
Formalizing ODP Computational Viewpoint Specifications in Maude

Rául Romero and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Ḿalaga, Spain
{jrromero,av}@lcc.uma.es

Abstract

The ODP computational viewpoint describes the func-
tionality of a system and its environment, in terms of a con-
figuration of objects which interact at interfaces. Compu-
tational objects provide a functional decomposition of the
system, independently of its distribution. Although several
notations have been proposed to model this ODP viewpoint,
either they are not expressive enough to faithfully represent
all its concepts, or they tend to suffer from a lack of formal
support. In this paper we explore the use of Maude as a
formal notation for writing ODP computational viewpoint
specifications. Maude is an executable rewriting logic lan-
guage specially well suited for the specification of object-
oriented open and distributed systems. We show how Maude
offers a simple, natural, and accurate way of modelling the
ODP computational viewpoint concepts, allows the execu-
tion of the specifications produced, and offers good tool
support for reasoning about them.

1. Introduction

One of the common ways of dealing with the inher-
ent complexity of specifying distributed systems is by di-
viding the design activity into a number of areas of con-
cern, each one dealing with a specific aspect of the sys-
tem. Current software architectural practices define several
distinct viewpoints of systems in order to accomplish such
specification decomposition. Examples include the view-
points described in IEEE Std. 1471 [16], the “4+1” view
model [18], the Zachman’s framework [28], or the ODP
Reference Model [17]. In particular, we are interested in
the Reference Model of Open Distributed Processing (RM-
ODP) framework, which provides five generic and comple-
mentary viewpoints on the system and its environment:en-
terprise, information, computational, engineeringandtech-
nologyviewpoints. They enable different abstraction view-
points, allowing participants to observe a system from dif-
ferent suitable perspectives [19].

Thecomputationalviewpoint describes the functionality
of the ODP system and its environment through the decom-
position of the system, in distribution transparent terms, into
objects which interact at interfaces. In the computational
viewpoint, applications and ODP functions consist of con-
figurations of interacting computational objects.

Although the ODP reference model provides abstract
languages for the relevant concepts, it does not prescribe
particular techniques to be used in the individual view-
points. The viewpoint languages defined in the reference
model are abstract languages in the sense that they define
what concepts should be supported, not how they should
be represented. Several notations have been proposed for
the different viewpoints by different authors, which seem to
agree on the need to represent the semantics of the ODP
viewpoints concepts in a precise manner [3, 4, 17, 19].
For example, formal description techniques such as Z and
Object-Z have been proposed for the information and enter-
prise viewpoints [27], and LOTOS, SDL or Z for the com-
putational viewpoint [17, 26].

In this paper we explore a new alternative for specify-
ing the computational viewpoint. We propose Maude [5],
an executable rewriting logic language specially well suited
for the specification of object-oriented open and distributed
systems. We have already used Maude for modelling the
ODP enterprise viewpoint [10], and the information view-
point [9]. Here we shall show how rewriting logic and its
underlying membership equational logic [22], and in partic-
ular Maude, provide the expressiveness required for mod-
elling ODP computational viewpoint specifications.

The use of Maude provides additional advantages. The
fact that rewriting logic specifications are executable, al-
lows us to apply a flexible range of increasingly stronger
formal analysis methods and tools, such as run-time verifi-
cation [14], model checking [11], or theorem proving [7].
Maude offers a comprehensive toolkit for automating such
kinds of formal analysis of specifications.

The structure of this document is as follows. First, Sec-
tions 2 and 3 serve as a brief introduction to the ODP com-
putational viewpoint and Maude, respectively. Then, Sec-

tion 4 presents our proposal, describing how to write com-
putational specifications in Maude. Section 5 is dedicated to
a case study that illustrates our approach. Section 6 relates
our work to other similar proposals and, finally, Section 7
draws some conclusions and outlines some future research
activities.

2. The Computational Viewpoint

The computational viewpoint is directly concerned with
the distribution of processing but not with the interaction
mechanisms that enable distribution to occur. The computa-
tional specification decomposes the system into objects per-
forming individual functions and interacting at well-defined
interfaces.

The heart of the computational language is the object
model which defines the form of interface an object can
have; the way that interfaces can be bound and the forms
of interaction which can take place at them; the actions an
object can perform, in particular the creation of new objects
and interfaces; and the establishment of bindings.

The computational object model provides the basis
for ensuring consistency with engineering and technology
specifications (including programming languages and com-
munication mechanisms) thus allowing open interworking
and portability of components in the resulting implementa-
tion. The computational language also enables the specifier
to express constraints on the distribution of an application
(in terms of environment contracts associated with individ-
ual interfaces and interface bindings of computational ob-
jects) without specifying the actual degree of distribution in
the computational specification.

2.1. Computational language concepts

In the ODP Reference Model, the computational lan-
guage uses a basic set of concepts and structuring rules,
including those from ITU-T Recommendation X.902,
ISO/IEC 10746-2, and several concepts specific to the com-
putational viewpoint, which are shown in Figures 1 and 2.

Objects and interfaces. ODP systems are modelled in
terms ofobjects. An object contains information and of-
fers services. A system is composed as a configuration of
interacting objects. In the computational viewpoint we talk
aboutcomputational objects, which model the entities de-
fined in an computational specification. Computational ob-
jects are abstractions of entities that occur in the real world,
in the ODP system, or in other viewpoints [17].

Computational objects havestateand can interact with
their environment atinterfaces. An interface is an abstrac-
tion of the behaviour of an object that consists of a subset

Figure 1. Computational objects and actions

of the interactions of that object together with a set of con-
straints on when they may occur.

Objects are units of abstraction: object interfaces and in-
teractions provide abstract views of the state of an object,
hiding details of its implementation. Objects are units of
encapsulation: the state of an object can only be accessed
and modified by the environment through interactions (see
Fig. 1). In ODP, an object may have multiple interfaces.

