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An Introduction to UML Profiles

Lidia Fuentes-Fernández and Antonio Vallecillo-Moreno

UML (Unified Modeling Language) has become one of the most widely used standards for specifying and
documenting information systems. However, the fact that UML is a general purpose notation may limit its
suitability for modelling some particular domains, for which specialized languages may be more
appropriate. UML provides a set of extension mechanisms to address this issue, which allow the
customisation and extension of its own syntax and semantics in order to adapt to certain application
domains. In this paper we examine the extension mechanisms which are used to define UML Profiles. We also
discuss the usefulness and relevance of UML Profiles in the context of Model Driven Architecture (MDA®).

Keywords: MDA, UML Modelling, UML Profiles.

Introduction
The increasing complexity of information systems is

challenging the way software architects and engineers work.
After initially being concerned more about the structure and
quality of programming code, software engineers are now
focusing their attention on the modelling aspects of the system
development process. Models provide abstractions of systems
which help deal with larger and more complex applications in
simpler ways, regardless of how they are implemented and
distributed and whichever the final execution platform or tech-
nology used.

A model is a description of (part of) a system written in a
well-defined language. A well-defined language is a language
with well-defined form (syntax) and meaning (semantics),
which is suitable for automated interpretation by a computer
[1].

The OMG (Object Management Group) defines several
modelling languages, among which UML (Unified Modeling
Language) [2] is probably the one most widely accepted and
used. UML is a visual language for specifying, constructing
and documenting the artefacts of systems. It is a general
purpose modelling language that can be used with all major
object and component methods and can be applied to all appli-
cation domains (e.g. health, finance, telecom, aerospace) and
implementation platforms (e.g., CORBA – Common Object
Request Broker Architecture –, J2EE – Java 2 Enterprise
Edition –, .NET). 

There are situations, however, in which a language that is so
general and of such a broad scope may not be appropriate for
modelling applications of some specific domains. This is the
case, for instance, when the syntax or semantics of the UML
elements cannot express specific concepts of particular
systems, or when we want to restrict or customize some of the
UML elements which are usually too abundant and too general. 

OMG defines two possible approaches for defining domain-
specific languages. The first one is based on the definition of a
new language, an alternative to UML, using the mechanisms

provided by OMG for defining object-based visual languages
(i.e. the same mechanisms that have been used for defining
UML and its metamodel). In this way, the syntax and semantics
of the elements of the new language are defined to fit the
specific characteristics of the domain. The second alternative is
based on UML specialisation, in which some of the language’s
elements are specialised, imposing new restrictions on them,
while respecting the UML metamodel and leaving the original
semantics of the UML elements unchanged (i.e. the properties
of the UML classes, associations, attributes etc. will remain the
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same; new constraints will simply be added to their original
definitions and relationships). Syntactic sugar can also be used
in a Profile in the form of icons and symbols for newly defined
elements.

The first approach is that followed by languages such as
CWM (Common Warehouse Metamodel) [3], as the semantics
of some of the language constructs do not match the semantics
of the corresponding UML model elements. These new
languages are defined using the MOF (Meta Object Facility), a
language specifically designed for defining object-based mod-
elling languages. As we will discuss later, UML itself is defined
using the MOF.

In order to support the second alternative, UML provides a
set of extension mechanisms (stereotypes, tagged values, and
constraints) for specializing its elements, allowing customized
extensions of UML for particular application domains. These
customisations are sets of UML extensions grouped into UML
Profiles.

Each alternative has its advantages and disadvantages. Defin-
ing a tailor-made language will produce a notation that will
perfectly match the concepts and nature of the specific applica-
tion domain. However, as the new language does not respect
UML semantics, it will not allow the use of commercial UML
tools for drawing diagrams, generating code, reverse engineer-
ing, and so forth. Conversely, UML Profiles (which are amena-
ble to be handled by commercial UML tools) may not provide
such an elegant and perfectly fitting notation as may be
required for those systems. It is not therefore always easy to
decide when to create a new language and when to define a set
of extensions to the standard UML metamodel by grouping
them into a UML Profile. In our experience, unless there is a
real need to deviate from the UML metamodel, the benefits of
using UML Profiles undoubtedly outweigh their limitations.

