiers, with nil as the empty list

and _ _ (empty syntax) as the concatenation operator.
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Note also the use of the metaXapply function. A

rewriting step TL
YT V is accomplished only if the rule

labeled L is applicable on the term T, being T V the
term returned by metaXapply(M, T, L). The

membership assertion bmetaXapply(M, T,

L)DTermQ is used to check whether the result of

the application of the rule is of sort Term or not. In

case the rule cannot be applied, operation meta-

Xapply returns an error term in the kind [Term].

Then, given (the metarepresentation of) a module M

and (the metarepresentation of) a term T, the rew

operation tries to rewrite T by applying the rules in M

one by one, until one is found that can be successfully

applied to T. If no rule can be applied, the original

term is returned (as specified by last equation). In case

a rule L of M is found that can be successfully applied

to T (resulting in term T V), the rew operation is

recursively invoked on T V.
Now, if we want to deal with constraining

invariants, we just need to change the previous strategy

to check an additional invariant condition before

taking a rewriting step. This check will guarantee that

every new state satisfies the specification invariant.

To implement this new strategy, we shall consider a

satisfaction Boolean predicate _|=_. Given a config-

uration of objects C (that represents a state of the

system) and an invariant I, the expression C|=I will

evaluate to true or false, depending on whether

the configuration C satisfies invariant I. The only

difference with respect to the previous strategy is that,

now, it must check whether the initial state satisfies
Fig. 1. Rewriting strateg
the invariant and then take a rewriting step only if the

term can be rewritten using a particular rule, and it

yields to a next state that satisfies the invariant.

Invariant I is checked by evaluating the expression

T V|=I for a given candidate transition TL
YT V. Note,

however, that the rewriting process takes place at the

metalevel, and therefore, it is convenient to have the

invariant also metarepresented. Thus, we use meta-

Reduce for evaluating the satisfaction of the

property. The new rewriting strategy, which we have

called rewInv, is shown in Fig. 1. Note that rewInv

takes four arguments: the module specifying the

system, the module defining the satisfaction relation

for the logic in which the invariants are expressed, the

initial term to be rewritten, and the invariant to be

satisfied. Now, the auxiliary function rewInvAux is

invoked if the initial state satisfies the invariant;

otherwise, the initial term is left as an error term.

In this way, the rules describing the system can be

written independently from the invariants applied to

them, and the module specifying the system is

independent of the logic in which the invariants are

expressed, thus providing the right kind of independ-

ence and modularity between the system actions and

the system invariants. In fact, the strategy is para-

meterized by the module to be executed (M), the

invariant to be preserved (I), and the module defining

the satisfaction relation (M V). This allows the use of

different logics (e.g., propositional logic, linear

temporal logic, etc.) to express the invariant without

affecting the strategy or the system to execute. We
y with invariants.
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shall illustrate this in the case of propositional logic in

the next section. Note that the mechanism is very

expressive and powerful: A simple extension of the

strategy would allow us, for instance, to simulta-

neously consider invariants expressed in different

logics, use heuristics to guide the process, etc.

4.5.2. Expressing invariants

Invariant predicates can be expressed in different

logics. We have already experimented with invariants
Fig. 2. Maude specification of
expressed in propositional logic [11] and linear

temporal logic [12]. In this section, we shall illustrate

the definition of the satisfaction relation in the case

of propositional logic. A detailed discussion on how

LTL invariants may drive the system execution,

together with their complete Maude implementation,

several examples, and additional extensions, such as

the use of backtracking, can be found in Ref. [12].

The temporal logic we considered there is the same

that Maude uses in its model checker [16] and the
propositional formulae.
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approach used to deal with it is similar to the one

proposed by Havelund and Roçu in [18] for

monitoring Java programs. Note, however, that

although the strategy rewInv given in Section

4.5.1 is valid for logics like propositional logic, it

does not work in the case of temporal logics. For

example, the satisfaction of a linear time logic (LTL)

formula cannot be decided considering particular

states, but we need to look at future states, and,

perhaps, even to complete traces.