Binding objectsare computational objects which sup-
port a binding between a set of other computational objects.
They help compose (synchronize) two or more interfaces,
e.g., a binding object may be responsible for ensuring that
a certain level of quality of service is maintained between
interacting objects.

Interactions. RM-ODP prescribes three particular types
of interactions: signals, operations, and flows. A signal
may be regarded as a single, atomic action between com-
putational objects. Signals constitute the most basic unit of
interaction in the computational viewpoint. Operations are
used to model object interactions as represented by most
message passing object models, and come in two flavors:
interrogationsand announcements. An interrogation is a
two-way interaction between two objects: the client object
invokes the operation (invocation) on one of the server ob-
ject interfaces; after processing the request, the server ob-
ject returns some result to the client object, in the form of
a termination. An announcement is a one-way interaction
between a client object and a server object. In contrast to an
interrogation, after invocation of an announcement opera-
tion on one of its interfaces, the server object does not return
a termination. Terminations model every possible outcome
of an operation.

Operations can be defined in terms of signals. Every in-
vocation is then defined by two signals, one outgoing from
the client (theinvocation submit), and the corresponding
signal that reaches the server (theinvocation deliver). Like-
wise, terminations are modelled by other two signals, the
one that is sent by the server (thetermination submit), and

Figure 2. Computational viewpoint concepts

the one that finally reaches the client (thetermination de-
liver).

Flows model streams of information, i.e., a flow repre-
sents an abstraction of a sequence of interactions from a
producer to a consumer, whose exact semantics depends on
the specific application domain. In the ODP computational
viewpoint, flows are also expressed in terms of signals [17].

Computational templates. Computational objects and
interfaces can be specified by templates. In ODP, atemplate
is the specification of the common features of a collection
of Xs in sufficient detail that anX can be instantiated using
it. Thus, an interface of a computational object is usually
specified by acomputational interface template, which is an
interface template for either a signal interface, a stream in-
terface or an operation interface. A computational interface
template comprises a signal, stream or operationinterface
signatureas appropriate; abehaviourspecification; and an
environment contractspecification.

An interface signatureconsists of a name, a causality
role (producer, consumer, etc.), and set of signal signa-
tures, operation signatures, or flow signatures as appropri-
ate. Each of these signatures specify the name of the inter-
action and its parameters (names and types).

Environment contracts. Computational object templates
may have environment contracts associated with them.
These environment contracts may be regarded as agree-
ments on behaviors between the object’s interfaces and its
environment. They may specify quality of service con-
straints, usage and management constraints, etc.

2.2. Structure of ODP computational specifications

A computational specification describes the functional
decomposition of an ODP system, in distribution transpar-
ent terms, as:(a) a configuration of computational objects
(including binding objects);(b) the internal actions of those
objects;(c) the interactions that occur among those objects;
(d) environment contracts for those objects and their inter-
faces.

A computational specification is constrained by the rules
of the computational language. These comprise:(a) inter-
action rules,binding rules andtyperules that provide dis-
tribution transparent interworking;(b) templaterules that
apply to all computational objects;(c) failure rules that ap-
ply to all computational objects and identify the potential
points of failure in computational activities.

A computational specification defines as well an ini-
tial set of computational objects and their behaviour. The
configuration will change as the computational objects in-
stantiate further computational objects or computational in-
terfaces; perform binding actions; effect control functions

upon binding objects; delete computational interfaces; or
delete computational objects.

3. Rewriting Logic and Maude

Maude [5, 6] is a high-level language and a high-
performance interpreter and compiler in the OBJ [13] alge-
braic specification family that supports membership equa-
tional logic and rewriting logic specification and program-
ming of systems. Thus, Maude integrates an equational
style of functional programming with rewriting logic com-
putation.

Rewriting logic [21] is a logic of change that can natu-
rally deal with state and with highly nondeterministic con-
current computations. In rewriting logic, the state space of
a distributed system is specified as an algebraic data type
in terms of an equational specification(Σ, E), whereΣ is a
signature of sorts (types) and operations, andE is a set of
(conditional) equational axioms. The dynamics of a system
in rewriting logic is then specified by rewriterules of the
form t → t′, wheret andt′ areΣ-terms. These rules de-
scribe the local, concurrent transitions possible in the sys-
tem, i.e. when a part of the system state fits the patternt
then it can change to a new local state fitting patternt′. The
guards of conditional rules act as blocking pre-conditions,
in the sense that a conditional rule can only be fired if the
condition is satisfied.

In Maude, object-oriented systems are specified by
object-oriented modules in which classes and subclasses
are declared. A class is declared with the syntax
class C | a1: S1, ..., an: Sn, where C is the
name of the class,ai are attribute identifiers, andSi

are the sorts of the corresponding attributes. Objects
of a classC are then record-like structures of the form
< O : C | a1: v1, ..., an: vn >, whereO is the name of
the object, andvi are the current values of its attributes. Ob-
jects can interact in a number of different ways, including
message passing. Messages are declared in Maude inmsg
clauses, in which the syntax and arguments of the messages
are defined.