In this paper we will introduce the extension mechanisms
used in the definition of a UML Profile. We will also discuss the
usefulness and importance of UML Profiles in the context of
Model Driven Architecture (MDA®) [4]. MDA is an OMG
initiative that provides an approach to system development
based on model definition and transformations. It is model
driven because it provides a means for using models to direct
the course of understanding, design, construction, deployment,
operation, maintenance and modification. As we will see, UML
Profiles play an important role in MDA.

UML Profiles were originally defined in version 1 of UML,
although their applicability and widespread use by the software
community was limited because they lacked either an unam-
biguous definition or precise utilization guidelines [5]. The new
version of UML (2.0) addresses these issues, providing
substantial improvements over the UML Profiles of UML
version 1. For instance, among the improvements introduced,
there is a better conceptual alignment with the MOF, and with
the UML metamodel (UML Profiles can extend not only UML
but also any other MOF-defined language, or even other UML
Profiles). Also the UML model elements to be specialized are
now more clearly and conveniently specified, and the profile
notation has been enhanced. 

This is an introductory paper and is intended only as a brief
presentation of UML Profiles to show something of their poten-
tial. We refer interested readers to the UML 2.0 Infrastructure
Specification (OMG document ptc/03-12-01) for more techni-
cal information and further details on the subject.

This paper is structured in six sections, this introduction
being the first. Section 2 presents the four-layered conceptual
architecture defined by OMG for modelling systems and defin-
ing modelling notations such as UML or CWM. Section 3
introduces UML Profiles, as defined in UML 2.0., and Section
4 provides some brief guidelines for the definition and usage of
UML Profiles. The role of UML Profiles in MDA is discussed
in Section 5. Finally, Section 6 draws some conclusions and
outlines some of the still unresolved limitations of UML
Profiles.

OMG’s Metamodel Architecture
In the previous Section, a model was defined as a descrip-

tion of (part of) a system written in a well-defined language.
The problem is how to define such a well-defined language.

The solution to this problem is well known in the case of
textual languages, whose grammar is described using the
Backus Naur Form (BNF) notation. However, this notation
does not work for defining graphical languages, for which a
different mechanism is needed. This mechanism is called
metamodelling.

As a general rule we can suppose that a model describes the
elements and types of elements that might exist in a system. For
example, if we define “Person” as a class in a model, we can
use instances of that class in our system (such as “John” or
“Mary”). Following that principle, if the system we want to
model is a UML system, then the elements comprising it will
be “Class”, “Association”, “Package”, etc. But who defines
those elements, and how are they defined? 

The OMG defines a four-layered architecture that separates
the different conceptual levels making up a model: the instanc-
es, the model of the system, the modelling language, and the
metamodel of that language. In OMG terminology these layers
are called M0, M1, M2, and M3.
• Layer M0: Instances. The M0 layer models the running

system and its elements are the actual instances that exist in
the system. These instances are, for example, customer
“John” who lives at “1 Oxford St., London” and buys the
copy number “123” of the book “Ulysses”. 

• Layer M1: The model of the system. The elements of the
M1 layer are models. An example would be a UML model
of a software system. The M1 layer defines the classes
“Customer”, “Address”, “Purchase” and “Book”, each one
with its associated attributes (“address”, “copy no.”, “title”,
etc.). There is a strong relationship between the M0 and M1
layers. The elements of the M1 layer are classifications of
elements of the M0 layer. Likewise, each element at the M0
layer is always an instance of an element at the M1 layer. 