Given a set of atomic propositions of sort

Proposition, we define the formulae of the

propositional calculus and a satisfaction relation for

it in the PROPOSITIONAL-CALCULUS module

shown in Fig. 2.

The first part of the module introduces the sort

Formula of well-formed propositional formulae,

with two designated formulae, namely, true and

false, with the obvious meaning. The sort Pro-

position, corresponding to the set of atomic

propositions, is declared as a subsort of Formula.

Then, the usual conjunction, disjunction, exclusive

or, negation, implication, and if and only if operators

are declared. These declarations follow quite closely

the definition of Boolean values in Maude and OBJ3

[17], which are based on the Church-Rosser and

terminating decision procedure proposed by Hsiang

[19]. This procedure reduces valid propositional

formulae to the constant true, and all the others

to some canonical form modulo associativity and

commutativity, which consists of an exclusive dis-

junction of conjunctions.

The satisfaction relation is defined in the second

part of the module. As mentioned above, the

satisfaction relation _|=_ is a Boolean predicate that,

given a state and a formula, evaluates to true or

false, depending on whether the given state

satisfies such a formula. Notice that the operator

_|=_ takes a propositional formula as second argument

and returns a Boolean value, being Boolean a

predefined sort in Maude, also with constants true

and false, and with operations _and_, _or_,

_xor_, etc. We shall see in Section 5.4 how, once the

atomic propositions of interest for a particular prob-

lem are defined, and the satisfaction relation is

specified for them, we may use this logic to express

invariants of systems and to evaluate their satisfaction

for the states of such systems.
5. A case study

The following example illustrates the use of

Maude for representing the ODP viewpoint specifi-

cations of a system. The example is about a

computerized system to support the operations of a

university library, in particular, those related to the

borrowing process of the library items. The system

should keep track of the items of the university

library, its borrowers, and their outstanding loans.

Instead of a general and abstract system, this example

is based on the regulations that rule the borrowing

process defined at the Templeman Library at the

University of Kent at Canterbury, a library that has

been previously used by different authors for

illustrating some of the ODP concepts (see, e.g.,

Refs. [3,36]).

The basic rules that govern the borrowing process

of that library system are as follows:

(1) Borrowing rights are given to all academic staff

and to postgraduate and undergraduate students

of the university.

(2) Library books and periodicals can be borrowed.

(3) Each library item has a unique identifier. The

library maintains a record for each item, which,

in addition to its identifier, contains the relevant

information about the item (e.g., title, author,

ISBN or ISSN, etc.). This information also

includes the item location when it is in the

library, and the item status: on-loan, free, or

disposed (if the item has been destroyed, lost, or

thrown away).

(4) There are prescribed periods of loan and limits

on the number of items allowed on loan to a

borrower at any time. These limits are:

– Undergraduates may borrow, at most, eight

books. They may not borrow periodicals.

They may borrow books for, at most, four

weeks.

– Postgraduates may borrow at most 16 books

or periodicals. They may borrow periodicals

for up to one week, and books for up to four

weeks.

– Teaching staff may borrow at most 24 books

or periodicals. They may borrow periodicals

for up to one week, and books for up to one

year.
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(5) Items borrowed must be returned by the due day

and time, which is specified when the item is

borrowed.

(6) Borrowers who fail to return an item when it is

due will become liable to a charge at the rates

prescribed until the book or periodical is

returned to the library.

(7) Borrowers returning items must hand them in to

a librarian at the Main Loan Desk. Any charges

due on overdue items must be paid at this time.

(8) Failure to pay charges may result in suspension

by the librarian of borrowing facilities.

In the following, we shall refer to these rules as

the btextual regulationsQ of the library system. This

section describes a specification of the ODP

information viewpoint of such a system, using

Maude as formal notation. Such information

specification describes the types of information

and the relationships between them that are

required to define the system. It uses the informa-
tion language in RM-ODP and, where appropriate,

interprets the language in terms of the Maude

notation.