In a concurrent object-oriented system, the concurrent
state, which is called aconfiguration, has the structure of a
multiset made up of objects and messages that evolves by
concurrent rewriting using rules that describe the effects of
the communication events of objects and messages. The
general form of such rewrite rules is

crl [r] :
M1 . . . Mm < O1 : C1|atts1 > . . . < On : Cn|attsn >
=> < Oi1 : C ′i1 |atts′i1 > . . . < Oik

: C ′ik
|atts′ik

>
< Q1 : C ′′1 |atts′′1 > . . . < Qp : C ′′p |atts′′p >
M ′

1 . . . M ′
q

if Cond .

wherer is the rule label,M1...Mm andM ′
1...M

′
q are mes-

sages,O1...On andQ1...Qp are object identifiers,C1...Cn,
C ′i1 ...C

′
ik

and C ′′1 ...C ′′p are classes,i1...ik is a subset of
1...n, andCond is a Boolean condition (the rule’sguard).
The result of applying such a rule is that:(a) messages
M1...Mm disappear, i.e., they are consumed;(b) the state,
and possibly the classes of objectsOi1 ...Oik

may change;
(c) all the other objectsOj vanish;(d) new objectsQ1...Qp

are created; and(e) new messagesM ′
1...M

′
q are created,

i.e., they are sent. Rule labels and guards are optional.
For instance, the following Maude definitions specify a

classAccount with an attributebalance of sort integer,
a messagewithdraw with an object identifier and an inte-
ger as arguments, and two rules describing the behavior of
the objects belonging to this class. The ruledebit speci-
fies a local transition of the system when there is an object
A of classAccount that receives awithdraw message
with an amount smaller or equal than the balance ofA; as
a result of such a rule, the message is consumed, and the
balance of the account is modified. The ruletransfer
models the effect of receiving a money transfer message.

class Account | balance : Int .
msg withdraw : Oid Int -> Msg .
msg transfer : Oid Oid Int -> Msg .
crl [debit] :

withdraw(A, M)
< A : Account | balance : Bal >
=> < A : Account | balance : Bal - M >
if M <= Bal .

crl [transfer] :
transfer(A, B, M)
< A : Account | balance : Bal >
< B : Account | balance : Bal’ >
=> < A : Account | balance : Bal - M >

< B : Account | balance : Bal’ + M >
if M <= Bal .

When several objects or messages appear in the left-hand
side of a rule, they need to synchronize in order for such a
rule to be fired. These rules are calledsynchronous, while
rules involving just one object and one message in their left-
hand sides are calledasynchronousrules.

Maude distinguishes two kinds of inheritance, namely
class inheritanceandmodule inheritance. Class inheritance
is directly supported by Maude’s order-sorted type struc-
ture. A subclass declarationC < C’ , indicating thatC
is a subclass ofC’ , is a particular case of a subsort dec-
laration C < C’ , by which all attributes, messages, and
rules of the superclasses, as well as the newly defined at-
tributes, messages and rules of the subclass characterize its
structure and behavior. ODP’s notion of subtyping—A is
a subtype of B if every<X> that satisfies A also satisfies
B—corresponds to Maude’s class inheritance. On the other
hand, the ODP’s notion of inheritance, that allows the sup-
pression and modification of the attributes and methods of

the base class [17, 2-9.21] corresponds to Maude’s module
inheritance. Throughout the paper, by inheritance we will
mean Maude’s notion ofclassinheritance, i.e. ODP’s sub-
typing. Multiple inheritance is supported in Maude [5].

4. Writing Computational Specifications in
Maude

This Section describes how the computational language
concepts can be represented in Maude.

4.1. Modelling objects and interfaces

Basically, as described in [17, Part 3], applications and
ODP functions consist of configurations of computational
objects interacting at their interfaces.

Computational object templateswill be represented by
Maude classes. In Maude, each class is defined by a name
and a set of attributes (of certainsort) that describe the
state of the objects of the class.

Computational objectswill then be represented by
Maude objects. In Maude, each object belongs to a class—
although it may change during the object’s lifetime—, that
in our model corresponds to the computational object tem-
plate specifying the object. All computational object tem-
plates will inherit from classCV-Object , which describes
the common features that any computational object ex-
hibits:

class CV-Object | conf : Configuration .

Predefined sortConfiguration allows to store con-
figurations of Maude objects and messages. Attributeconf
will store the set of Maude objects representing the inter-
faces of the computational object. In addition, this attribute
may contain the Maude messages that represent the object’s
internal actions, which do not go through the object inter-
faces.

One of the benefits of Maude configurations is that they
allow to capture not only the individual state of each object,
but also the collective state of the whole system. Thus, at a
more global level, Maude configurations of objects of class
CV-Object will naturally represent the ODPconfigura-
tionsof computational objects.

Binding objects, as computational objects, will be repre-
sented by Maude objects. They will adhere to the particu-
lar provisions binding objects should be subject to, as de-
scribed in [17, 3-7.3.2], and may include control interfaces,
too. Such control interfaces will be represented in Maude
using the normal modeling mechanisms described here for
representing interfaces.

Signalswill be represented by Maude messages. Each
Maude message has a name and a set of parameters of some

sorts, as specified in its message declaration (msg). Thus,
Maude message declaration will represent signal signatures,
while message instances will represent concrete signals.
Maude messages will be named after the signal they repre-
sent. The identifiers of the objects and interfaces involved in
the signal will be added by the computational infrastructure
to the envelop of the message that transports such signal.

Operationscan be expressed in ODP in terms of signals,
and therefore they will be represented in Maude by the mes-
sages that represent such signals. In ODP,flowscan also
be modeled by signals, and therefore will usually be repre-
sented by Maude messages.

Interfaceswill be modeled as Maude objects. The class
to which any interface belongs will inherit from a general
Maude classCV-Interface , which represents a generic
interface template:

class CV-Interface |
interfaceType : InterfaceType,
objectRole : Causality,
uniqueId : Oid,
bind : Oid,
input : Configuration,
output : Configuration .

The attributes of this class store the following informa-
tion: the type of the interface (stream, operation or sig-
nal); the kind of role played by the object that owns the
interface (producer, consumer, etc.); the interface identifier
(which is unique for the interface in that computational ob-
ject); the reference to a binding object, if a binding is es-
tablished (otherwise this attribute evaluates tonil); and
two attributes (input andoutput) that represent the sets
of incoming and outgoing messages not yet consumed or
delivered, respectively. Both configurations will be auto-
matically handled by the Maude infrastructure that we have
developed to implement all interaction mechanisms defined
by the computational viewpoint. Predefined sortsOid and
Cid are used to represent object identifiers and class iden-
tifiers, respectively.