• Layer M2: The model of the model (the metamodel). The
elements of layer M2 are the modelling languages. Layer
M2 defines the concepts that are used to model an element
of layer M1. In the case of UML, layer M2 defines “Class”,

2
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“Attribute”, “Association”, etc. Just as there was a close
relationship between layers M0 and M1 so there is a close
relationship between M1 and M2 layers. Every element at
M1 is an instance of an M2 element, and every element at
M2 categorizes M1 elements. The model that resides at the
M2 layer is called a metamodel. 

• Layer M3: The model of M2 (the meta-metamodel).
Finally, layer M3 defines the concepts that can be used to
define modelling languages. Thus, the concept of UML
Class (that belongs to M2) can be considered as an instance
of the corresponding element of M3, which precisely defines
what a Class is and its relationships with the rest of the UML
concepts (e.g., a UML Class is a classifier, and therefore has
an associated behaviour, and a set of attributes and methods,
etc.).

The modelling language defined for describing the M3
elements is called MOF (Meta-Object Facility) [6]. MOF is a
language to define modelling languages, such as UML, CWM,
or even MOF itself. Such languages can be considered as
instances of MOF. 

To summarise, a well-defined language (such as UML) can
be described by its metamodel. What MOF provides is a
language to describe metamodels. If we wanted to define a new
object-based visual language other than UML we would use
the MOF to describe its metamodel.

UML Profiles
For when we need to define a new language to model a

system that either restricts the number of UML elements or
adds some constraints or syntactic sugar to them while respect-
ing the original semantics, we do not need to create a new
language from scratch using the MOF. Instead, UML can easily
be customized by using a set of extension mechanisms that
UML itself provides. More precisely, the Profiles package
included in UML 2.0 defines a set of UML artefacts that allows
the specification of an MOF model to deal with the specific
concepts and notation required in particular application
domains (e.g., real-time, business process modelling, finance,
etc.) or implementation technologies (such as .NET, J2EE, or
CORBA). It should be noted that UML Profiles allow the
customisation of any MOF defined (not just UML defined)
metamodel. Similarly, a UML Profile can also specify another
UML Profile.UML 2.0 outlines several reasons why a system
developer should want to customize his metamodel:
• To have a terminology that is adapted to a particular

platform or domain (for example, being able to capture EJB
(Enterprise Java Beans) terminology such as “home inter-
face”, “enterprise java beans”, “archive” etc.).

• To have a syntax for constructs that do not have a notation
(as is the case of actions in UML).

• To have a different notation for already existing symbols,
more appropriate for the target application domain (such as
being able to use a picture of a computer instead of the ordi-
nary UML node symbol to represent a computer in a net-
work).

• To add semantics left unspecified in the metamodel (such as
how to deal with priority when receiving signals in a state
machine).

• To add semantics that do not exist in the metamodel (such as
defining a timer, clock, or continuous time)

• To add constraints that restrict the way you can use the met-
amodel and its constructs (such as disallowing actions from
being executable in parallel within a single transition, or
forcing the existence of certain associations between model
classes)

• To add information that can be used when transforming one
model to another model or to code (such as defining map-
ping rules between a model and Java code).

A UML Profile is defined as a UML package stereotyped
“profile”, that can extend either a metamodel or another Profile.
UML Profiles are defined in terms of three basic mechanisms:
stereotypes, constraints, and tagged values. 

Let’s take a look at an example to define and illustrate all
these concepts (see Figure 1). Suppose we want to add two new
elements to our UML models – say, weights and colours – and
we want to do so in a precise and consistent way. Furthermore,
we may want to incorporate some particular properties and
requirements of such elements, such as the actual colour of a
coloured element, the weight of a weighed element, and a
restriction that states that coloured associations can only be
defined between classes of the same colour as that of the asso-
ciation. For the sake of simplicity, we will assume here that
only classes and associations can be coloured, and that only
associations can   be weighed.