The information specification in this section

defines both the basic concepts for information used

in this specification and the invariant, static and

dynamic schemata for it.

5.1. Basic concepts

From the textual regulations of the library, we can

identify several main information object types,

namely, borrowers, library items, and librarians.

These objects represent the information kept in the

system about the entities they model. In addition, a

calendar object should be in charge of representing

the passage of time, and loan objects will represent

the relationships between borrowers and items (see

Section 4.2).

These information object types are represented in

Maude by the following Maude classes:
The predefined sorts Oid and Qid are used

to represent object identifiers and quoted identi-

fiers (i.e., general identifiers), respectively. We

assume parameterized sorts Set(X) and

Default(X), which define, respectively, sets

(of any type used in the instantiation) and sorts

with default values. Besides, user-defined can be
easily specified in Maude. For instance, enumer-

ation sorts such as ItemStatus can be defined

as follows:

sort ItemStatus .

ops onLoan free disposed other :

–N ItemStatus .
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In our information viewpoint specification, another

information object will store the general details about

the library (Library), such as the daily rates to be
charged to late-returners, together with the lists of its

current members: borrowers, items, librarians, calen-

dar, and the set of outstanding loans.
The textual regulations of the Templeman library

also distinguish three special kinds of borrowers

(academic staff, undergrads, and postgrads) and two

kinds of items (books and periodicals). Their subtyp-

ing relationships have been modeled in Maude using

class inheritance.

class Academic .

class Undergrad .

class Postgrad .

subclasses Academic Undergrad

Postgrad b Borrower .

class Book | author : Qid,

edition : Int, ISBN : Qid,

acquisitionDate : Date .

class Periodical | volume : Int,

number : Int, ISSN : Qid .

subclasses Book Periodical b Item .

Once we have specified the basic information

object types, we need to specify the possible

interactions among these objects. In the information

viewpoint, such interactions will be specified by a set

of dynamic schemata, by describing their precondi-

tions and the state changes that they cause in the

system.

5.2. Static schemata

Static schemata provide instantaneous views of

information, e.g., at system initialization, or in any

other specific moment in time that is relevant to any of

the system stakeholders. This specification of the

instantaneous state of the objects is precisely the one

provided by the Maude configurations at each

moment in time.
One of the benefits of Maude configurations is that

they allow to capture not only the individual state of

each object, but also the collective state of the system.

For example, Maude configurations may also contain

messages, which, in this example, will represent

pending interactions, i.e., requests that have been sent

by the source object but have not yet been consumed

by the target object(s).

For instance, theMaude configuration shown in Fig.

3 represents a static schema that models the state of the

system at a moment in time (date=1000), in which there

are only two borrowers (John andMary), two librarians

(Eve and Pete), two books (Ulysses and Dubliners),

and one periodical (yesterday’s edition of The Times).

There is only one loan (Mary borrowed Ulysses in day

800), and there is a pending request of John to borrow

Dubliners. Note the use of dots where nonrelevant

information has been omitted for space reasons.

5.3. Dynamic schemata: description of the system

behavior

The dynamic schemata describe the allowed state

changes of the system or of any subset of its

constituent information objects. In our proposal,

dynamic schemata are represented by Maude rules,

whose left-hand side and guard specify the precondi-

tions of the dynamic schema, and the right-hand side

represents the state change caused in the system.

Most approaches for representing the ODP infor-

mation viewpoint dynamic schemata are based on

describing the effect of object interactions only.

However, dynamic schemata can be more general

than that: State changes can also be caused by other

kinds of actions, such as internal actions. For instance,

the Calendar information object was in charge of
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providing the current date. Given the use that we are

going to make of it, we can assume, for example, that

the date gets increased by the following rewrite rule.

rl [tic] :

b O : Calendar | date : D N

=N b O : Calendar |

date : D + 1 N .

Note that we do not worry here about the

frequency with which the date gets increased, the

possible synchronization problems in a distributed

setting, nor with any other issues related to the

specification of time.