To support the computational specifications of systems,
we have developed a “Computational Infrastructure” that
provides a set of common functions that supports the basic
structuring rules of the ODP computational viewpoint de-
scribed in [17, 3-7.2]. This basic functions will allow every
computational object to send or respond to signals, instan-
tiate interface templates, bind interfaces, instantiate object
templates, etc.

The Computational Infrastructure accepts a set of Maude
messages that can be sent by any Maude object represent-
ing a computational object. In particular, it accepts two
messages for sending and receiving signals:send(IF,
SIGNAL) and receive(O’, IF’, IF, SIGNAL) ,
whereIF is the local interface;O’ andIF’ are the remote

computational object identifier and interface; andSIGNAL
is the Maude message representing the signal.

Messagesbind(IF, IF’) andunbind(IF) allow
explicit binding, whereIF represents the identifier of the
initiating interface andIF’ represents the remote interface
identifier. Multi-party binding is also allowed. Compound
binding is modelled in terms of primitive bindings.

In order to obtain the appropriate interface identifier of a
remote computational objectO, messageslookup(UID,
IFClass, O) and lookupResponse(UID,
IFClass, O, IF) can be used. In them,UID is
the identifier of the required interface,IFClass is the
Class identifier (Cid) of that interface, andIF is the
interface identifier obtained.

Other basic functions supported by the Computational
Infrastructure include the instantiation of interface tem-
plates (instantiateInterface(...)) and com-
putational objects (instantiateObject(...)), etc.
The way in which these messages are internally handled
by the Infrastructure is transparent to the software engineer
specifying the computational viewpoint of a system.

4.2. Modelling Behaviour

The behaviour associated to interactions (signals, opera-
tions or flows) is specified in terms of Maude rules, which
provide a powerful mechanism for modeling when these ac-
tions occur, and the effects of such actions. More precisely,
the left- and right-hand sides of a Maude rule will represent,
respectively, the configuration of objects and messages be-
fore and after the state change of the system. Rules allow to
describe the state changes of all the computational objects
participating in a given action. Each Maude rule may also
contain a guard, which specifies some constraints on when
the interaction may occur, hence allowing the implementa-
tion of many of the environment contract constraints.

4.3. Modelling Environment Contracts

Environment contracts specify constraints on the interac-
tions between interfaces and their environments. As stated
in [24], “an environment contract specifies at the same time
expectationsfrom an object on its environment, and guaran-
tees orobligationsthat the object will fulfil in return”. Ex-
isting proposals (e.g., [12]) for expressing contracts use pre-
and post-conditions, with logical predicates usually writ-
ten in propositional or linear temporal logics. Maude has
very good properties as a logical and semantic framework
in which many different languages, logics, and models of
computation can be expressed, and in particular, for ex-
pressing propositional and temporal logic predicates [20].

The way to deal with environment contract constraints
(hereinafter, ECC) will depend on whether they are expecta-

tions or obligations. Expectations depend on the behaviour
of the environment, which is usually out of our control.
Therefore, one way to deal with them is by introducing the
appropriate rules for allowing the observation of the pos-
sible violations of such constraints. Thosewatchdogrules
will determine the appropriate corrective (penalty or incen-
tive) actions (e.g., raising failures).

Obligations impose constraints on the actions that the
system is forced to undertake as part of its intended behav-
ior. Obligations can be expressed in Maude in two different
ways. First, they can be expressed as part of the rules that
specify the behaviour of the interactions of the objects, us-
ing the rules’ pre-conditions and guards for restricting be-
havior that does not fulfill such obligations. In addition,
obligations can be separately expressed and then used at the
metalevel to constrain the system execution. Maude’s re-
flective capabilities provide very powerful and flexible ways
for expressing ECCs at the metalevel, and for controlling
the execution of the Maude specifications using them—so
invalid states are never reached, or to enforce particular exe-
cutions under some circumstances. Different built-in strate-
gies for executing specifications are available in Maude, and
also facilities for defining our own rewriting strategies are
available [5], thus guiding the rewrites depending on our
specific needs. The detailed process for expressing con-
straints and invariants on the system and for defining ex-
ecution strategies based on them is outside the scope of this
paper, and has been reported in [8].

4.4. Reasoning about the Maude specifications

Once the system specifications are written using this
modelling approach, what we get is a rewrite logic speci-
fication of the system, which can be used for formally rea-
soning about it. The fact that rewriting logic specifications
are executable, will allow us to apply a flexible range of
increasingly stronger formal analysis methods, such as run-
time verification [15], model checking [11], narrowing anal-
ysis, or theorem proving [5]. Each method has its own com-
plexity, and allows different kinds of analyses.

One interesting example of such methods and tools is the
inference of properties, verifying that certain proposition
holds for the system, i.e., that it can be formally deduced
from the axioms defined in the Maude specification. This
verification process may be achieved in different ways—
and using different techniques and tools—depending on the
logic in which the invariant predicates are expressed and
the logic supporting the specification notation used. Notice
that these two logics may not coincide; they do not coincide
in fact in most cases: we may be interested, for example,
in verifying whether a certain specification written in mem-
bership equational logic satisfies a given property expressed
in some temporal logic.

In the case of executable specifications of systems, we
can also use a dynamic approach to verify a given specifi-
cation against a given proposition, by checking that the ex-
ecution traces of the specification satisfy such a condition.
Then, we talk aboutmodel checking, if we study and check
all the possible system execution traces, or aboutmonitor-
ing, if we just consider the actual execution trace of the sys-
tem, checking that the condition always holds for such a
trace. As previously mentioned, such conditions can be ex-
pressed in different logics. We have already experimented
with predicates expressed in propositional logic and linear
temporal logic [8]. The temporal logic we have considered
is the same that Maude uses in its model checker [11], and
the approach used to deal with temporal logic is similar to
the one proposed by Havelund and Roşu in [15] for moni-
toring Java programs.