The WeightsAndColours profile defines these two elements:
(1) First, a stereotype is defined by a name and by the set of

metamodel elements it can be attached to. Graphically,

3

«stereotype»
Coloured

«profile»
WeightsAndColours

«metaclass»
Class

«metaclass»
Association

green

colour: Colour

«stereotype»
Weighed

«enumeration»
Colour

weight: Integer

yellow
red
blue

Figure 1: Example of UML Profile.
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stereotypes are defined within boxes, stereotyped «stereo-
type». In the example, the WeightsAndColours UML
Profile defines two stereotypes, Colored and Weighed, and
indicates that both UML classes and associations can be
coloured (i.e, stereotyped «Colored»), but only associa-
tions can have an associated weight (i.e, stereotyped
«Weighed»). Metamodel elements are indicated by classes
stereotyped «metaclass». The notation for an extension is
an arrow pointing from a stereotype to the extended class,
where the arrowhead is shown as a solid triangle. An
Extension may have the same adornments as an ordinary
association, but navigability arrows are never shown. 

(2) Constraints can be associated to stereotypes, imposing
restrictions on the corresponding metamodel elements. In
this way a designer can define the properties of a “well-
formed” model. For instance, the aforementioned restric-
tion on the colours of the classes joined by a coloured
association can be expressed by the following OCL [7]
constraint:

context UML::InfrastructureLibrary::Core::
Constructs::Association

inv : self.isStereotyped(“Coloured”) implies 
self.connection->forAll
(isStereotyped(“Coloured”) 
implies color=self.color)

Constraints can be expressed in any language, including
natural language or the OCL (Object Constraint Lan-
guage). OCL is a language, now part of UML, adopted by
the OMG for expressing constraints and properties of
model elements. Examples of constraints include pre- and
post-conditions of operations, invariants, derivation rules
for attributes and associations, the body of query opera-
tions, etc. The word “Constraint” in the name of the lan-
guage comes from its first version, where only constraints
could be expressed. New OCL 2.0 has evolved to a more
expressive and powerful query language, whose expres-
siveness is similar to that of SQL.

(3) Finally, a tagged value is an additional meta-attribute that
is attached to a metaclass of the metamodel extended by a
Profile. Tagged values have a name and a type, and are
associated to a specific stereotype. In the example, the
stereotype «Weighed» has an associated tagged value
named “weight”, of type Integer, that represents the actual
weight of the stereotyped association. Graphically, tagged
values are specified as attributes of the class that defines
the stereotype.

A UML Profile is a set of these extension mechanisms,
grouped into a UML package stereotyped «profile». As
mentioned earlier, note that these mechanisms allow the exten-
sion of the syntax and semantics of UML elements but must
respect their original semantics, i.e., UML Profile cannot
change the semantics of UML elements. However they can be
very useful when customisations of UML are required for
particular application domains.

Several UML Profiles currently exist and are available for
public use. Some of them have even been adopted and stand-
ardized by the OMG, such as the UML Profile for CORBA and

for CCM (CORBA Component Model), the UML Profile for
EDOC (Enterprise Distributed Object Computing), the UML
Profile for EAI (Enterprise Application Integration), and the
UML Profile for Scheduling, Performance, and Time. Some
other UML Profiles have already been defined, and are now in
the process of being approved by the OMG, so the number of
OMG Profiles is rapidly growing. One of the benefits of UML
Profiles is that they can be directly reused in any application, as
we shall see later.

Other UML Profiles have been defined by private organiza-
tions and software companies, and are currently being used in
many application domains (hence becoming de facto stand-
ards). This is the case, for instance, of the “UML/EJB Mapping
Specification”, a UML Profile for EJB applications that has
been defined by JCP (Java Community Process). UML Profiles
for programming languages such as Java or C# are also availa-
ble. 

Each of these profiles defines a precise way to use UML in a
particular context. For instance, the UML Profile for CORBA
defines a way in which UML can be used to model CORBA
interfaces and artefacts; and the UML Profile for Java defines a
way of modelling Java constructs and applications using UML.
Furthermore, such Profiles can be combined within the MDA
context to define a chain of model transformations: from a
model of the system independent from the implementation
platform, to the corresponding model of the system on a
CORBA platform; and then from the CORBA model to a
model of its implementation using Java (which “almost”
coincides with its implementation). 