To illustrate the use of Maude rules to represent the

dynamic schemata corresponding to object interac-

tions, we show how to specify a user request to a

librarian to borrow an item. We model such an
interaction with three rules, covering all the possible

cases. The rest of the dynamic schemata follow very

similar patterns.

Please notice that most restrictions may be

considered both in the rules and as constraining

invariants. For example, the fact that an undergrad

cannot borrow a periodical may be specified as a

restriction on the borrowing interaction, but also as a

constraining invariant, stating that a periodical can

never be borrowed by an undergrad. In general, our

preferred practice is to model invariant schemata as

rule conditions when they are applied only to specific

actions, modeling them as constraining invariants

when either they affect several rules or they are

expected to be reused or changed. In our example, we

consider whether a borrower is suspended, whether

he/she is an undergrad, and whether an item is on loan

as constraints on the borrowing interaction, since we
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find them more binteraction specificQ. We shall come

back to this issue in Section 5.4.

Fig. 4 shows the Maude rule that represents the

dynamic schema corresponding to the successful

borrowing request for a periodical item. This rule is

fired under the presence of a borrowRequest

message and only if the borrower is not suspended,

the item is free, and the user can borrow periodicals

(i.e., is not an undergrad). The consequence of such

a rule is that the request is accepted, a Loan object

is created with the corresponding information, and an

acceptLoan message is produced, which repre-

sents the triggering of the corresponding interaction

that will happen between the librarian and the

borrower when the loan is accepted. The function

class takes an object as argument and returns its

actual class. Thus, if the Borrower object to which

the above rule applies is, for instance, b ’John :

Postgrad |. . .N, then the class function applied to

it returns Postgrad, and not Borrower. Note also

that, in Maude, those attributes of an object that are

not relevant for an axiom do not need to be

mentioned. Attributes not appearing in the right-

hand side of a rule will maintain their previous

values unmodified.
Fig. 4. Maude specification of the dynamic schema corresponding
Likewise, the rule borrow-request-book-

ok shown in Fig. 5 specifies the dynamic schema that

handles the (successful) borrowing of books. Note

that, in this case, there is no restriction on the kind of

borrower.

Any other case is handled by the rule shown in Fig.

6, which establishes the denial conditions for a borrow

request.

5.4. Invariant schemata

Many different invariant schemata can be defined

for this specification. In this section, we shall show

several of them, which have been chosen for being

illustrative examples of how different invariants can

be represented in Maude.

According to the discussion in Section 4.5, several

kinds of invariant schemata can be identified, depend-

ing on how they are expressed. For instance, some

invariant schemata that represent the invariants (in

GRM terms) defining the associations between

information objects can be expressed as part of the

state of those objects. In Maude, such a state is stored

in the attributes of the Maude objects representing the

ODP information objects. Thus, the fact that a loan in
to the successful borrowing request for a periodical item.



Fig. 5. Maude specification of the dynamic schema corresponding to the successful borrowing request for a book.
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the library system takes place between exactly one

borrower and one item has been represented by the

attributes borrower and item of the Loan class,

each of which can hold only one object identifier:

precisely the identifiers of the Borrower and Item

objects involved in the loan.

Other invariants have been directly incorporated

into the Maude rules, such as the one that does not

allow an undergrad to borrow periodicals, or the one

that requests that an item must be free to be borrowed

(see Section 5.3).

Finally, constraining invariants can also be

expressed as formulae in a certain logic, and then
Fig. 6. Maude specification of the dynamic schema c
enforced on the system execution. For illustration

purposes, we shall consider the following examples of

this kind of invariants:

(1) The information on loans must be consistent.

That is, the borrower and the item referenced

in a loan object must have such a loan among

their loans (the only one in the case of the

item).

(2) Borrowers cannot exceed the number of pend-

ing loans allowed by the library regulations.