Another interesting alternative is the “connection” of the
formal specification of a system written in Maude with its
CORBA or Web-based distributed implementation. Even if
a system has been formally specified, and its specification
validated for correctness, it is usually very hard to prove that
a given implementation of a system conforms to its speci-
fication, and that the properties proved for the specification
still remain at the implementation level. Probably, the main
reason is because specifications and implementations live
in separateworlds. Reference [2] reports about the way
in which Maude objects can be transparently replaced by
their CORBA or WSDL implementations, so that objects in
both worlds coexist, while still being able to reason about
the system. In addition to the usual advantages provided
by the use of formal specifications, by allowing objects in
any of these worlds (specification and implementation) to
seamlessly interoperate we can obtain several interesting
advantages, such as building prototypes in which specifica-
tions and final implementations are combined, directly us-
ing Maude specifications for testing component implemen-
tations, and checking the specification of a new component
against a running system, without having to fully implement
the new component.

5. An Example

In order to illustrate our proposal, we will specify a sim-
ple example in Maude. It is a multimedia system composed
of listenersthat want to receiveaudio frames(e.g., listen to
a radio program) from a givenaudio streamer(e.g., a radio
station or some kind of audio emitter). Apart from these two
objects,binding objectsare in charge of the actual transmis-
sion of the audio frames to all listeners attached to a given
channel, and aservice managerobject controls the selec-
tion of channels by the listener and the configuration of the
corresponding binding objects (see Figure 3). For brevity
we will concentrate here on the basic system functionality,

omitting many other details that a real system may exhibit.
As mentioned in previous sections, one relevant

aspect of a computational viewpoint specification is
the decomposition of the system into a configura-
tion of computational objects that interact at inter-
faces. In our example, aListener computational
object will ask theServiceManager for joining the
BindingObject that distribute theAudioFrames
from AudioStreamer serving the selected channel. Au-
dio frame distribution is performed by means of flows.

The objects of the system interact at several interfaces.
Operation interfaceIAudioChannel defines an opera-
tion selectAudioStreamer (not show in the diagram)
that allows listeners to register for a particular audio chan-
nel so they can start receiving audio frames from the cor-
responding binding object. This interrogation may have
two terminations:selectAudioStreamerResponse
and selectAudioStreamerFailure , depending on
the success or failure of the registration process. Control
interface,IControl , is used by service managers to ask
binding objects to create a new stream source and to include
the listener in the list of objects they send audio frames to
(using the interrogationnewStreamPort). Control inter-
faces are modeled as normal operation interfaces.

Operation interface IRegistry allows the
AudioStreamer to register the control interface of its
binding object in the interactingServiceManager .
This process is carried out by the interrogation
addAudioStreamer , which is followed by two possible
terminations: addAudioStreamerResponseOK
(the service manager accepts the registration) and
addAudioStreamerToManyStreamersFailure
(if the maximum number of streamers connected to the
service manager has been reached). Another operation
interface is defined,IBinding , which provides the
announcementregisterBOInterfaces , that allows
the binding object to specify its main interfaces to the
AudioStreamer that instantiated it.

Finally, stream interfaceIAudioStream is used to
transfer audio frames between audio sources and the bind-
ing objects, and then from the binding objects to their sub-
scribed listeners, multicasting the frames received from the
audio sources to them.

Figure 3 shows and informal diagram with the main ob-
jects and interfaces of the system.

5.1. Formalizing objects and interfaces

Once we have identified the elements of the system, we
are ready to translate them into Maude. Our Maude specifi-
cations will be divided into three main parts: computational
templates, behaviour specifications and an initial configura-
tion.

Figure 3. Example of a simple audio server
system

The following Maude classes represent the computa-
tional object templates that specify the objects in the sys-
tem. All these classes are subclasses ofCV-Object .

class Listener |
channelSelected : Qid,
channelStreamer : Oid,
manager : Oid .

class ServiceMgr |
maxStreamers : Int,
streams : PFun(Qid | Oid) .

class AudioStreamer |
streamConsumerIF : Oid,
name : Qid,
serviceManager : Oid,
nextFrame : AudioFrame .

class BindingObject |
consumers : Set(Oid) .

ClassListener contains three attributes: the name of
the audio channel selected, the interface identifier of the
stream producer instance in the binding object, and the ob-
ject identifier of the service manager that serves the listener.

Class ServiceMgr contains information
about the maximum number of streamers allowed
(maxStreamers) and a partial functionstreams that
provides the control interface associated to a given channel
name.

ClassAudioStreamer has four attributes: the con-
sumer interface identifier in the binding object, the channel
name, the identifier of the service manager in which the au-
dio streamer is registered, and the nextAudioFrame to be
transmitted.

Finally, classBindingObject has only one attribute,
consumers , that stores the set of current listeners.

Computational interface templates are specified in
Maude modules. Each module contains the classes repre-
senting the interface and the Maude messages representing
its associated interactions. The interfaces of our example
do not have attributes, apart from those they inherit from
the base classCV-Interface .

(omod IAUDIOCHANNEL-SPEC is
pr CV-INTERFACE .

class IAudioChannel .
subclass IAudioChannel < CV-Interface .
msg selectAudioStreamer : Qid -> Msg .
msg selectAudioStreamerResponse :

Qid Oid -> Msg .
msg selectAudioStreamerFailure :

Qid -> Msg .
endom)

The rest of the interface templates are defined analo-
gously.