Definition of UML Profiles
In this section we present some brief guidelines for the

definition and use of UML Profiles. The UML 2.0 specification
[8] merely defines the concept of Profile and the elements that
comprise a Profile definition. However, we consider that users
may also need some hints and recommendations to help them
define a UML Profile for a given platform or application
domain.

The steps that we propose for defining a UML Profile are the
following:
1. First of all, we need to define the set of elements that will

comprise our platform or system, and the relationships
between them, which can be expressed in terms of a meta-
model. If we do not have such a metamodel, we can easily
define it using the standard mechanisms offered by UML
(classes, hierarchy relationships, associations, etc.) in the
normal way, i.e., as if we did not intend to build a UML
Profile for it. In the metamodel we need to include the
definition of the domain entities, the relationships between
them, and the constraints that govern both the structure and
behaviour of these entities. 

2. Once we have our domain metamodel we are ready to
define the UML Profile. We will include a stereotype for
each relevant element of the metamodel that we want to
include in the Profile, inside the «profile» package. In order
to clarify the relationship between the metamodel and the
Profile, these stereotypes will be named after the corre-

4
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sponding elements of the metamodel. In fact any element
that we might need to define the metamodel can later be
tagged with a stereotype. 

3. Note that we will only represent with a stereotype the
elements of the UML metamodel we are extending. Exam-
ples of these elements are classes, associations, attributes,
operations, transitions, packages, etc. In this way, each
stereotype will be applied to the UML metaclass that we
have used in the domain metamodel for defining a concept
or a relationship. 

4. We should define the attributes that appear in the meta-
model as tagged values, and include the corresponding
types and initial values.

5. Profile constraints are taken from the domain restrictions.
For example, the association multiplicities that appear in
the domain metamodel or the business rules of the applica-
tion are used to define the corresponding OCL constraints. 

Let us illustrate the use of these guidelines with another
example. Suppose we need to model the connections between
the elements of an information system with a star topology, in
which nodes connect to central nodes which can then be
connected between each other. In such a domain we would
define nodes (represented by class Node) connected by links
that can be local nodes (LocalEdge) if they connect nodes from
the same star with its central node, or remote nodes (Main-
Node) if they connect central nodes between each other. Each
node is identified by its position (location). We impose the
constraint that every node of the same star must share the same
geographic location. In Figure 2 the metamodel describing this
application domain is depicted.

As part of this metamodel, we also need to specify the set of
constraints that govern its structure – i.e., its “well-formed-
ness” rules. In this case, these constraints can be described in
OCL as follows:
context MyTopology::MainNode
inv:self.localnodes ->forAll (n : Node | 

n.location = self.location)
inv:self.target ->forAll (n : MainNode | 

n.location <> self.location)

The UML Profile that represents this metamodel will be
described as a UML package, with the stereotype «profile» (see
Figure 3.)

This Profile defines four different stereotypes that corre-
spond to the classes and associations defined in the original
metamodel, as well as the UML metaclasses to which these
stereotypes can be applied. These metaclasses are part of the
metamodel to be extended, in this case the UML metamodel. 

The stereotype Node also has a tagged value (location) of
type String. 

In addition to stereotypes and tagged values, we need to spec-
ify the constraints of the Profile. Coming back to our example,
the restrictions of the metamodel result in the following
constraint specification.
context UML::InfrastructureLibrary::Core::

Constructs::Class
inv : – Nodes should be locally 

connected to exactly one MainNode
self.isStereotyped(“Node”) 
implies 

self.connection->select
(isStereotyped(“LocalEdge”))-> 
size = 1 and
self.connection->select
(isStereotyped(“Edge”))-> isEmpty

context UML::Infrastructure
Library::Core::Constructs::
Association

inv : self.isStereotyped(“LocalEdge”) 
implies 

self.connection->select 
(participant.isStereotyped 
(“Node”) or 
participant.isStereotyped
(“MainNode”) ) ->

forAll(n1, n2 | n1.location = 
n2.location) 

«metamodel»
MyTopology

Node

MainNode

LocalEdge

Edge

location: String

+localnodes
*

+target
*

*

1

+source

Figure 2: Metamodel Describing an Application Domain.