(3) A nonacademic cannot borrow any item if he/

she has pending fines.
orresponding to the denial of a borrow request.
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Notice that invariant (1) may be deduced from the

specification of the system. However, it can also be

explicitly stated as a constraining invariant, as we will

show here. Invariant (2) could have been enforced as

part of the conditions of the rules, as we did for the

status of the item to be borrowed, or the category of

the borrower in the rules for borrowing in Section 5.3.

However, there are some situations in which it is

better to specify invariants separately from the Maude

rules that specify the interactions they constrain.

Decoupling the invariants from the actions that they

constrain is currently seen in many cases as a good

design practice, since it may help improving the

modularity and evolvalibity of the specifications

produced [35]. As mentioned before, we try to model

invariant schemata as rule conditions when they are

applied only to specific actions, modeling them as

constraining invariants when either they affect several

rules or they are expected to be reused or changed.

Finally, invariant (3) did not originally appear in the

textual description of the system. With it, we try to

illustrate how new invariants not considered initially

may be easily added.

To define invariant schema (1), we can specify

an atomic proposition consistentLoans. As

explained in Section 4.5, we must define the

satisfaction relation for each atomic proposition. In

this case, we define the satisfaction of proposition

consistentLoans with two equations: one detect-

ing the transgressing case and an otherwise case (note

the use of the Maude owise attribute of the second

equation).

op consistentLoans :

–N Proposition .

ceq b I : Item | loan : L’ N

b L : Loan | borrower : B,

item : I N

b B : Borrower | loans : LS N C

|= consistentLoans

= false

if not L in LS or L =/= L’ .

eq C |= consistentLoans = true

[owise] .

Invariant schema (2) may be modeled using an

atomic proposition tooManyLoans on the number

of borrowed items as follows:
op tooManyLoans : –N Proposition .

eq b O : Borrower |

borrowedItems : N,

maxLoans : M N C

|= tooManyLoans

= N N M or (C |= tooManyLoans) .

eq C |= tooManyLoans = false

[owise] .

In this case, the satisfaction of the atomic proposi-

tion has been defined recursively, checking that each of

the borrowers in the configuration has not reached the

maximum number of loans.

Invariants can also be specified as formulae

over atomic propositions using the connectives

defined in Section 4.5. For example, the invariant

bnot tooManyLoansQ avoids the application of a

borrowing rule if it leads to a configuration where a

borrower has more pending loans than allowed,

according to the library regulations, thus making

unnecessary the use of any guard to check this

restriction in the Maude rules that define the borrow-

ing operations.

Invariant schema (3) states that nonacademics

cannot borrow an item if they have pending fines.

Although not originally included in the textual

regulations, we could easily add this restriction by

considering an invariant bnot nonAcademic-

WithPendingFinesQ, where the atomic proposi-

tion can be defined as follows:

op nonAcademicWithPendingFines :

–N Proposition .

ceq b B : Borrower |

finesDue : N N C

|= nonAcademicWithPendingFines

= true

if class(b B : Borrower | N)

=/= Academic

/\ N N 0 .

eq C |= nonAcademicWithPendingFines

= false [owise] .

5.5. The execution of the system

Now, using the module PROPOSITIONAL-

CALCULUS given in Section 4.5, a module

LIBRARY containing the specification of the library



Fig. 7. Executing the Maude specifications of the Library system.

F. Durán et al. / Computer Standards & Interfaces 27 (2005) 597–620616
system, and a module TEST, with the declaration of a

constant initial-state, with value an initial

configuration, and the definitions of the above atomic

propositions, we can execute the system specification

starting in such an initial state constrained by the

above invariants, as shown in Fig. 7. (For clarity,

overlined R¯; and t̄ stand for terms representing,

respectively, the module R and the term t.) The

strategy rewInv introduced in Section 4.5.1 will

drive the execution of the system taking the invariants

into account, avoiding those states in which the

invariants do not hold.
6. Related work

Formal description techniques are being exten-

sively employed in ODP and have proved valuable

in supporting the precise definition of reference

model concepts [4]. Among all the works, probably

the most widely accepted notations for formalizing

the information viewpoint are Z and Object-Z.