5.2. Formalizing behaviour

As mentioned in Section 2.2, an ODP computational
specification should also define the behaviour for each com-
putational object, specify how interactions are achieved,
and how the system evolves as result of the interactions.
In Maude, this is specified in terms of rules.

As an example, we will show the specification of the
channel selection process, by which a listener selects an au-
dio streamer by its channel name. First, it interrogates its
service manager about the producer stream interface of the
corresponding binding object. Then, the service manager
locates the control interface of the binding object that serves
that stream, and asks the binding object to add the new lis-
tener to its list of consumers, and to create a new stream
interface for producing the stream to the listener. This se-
lection operation may fail if the channel does not exist. For
the sake of brevity, we will just show those rules referring
to the service manager (ServiceMgr).

First, let us specify the case in which the selection pro-
cess fails because the requested channel does not exist, i.e.,
has not been previously registered in the service manager
by any audio streamer.

The following rule specifies the behaviour if a
selectAudioStreamer(Q) message is received at
the operational interfaceIAudioChannel for a channel
namedQ, that is not registered. The rule shows that the
same interfaceI is used again to send the failure termina-
tion back, if there is still a binding object (BO) associated
to the interface.

crl [selectAudioStreamer-failure] :
< O : ServiceMgr |

streams : PF,
conf : (
receive(O’, I’, I, selectAudioStreamer(Q))
< I : IAudioChannel | bind : BO,

objectRole : server,
uniqueId : ’IAudioChannel >

CONF) >
=>

< O : ServiceMgr |
conf : (
send(I, selectAudioStreamerFailure(Q))
< I : IAudioChannel | >
CONF) >

if BO =/= nil and search(PF, Q) == null .

A similar rule will specify the behaviour of the service
manager when there is no binding object associated to that
interface. In that case, no response would take place.

The behaviour of the service manager when the channel
is found, is specified by three Maude rules, which corre-
spond to the different states through which the service man-
ager object goes in that case. Roughly speaking, the service
manager receives theselectAudioStreamer request
from the listener. Then, it searches for the control inter-
face of the binding object associated to the provided chan-
nel and binds to it. The service manager changes to a new
state, in which it waits for the binding to be established.
This state will be reached when an internal message, called
ServiceMgr::getNewStreamPort is received, and
some other required conditions —as specified by the pre-
conditions of the Maude rule—are satisfied.

The following Maude rules specify such a behaviour.

crl [selectAudioStreamer-response] :
< O : ServiceMgr |

streams : PF,
conf : (
receive(O’, I’, I, selectAudioStreamer(Q))
< I : IAudioChannel | objectRole : server,

uniqueId : ’IAudioChannel >
< I’’ : IControl | objectRole : client,

uniqueId : ’IControl, bind : nil >
CONF) >

=>
< O : ServiceMgr |

conf : (
bind(I’’, search(PF, Q))
< I : IAudioChannel | >
< I’’ : IControl | >
ServiceMgr::getNewStreamPort(Q)
CONF) >

if (search(PF, Q) =/= null) .

As we can see, after receipt of a message with a request
to select an audio streamer, abind message is produced to
achieve the binding of the control interface.

The second rule describes the behaviour of the ser-
vice manager once the control interface is bound. (Signal
ServiceMgr::getNewStreamPort represents an in-
ternal action, used to control the state of the object.)

crl [selectAudioStreamer-contact-with-BO] :
< O : ServiceMgr |

conf : (
< I’’ : IControl | bind : BO,

objectRole : client,
uniqueId : ’IControl >

ServiceMgr::getNewStreamPort(Q)
CONF) >

=>
< O : ServiceMgr |

conf : (
send(I’’, newStreamPort)
ServiceMgr::respondToListener(Q)
< I’’ : IControl | >
CONF) >

if (BO =/= nil) .

As a result of the rule, the service manager sends to
the binding object a message (newStreamPort). That
signal is an interrogation that requests the binding ob-
ject to create a new stream interface and reply with
its identifier. The service manager enters a new state
(ServiceMgr::respondToListener), indicated by
the internal action with the same name.

The final Maude rule specifies the behaviour of the ser-
vice manager when the response of thenewStreamPort
signal is received from the binding object:

crl [selectAudioStreamer-respondToListener]:
< O : ServiceMgr |

conf : (
receive(O’, I’’, I,

newStreamPortResponse(IAS))
< I : IControl | objectRole : client,

uniqueId : ’IControl >
< I’ : IAudioChannel | bind : BO,

uniqueId : ’IAudioChannel,
objectRole : server >

serviceMgr::respondToListener(Q)
CONF) >

=>
< O : ServiceMgr |

conf : (
send(I’,

selectAudioStreamerResponse(Q, IAS))
unbind(I)
< I : IControl | >
< I’ : IAudioChannel | >
CONF) >

if (BO =/= nil) .

As we can see, if the interfaceIAudioChannel is still
bound, the response is finally sent to the listener and the

control interface is unbound. In this way, the listener will
know the stream interface through which the audio frames
will be received. By unbinding the control interface, we en-
sure that the service manager continues responding to other
listeners’ requests.

To complete the computational specification, we still
need to describe a initial configuration of computational
objects. In this case it is just a matter of invoking a set
of instantiateObject(..) operations, one for each
computational object we want to include in the initial con-
figuration. From that moment on, the Maude rewrite rules
will act on that configuration of objects.

6. Related Work

Formal description techniques are being extensively em-
ployed in ODP and have proved valuable in supporting the
precise definition of reference model concepts [4]. Among
all the works, probably the most widely accepted notations
for formalizing the computational viewpoint are Z, LOTOS,
and SDL.