«metaclass»
Association

«profile»
TopologyProfile

«metaclass»
Class

«stereotype»
Node

location: String

«stereotype»
MainNode

«stereotype»
Edge

«stereotype»
LocalEdge

Figure 3: UML Profile Described as a UML Package.
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inv : self.isStereotyped(“LocalEdge”) 
implies 
self.connection-> exists
(participant.isStereotyped 
(“MainNode”) and 
multiplicity.min=1 and 
multiplicity.max=1)

inv : self.isStereotyped(“Edge”) 
implies 
self.connection->select(participant.
isStereotyped(“Node”))->isEmpty and 
self.connection->select 
(participant.isStereotyped
(“MainNode”) ) ->

forAll(n1, n2 | n1.location <> 
n2.location) 

Note that the constraint contexts are the UML elements that
we are customizing for our particular model. Customisation is
therefore achieved by adding semantic constraints to them. One
of the most important advantages of using UML Profiles is that
these constraints can be checked in the final system model for
conformity with a given Profile. This means that UML Profiles
always describe a “well-formed” model for an application
domain, and ensures that a given model will always comply
with the syntactic or semantic constraints defined by whichever
UML Profile is used.

Once we have defined a UML Profile, we use a dependency
relationship (stereotyped as «apply») to show we are using this
Profile in a specific application. For example, the diagram in
Figure 4 shows an application that makes use of the UML Pro-
files we have defined before.

This application can therefore describe diagrams like the fol-
lowing one which shows two classes linked by an association.
Both classes are stereotyped as nodes of a star topology. One of
them is also a central node. Notice how we specify the value of
tagged values associated to stereotyped elements, by including
notes that show the corresponding stereotype, the name of the
tagged value, and the value assigned to it.

We can also show tagged values related to different stereo-
types in the same UML note as the entity CentralOffice illus-
trates in Figure 5.

MDA and UML Profiles
MDA (Model Driven Architecture) is a recent initiative

from the OMG that supports the definition of models as first
class elements for the design and implementation of systems.
According to the MDA approach, the most important activities

are now modelling the different aspects of a system and then
defining transformations from one model to another one in a
way that allows them to be automated. We will therefore focus
on model definition, leaving implementation details until the
end, which makes these models more portable, more adaptable
to new technologies (e.g. .NET, J2EE or Web Services) and
more interoperable with other systems regardless of the tech-
nology they use.

MDA defines three conceptual levels. At the first level,
system requirements are modelled in a Computation Independ-
ent Model (CIM) that defines the system within an operating
environment. At the next level we find the Platform Independ-
ent Model (PIM). A PIM describes the system functionality, but
without considering details about where and how this system is
going to be implemented (e.g. a PIM can be independent from
system distribution and the supporting object platform, such as
CORBA, J2EE, .NET, etc.). The aim is then to transform a PIM
into a target platform dependent model known as a PSM (Plat-
form Specific Model). In this way we obtain a high degree of
independency between the description of functionality and the
implementation details of the target platform.

The most important advantage of this approach is that it
allows software engineers to define automatic transformations
from PIMs to PSMs. By inputting the system PIM, a descrip-
tion of the PSM to be used to implement the system, and a set
of transformation rules, we will be able to implement a system
in the most automated way possible.

UML Profiles can play a particularly important role in
describing the platform model and the transformation rules
between models. If we use UML Profiles to specify the model
of a specific platform, this will guarantee that the derived
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«profile»
TopologyProfile

«profile»
WeightAndColours

MyApplication

«apply»
«apply»

Figure 4: Application Making Use of UML Profiles.