Initially, Z was chosen because the schemata

defined in the information viewpoint could be

directly mirrored into the Z schemata. Furthermore,

Johnson and Kilov [25] have shown how to

formalize some of the basic concepts of ODP in

Z, with special emphasis on the collective state and

behavior of objects, and discussed how to deal with

relationships.

However, Z is not object oriented, does not allow

modularity, and has some limitations for expressing

invariants stating temporal logic properties of the

system. Object-Z solves most of the Z limitations

since it is object oriented, allows modularity, and

incorporates a subset of temporal logic for express-

ing class invariants. Therefore, it seems to be a

better candidate language for formalizing the infor-

mation viewpoint. However, the use of Object-Z for
specifying the information viewpoint also presents

some shortcomings:

! First, interactions are usually modeled as object

operations and assigned to just one object

(included as methods in the object’s definition

class). How to deal with interactions in which there

is more than a principal object (e.g., in the case of

synchronous interactions)? In our approach, inter-

actions are represented by rules, and therefore,

such limitation does not exist.

! Dynamic schemata are only represented in Object-

Z in terms of the behavior of the operation that

represents the action that causes the state change.

As mentioned before, this does not cover the cases

of internal actions, spontaneous state changes

(due, for instance, to the presence of a given

object in the system and not necessarily caused by

any interaction), nor those cases of collective

behavior, in which the action causing the state

change does not belong to a particular object.

! Temporal logic is used to express the invariants,

but the fragment of temporal logic included in

Object-Z is too limited, as pointed out in Ref. [36].

In our proposal, we have shown how different

logics (e.g., propositional logic [11] and linear

temporal logic [12]) can be effectively used to

express invariants.

! Another disadvantage of the use of Object-Z

appears when representing some object types.

Object types are represented as Object-Z classes,

which is the natural way of doing it. However,

Object-Z does not offer any mechanism for the

dynamic reclassification of objects, which may be

the case under some particular circumstances (e.g.,

it may be required for representing systems in

dynamically configurable networks). Again, this is

not an issue in Maude, since the class of an object

can be changed during its lifetime.
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! As mentioned in Section 4.1, the traditional object

model assumes a single hierarchy of subclasses of

isolated objects exchanging messages and typically

underestimates relationships between objects. By

contrast, a more general object model, such as the

one followed by ODP and Maude, does not require

invariants and operations to be owned by a single

object; rather, it uses collective state for invariants

and collective behavior for operation and inter-

action specifications [25]. Thus, a classical object

model may not be the best option for specifying

ODP constructs [24]. In this sense, Maude’s object

model is more general and, therefore, more suitable

for modeling ODP concepts.

! Maude offers far more tool support than Object-Z

does. Even if some animation can be obtained with

Object-Z, it does not reach the level that can be

obtained with Maude’s execution facilities and

strategies. Additionally, tools for model checking,

theorem proving, and other behavioral analysis of

specifications are available [5].

! Finally, other Object-Z issue is related to its

expressiveness for representing concepts from

other formal languages, to study ODP viewpoint

consistency. Other notations (such as Z, LOTOS,

or CSP) have been proposed for other viewpoints.

A common way of dealing with consistency

between specifications written in different nota-

tions is by translating them into one single

notation. For instance, in Ref. [2] the authors

propose the translation of LOTOS into Object-Z.

However, many important aspects of the specifi-

cation are usually lost in these translations, since

the underlying logic of Object-Z is not expressive

enough. We think that Maude can greatly help in

this point and is something that we want to explore

further. Rewriting logic is such that faithful trans-

lations from other formal description techniques

into Maude can be obtained [31].

Apart from such bformalQ approaches, some

authors have also considered graphical notations for

representing the ODP information concepts. For

example, Dustzadeh and Najm [15] showed in 1997

how OMT and Fusion may support ODP information

modeling, providing some semantics for the object

diagrams of these graphical application development

methodologies. Many other authors also consider
UML as a well-suited language for ODP information

modeling because of its appealing graphical syntax

and because it is part of fully integrated development

methodologies, such as RUP [23] or Catalysis [9].