Initially, LOTOS and SDL were chosen because they are
notations specifically designed to deal with computational
descriptions of systems. A formal semantics of the compu-
tational viewpoint in these notations can be found in Part
4 of the RM-ODP [17]. Z also offers interesting benefits
for writing computational viewpoint specifications, as de-
scribed in [26]. However, Z is not object-oriented, does not
allow modularity, and has some limitations for expressing
invariants and constraints using temporal logic, which is the
natural logic in which many environment contracts are ex-
pressed. Object-Z solves most of the Z limitations since it is
object oriented, allows modularity, and incorporates a sub-
set of temporal logic for expressing environment contract
constraints.

However, the use of Object-Z for writing computational
specifications may also present some shortcomings. In par-
ticular, oject templates are usually represented in Object-Z
as classes, which is the natural way of doing it. However,
Object-Z does not offer any mechanism for dynamic reclas-
sification of objects, which may be the case under some
particular circumstances (for instance, it may be required
for representing systems in dynamically configurable net-
works). This is not an issue in Maude, since the class of an
object can be changed during its lifetime. Besides, Maude
offers far more tool support than Object-Z does. Even if
some animation can be obtained with Object-Z, it does not
reach the level that can be obtained with Maude’s execution
facilities and strategies.

Najm et al., have also used rewriting logic for dealing
with this viewpoint, at two different levels. First, to spec-
ify the computational language concepts themselves, pro-
viding formal semantics for both the concepts (e.g., object,

binding object, interaction, etc.) and the mechanisms (e.g.,
internal and external concurrency, message exchange, etc.)
used in this viewpoint [23, 24]; and second, to write some
aspects of the computational specifications, e.g., environ-
ment contracts [12]. Our work is more in line with Najm’s
latter approach, since we rest on the semantics of Maude
(for object, class, message, etc.) to build our specifications.
The benefits of our contribution is that we use a precise lan-
guage (Maude) and its associated toolkit, instead of an ab-
stract notation for writing the system specifications and a
separate calculus for contracts. Furthermore, Maude offers
object-oriented modules and constructs, which provides a
more natural way to model ODP systems.

On a different arena, UML has also been proposed for
ODP computational modelling. UML has an appealing
graphical syntax and wide acceptance within the software
engineering community. However, their loose semantics
may represent an impediment for achieving the precise
specification and analysis of systems. There are propos-
als that try to address this issue using different approaches.
For instance, the use of UML Profiles provides customized
extensions to UML to deal with specific application do-
mains and systems. This is the approach followed by the
UML Profile for EDOC [25], whose Component Collabo-
ration Architecture (CCA) provides a set of elements and
mechanisms very well suited to write ODP computational
specifications. Another very interesting and complete pro-
posal [1] uses UML to address computational viewpoint de-
signs, complementing the UML diagrams with the Compo-
nent Quality Modelling Language (CQML) for expressing
environment contracts constraints. Despite its lack of for-
mal support, the graphical notations used in these proposals,
and the existence of tools for drawing the UML diagrams,
provide important advantages over the current formal ap-
proaches, which can not be ignored.

7. Concluding Remarks

Maude is an executable rewriting logic language spe-
cially well suited for the specification of object-oriented
open and distributed systems. In this paper, we have ex-
plored the possibility of using Maude for specifying the
computational viewpoint, showing how to build computa-
tional specifications of systems using Maude concepts and
rules. With them we do not only obtain a high-level compu-
tational description of the system, but also are in a position
to formally reason about the specifications produced and to
quick-prototype them.

There are several research areas that we plan to address
in the short term. The first area is related to two impor-
tant issues in ODP, namely the consistency checking and
the composition of specifications of different viewpoints.
By establishing the consistency of different viewpoints we

simply mean that the specifications of the different view-
points do not impose contradictory requirements. Checking
the consistency of the specifications of different viewpoints
is a difficult task, and it is even harder checking it if such
viewpoints are specified in different formalisms.

Maude’s intuitive style for specifying classes, objects,
and rules greatly simplifies the understandability of the
specifications produced. Furthermore, the process shown
here for writing the Maude computational specifications of
a system does not require users to have a deep knowledge
of rewriting logic. Thus, it is our belief that Maude speci-
fications could provide a useful vehicle for allowing stake-
holders of a system to easily share and discuss about its
computational specifications.

Having said that, we also feel that some graphical tool
support may be required for the wide adoption of our pro-
posal. In this sense, we are currently working on the smooth
integration of our approach with the current proposals for
modelling the ODP computational viewpoint using UML.
This would allow the stakeholders of the system to use
a more user-friendly graphical notation like UML to de-
scribe the system computational viewpoint, and then trans-
late them into the corresponding Maude specifications.

Finally, tool support is an essential issue for any engi-
neering approach to system specifications. Tool support
should cover all the system specification life cycle, provid-
ing support for writing and validating them, for reasoning
about their properties, and even for executing them. Access
to the Maude toolkit from the UML environment is another
goal of our proposal. This will allow us to model check the
UML specifications, or to prove some of their properties us-
ing the Maude theorem prover, without forcing the user to
have a strong background and knowledge of Maude or of
any other formal notation or method.

Acknowledgements The authors would like to acknowl-
edge the work of many ODP experts who have been in-
volved in investigating and addressing the problems of the
computational specification of ODP systems. Although the
views in this paper are the authors’ solely responsibility,
they could not have been formulated without many hours
of detailed discussions with ISO experts on ODP. Thanks
also to Akira Tanaka and Dave Akehurst for their com-
ments on previous versions of our computational language
metamodel. The anonymous referees have also contributed
with their insightful comments and suggestions, helping im-
prove the contents and readability of the paper. This work
has been partially supported by Spanish Project TIC2002-
04309-C02-02.

References

[1] D. H. Akehurst, J. Derrick, and A. G. Waters. Address-
ing computational viewpoint design. In7th IEEE Interna-
tional Enterprise Distributed Object Computing Conference
(EDOC 2003), pages 147–159, Brisbane, Australia, Sept.
2003. IEEE CS Press.