«Node»
location=”uma.es”

«Weighed»
weight=10

«Coloured»
colour=red

«MainNode»
location=”uma.es”

CentralOffice

«Node» «MainMode, Coloured»

«LocalEdge, Weighed»

1..10 1

Branch

Figure 5: Tagged Values Related to Different stereotypes in the Same UML Note.
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models will be consistent with UML. In fact, the key to a
successful application of MDA is to use standards whenever
possible (standard models and standard UML Profiles for
implementation languages or platforms). As we mentioned
earlier, UML Profiles for some well known component
platforms are currently available, such as CORBA, CCM, EJB,
etc.

The mechanisms provided by UML Profiles are very well
suited to describing models for any implementation platform.
We need to define the mapping between each element of the
PIM, and the stereotypes, constraints and tagged values that
make up the platform Profile. 

The idea is to use the stereotypes of a platform Profile to
“mark” the elements of a PIM and produce the corresponding
PSM, already expressed in terms of the elements appearing in
the target platform. A mark represents a concept in the PSM,
and is applied to an element of the PIM to indicate how it must
be transformed into the target PSM. Marks can also be used to
specify quality of service or any extra functional requirements
applicable to the final implementation. For example, some
elements of the PIM could be marked as persistent or under
special security conditions.

The set of marks and the transformation rules governing the
use of marks must be specified in a structured way and normal-
ly they are provided as part of the UML Profile of the target
platform. If the UML Profile of a platform includes the specifi-
cation of operations, then the transformation rules may be spec-
ified using operations.

Coming back to our example, according to MDA principles
our system MyApplication, which so far has no details about
the target implementation platform, should now be transformed
into one of the available platforms. In this particular case,
shown in Figure 6, we are going to transform this system
according to the UML Profile for EJB [9]. To do this, we need
to decide for each entity of our model whether it is going to be
transformed into a Bean or into a simple Java class. For exam-

ple we may specify that classes stereotyped as «Node» will be
Java classes, but those stereotyped as «MainNode» will be
transformed into a «EJBEntityBean» component. According to
the UML Profile of the EJB model we must include the defini-
tion of the «EJBRemoteInterface», the «EJBEntityHomeInter-
face» and the «EJBImplementation» classes within the
«EJBEntityBean» component. On the other hand, our applica-
tion requires that the attributes of this component must be made
persistent using the EJB container model. This can be done
simply by marking the attributes that we want to make persist-
ent, in this case the location attribute, with the «EJBCmpField»
stereotype, by binding the value Container to the EJBPersisten-
ceType tag indicating that the persistence property will be man-
aged by the EJB container.

Conclusions
In this paper we have presented UML Profiles as a very

suitable way to extend UML in order to customize it for specif-
ic platforms and application domains. We have also illustrated
the importance of UML Profiles in the development of Model
Driven Applications (MDA) which place system modelling,
not coding, at the cornerstone of system development. The role
of UML Profiles is crucial in MDA model definition and trans-
formation.

UML 1.5 is currently the version which is standardized and
supported by commercial tools. However, the new UML
version 2.0 is already defined and in the process of being
approved as an OMG standard. This new version is far more
complete than the previous one, offering a great many advan-
tages and successfully addressing many of the limitations of
version 1.5. For example, this new version has a better meta-
model structure, a more precise semantic definition of many of
the UML concepts, better alignment with the MOF metamodel
and with the rest of the OMG family of languages, extensions
to manage software architectures and diagram exchange, etc. 

Current tools allow the definition and usage of UML Profiles,
but only at a diagrammatic level, i.e., only graphically. This
means that verification of constraints associated to stereotypes
is not yet supported, and therefore well-formed rules can be
neither checked nor enforced. The user can therefore never be
sure whether or not the system being specified using a given
Profile is conformant with Profile rules. It will still be some
time before new tools appear that will support the definition of
UML 2.0 Profiles, manage the definition of new stereotypes
and tags properly and allow constraints defined by the Profiles
to be checked. Once such tools are available UML Profiles will
be recognised as good practice for systems specification and
implementation.
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