Moreover, UML is widely known and easily accepted

by all kinds of users. However, the loose semantics of

UML is a major drawback if precise and unambiguous

specifications are required. This issue is currently

being addressed by different research groups and

initiatives.
7. Concluding remarks

Maude is an executable rewriting logic language

specially well suited for the specification of object-

oriented open and distributed systems. In this paper,

we have explored the possibility of using Maude for

specifying the information viewpoint, showing how to

build information specifications of systems using

Maude concepts and rules. With them, we do not

only obtain a high-level information description of the

system, but we also are in a position to formally

reason about the specifications produced and to quick-

prototype them.

There are several research areas that we plan to

address in the short term. The first area is related to

two important issues in ODP, namely, the consistency

checking and the composition of specifications of

different viewpoints. By establishing the consistency

of different viewpoints, we simply mean that the

specifications of the different viewpoints do not

impose contradictory requirements. Checking the

consistency of the specifications of different view-

points is a difficult task, and it is even harder to check

it if such viewpoints are specified in different

formalisms. Thus, we have two options: either we

write all viewpoints specifications in the same formal

notation or we use different formalisms for the

different viewpoints and then translate them into a

common model. However, there is a general belief

that no formal method applies well to all problem

domains, which invalidates the first option. It is not

only about being expressive enough, but on the fact

that each formalism is more appropriate than others

for a particular viewpoint. One may prefer, for

example, Maude for the information viewpoint, and

LOTOS or SDL for the computational viewpoint.
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It has been shown that rewriting logic has very

good properties as a logical framework, in which

many different languages and logics can be repre-

sented, and as a semantic framework in which

semantics can be given to them [31]. Rewriting logic

and Maude have also been proposed for specifying the

enterprise [13] and the computational viewpoints

[33,34], and we plan to study their adequacy for

being used in the specification of the others. Formal-

isms such as CCS, Object-Z, LOTOS, SDL, and many

others can be represented in rewriting logic, thus

allowing the possibility of bringing very different

models under a common semantic framework. Such a

framework makes much easier to achieve the integra-

tion and interoperation of different models and

languages in a rigorous way. Thus, Maude seems to

be a promising option as a unifying framework for the

specification of RM-ODP viewpoints in which con-

sistency checks can be rigorously studied.

Finally, tool support is an essential issue for any

engineering approach to system specifications. Tool

support should cover all the system specification life

cycle, providing support for writing and validating

them, for reasoning about their properties, and even

for executing them, if possible. Maude’s intuitive

style for specifying classes, objects, and rules greatly

simplifies the understandability of the specifications

produced. Furthermore, the process shown here for

writing the Maude information specifications of a

system does not require users to have a deep

knowledge of rewriting logic. Thus, it is our belief

that Maude specifications could provide a useful

vehicle for allowing stakeholders of a system to

easily share and discuss about its information

specifications.

Having said that, we also feel that some graphical

tool support may be required for the wide adoption

of our proposal. We have already mentioned some of

the advantages of using graphical notations. In this

sense, we are currently working on the smooth

integration of our approach with the current pro-

posals for modeling the ODP information viewpoint

using UML, as we have done for the Enterprise

Viewpoint [10]. This would allow the stakeholders of

the system to use a more user-friendly graphical

notation like UML to describe the system informa-

tion viewpoint, and then translate them into the

corresponding Maude specifications. Moreover, we
are working on the access, from the UML environ-

ment to the Maude toolkit, for reasoning about the

specification produced. This will allow us to model

check the UML specifications or to prove some of

their properties using the Maude theorem prover,

without forcing the user to have a strong background

and knowledge of Maude or of any other formal

notation or method. In this way, we could bhideQ the
complexity involved in writing the formal specifica-

tions of the system and reasoning about the system

properties using them, making them easily accessible

from a UML environment.
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