[2] A. Albarrán, F. Duŕan, and A. Vallecillo. From Maude spec-
ifications to SOAP distributed implementations: A smooth
transition. InProc. of JISBD’01, Almagro, Ciudad Real
(Spain), November 2001.

[3] C. Bernardeschi, J. Dustzadeh, A. Fantechi, E. Najm, A. Ni-
mour, and F. Olsen. Transformations and consistent seman-
tics for ODP viewpoints. In H. Bowman and J. Derrick,
editors,Proc. of FMOODS’97, pages 371–386, Canterbury,
1997. Chapman & Hall.

[4] H. Bowman, J. Derrick, P. Linington, and M. W. Steen.
FDTs for ODP.Computer Standards & Interfaces, 17:457–
479, Sept. 1995.

[5] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and J. Quesada. Maude: specification and
programming in rewriting logic.Theoretical Comput. Sci.,
285:187–243, Aug. 2002.

[6] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. Talcott. Maude 2.0 manual. Available
in http://maude.cs.uiuc.edu ., June 2003.

[7] M. Clavel, F. Duŕan, S. Eker, and J. Meseguer. Building
equational proving tools by reflection in rewriting logic. In
K. Futatsugi, A. Nakagawa, and T. Tamai, editors,CAFE:
An Industrial-Strength Algebraic Formal Method, pages 1–
31. Elsevier, 2000.

[8] F. Duŕan, M. Rold́an, and A. Vallecillo. Invariant-driven
strategies for Maude. InProc. of the 4th International Work-
shop on Reduction Strategies in Rewriting and Program-
ming (WRS 2004), volume 86 ofElectronic Notes in The-
oretical Computer Science, pages 1–20, Aachen, Germany,
June 2004. Elsevier.

[9] F. Duŕan and A. Vallecillo. Specifying the ODP informa-
tion viewpoint using Maude. In H. Kilov and K. Baclawski,
editors,Proceedings of Tenth OOPSLA Workshop on Behav-
ioral Semantics, pages 44–57, Florida, Oct. 2001. Northeast-
ern University.

[10] F. Duŕan and A. Vallecillo. Formalizing ODP Enterprise
specifications in Maude.Computer Standards & Interfaces,
25(2):83–102, June 2003.

[11] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude
LTL model checker. In F. Gaducci and U. Montanari, edi-
tors, Proc. of the 4th International Workshop on Rewriting
Logic and its Applications (WRLA 2002), volume 71 ofElec-
tronic Notes in Theoretical Computer Science, pages 115–
142, Pisa, Italy, Sept. 2002. Elsevier.

[12] A. Février, E. Najm, and J.-B. Stefani. Contracts for ODP.
In Proc. of the 4th AMAST Workshop on Real-Time Systems,
Concurrent and Distributed Software, Mallorca, Spain, May
1997.

[13] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud. Introducing OBJ. In J. Goguen and G. Malcolm,
editors,Software Engineering with OBJ: Algebraic Specifi-
cation in Action. Kluwer, 2000.

[14] K. Havelund and G. Roşu. Monitoring programs using
rewriting logic. InProc. of Automated Software Engineer-
ing 2001 (ASE’01), pages 135–143, California, Nov. 2001.
IEEE CS Press.

[15] K. Havelund and G. Roşu. Rewriting-based techniques for
runtime verification. To appear in Journal of Automated
Software Engineering, 2005.

[16] IEEE. Recommened Practice for Architectural Description
of Software-Intensive Systems. IEEE Std. 1471, 2000.

[17] ISO/IEC. RM-ODP. Reference Model for Open Distributed
Processing. Geneva, Switzerland, 1997. International Stan-
dard ISO/IEC 10746-1 to 10746-4, ITU-T Recommenda-
tions X.901 to X.904.

[18] P. Kruchten. Architectural blueprints — The “4+1” view
model of software architecture.IEEE Software, 12(6):42–
50, Nov. 1995.

[19] P. Linington. RM-ODP: The architecture. In K. Milosevic
and L. Armstrong, editors,Open Distributed Processing II,
pages 15–33. Chapman & Hall, Feb. 1995.

[20] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical
and semantic framework. In D. Gabbay and F. Guenthner,
editors,Handbook of Philosophical Logic, volume 9, pages
1–87. Kluwer Academic Publishers, second edition, 2002.

[21] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency.Theoretical Comput. Sci., 96:73–155, 1992.

[22] J. Meseguer. Membership algebra as a logical framework
for equational specification. In F. Parisi-Presicce, editor,Re-
cent Trends in Algebraic Development Techniques, volume
1376 ofLecture Notes in Computer Science, pages 18–61.
Springer-Verlag, 1998.

[23] E. Najm and J.-B. Stefani. A formal operational semantics
for the ODP computational model.Computer Networks and
ISDN Systems, 27:1305–1329, 1995.

[24] E. Najm and J.-B. Stefani. Computational models for open
distributed systems. In H. Bowman and J. Derrick, editors,
Proc. of FMOODS’97, pages 157–176, Canterbury, 1997.
Chapman & Hall.

[25] OMG. A UML Profile for Enterprise Distributed Object
Computing V1.0. Object Management Group, Aug. 2001.
OMG documentad/2001-08-19 .

[26] R. Sinnot and K. J. Turner. Specifying ODP computational
objects in Z. In E. Najm and J.-B. Stefani, editors,Proc. of
FMOODS’96, pages 375–390, Canterbury, 1997. Chapman
& Hall.

[27] M. W. Steen and J. Derrick. ODP Enterprise View-
point Specification. Computer Standards & Interfaces,
22(2):165–189, Sept. 2000.

[28] J. A. Zachman. The Zachman Framework: A Primer for
Enterprise Engineering and Manufacturing. Zachman In-
ternational, 1997.http://www.zifa.com .

