
The Computer Journal, 47(3), © The British Computer Society; all rights reserved

A Trading Service for COTS
Components

Luis Iribarne
1
, José M. Troya

2
and Antonio Vallecillo

2

1Dpto. Lenguajes y Computación, Escuela Politécnica Superior, Universidad de Almería, Carretera de
Sacramento s/n, 04120 Almería, Spain

2Dpto. Lenguajes y Ciencias de la Computación, Facultad de Informática, Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain

Email: luis.iribarne@ual.es, troya@lcc.uma.es, av@lcc.uma.es

Component-based software development (CBSD) has gained recognition as one of the key
technologies for the construction of high-quality, evolvable, large complex systems in a timely
and affordable manner. In CBSD, the development effort becomes one of gradual discovery
about the components, their capabilities and the incompatibilities that arise when they are used
in concert. Thus, trading becomes one of the cornerstones of CBSD. However, most of the existing
methods for CBSD do not make effective use of traders. In this paper, we analyze the required
features for commercial off-the-shelf (COTS) components traders, and introduceCOTStrader, an
Internet-based trader for COTS components. In addition, we discuss how theCOTStrader can be
integrated into a spiral methodology for CBSD, providing partially automated support for building

COTS-based systems.

Received 12 February 2003; revised 7 August 2003

1. INTRODUCTION

Component-based software development (CBSD) is
generating an increased interest due to the development
of plug-and-play reusable software, which has led to the
concept of ‘commercial off-the-shelf’ (COTS) software
components. CBSD moves organizations from application
development to application assembly. Constructing an
application now involves the use of prefabricated pieces,
perhaps developed at different times, by different people and
possibly with different uses in mind. The ultimate goal is to
be able to reduce development times, costs and efforts, while
improving the flexibility, reliability and reusability of the
final application due to the (re)use of software components
already tested and validated.

This approach challenges some of the current Software
Engineering methods and tools. For instance, the tradi-
tional top-down development method, based on successive
refinements of the system requirements until a suitable con-
crete implementation of the final application’s components
is reached, is not transferable to the component-based de-
velopment. In CBSD the system designer has also to take
into account the specification of pre-developed COTS com-
ponents that may exist in software repositories when building
the system’s initial requirements, in order to incorporate them
into all phases of the development process [1, 2, 3]. There
is a significant shift from a development-centric approach
toward a procurement-centric one [4], aimed at the search
and acquisition of COTS components in order to reuse them
for building software applications. Here, system architects,

designers and builders must accept the trade-offs among three
main concerns: users’ requirements, system architecture and
COTS products [5, 6].

Under this new setting, the proper search and selection
processes of COTS components have become cornerstones
of every effective COTS development. However, these
processes currently face serious limitations, generally due
to three main reasons. First, the information available about
the components is not expressive enough for their effective
selection. Second, the search and evaluation criteria allowed
by current traders are usually too simple to provide practical
utility. And finally, current CBSD methodologies do not
make effective use of trading for searching and locating
components offering the required services.

First, one of the key issues in CBSD is the use of more
complete, concise and unambiguous component documen-
tation (i.e. specifications). In the case of COTS components,
their black-box nature hinders the understanding of their
internal behavior. Furthermore, only functional properties
are usually taken into account, while some other information
crucial to component selection is missing, such as protocol
or semantic information [7] or extra-functional requirements
[8, 9]. Software component vendors are also of no help,
providing scarce and unstructured information about the
components they sell/license [10].

Second, component searching and matching processes
are (in theory) delegated to traders, but the problem is
that existing traders do not provide all the functionality
required for an effective COTS component trading in open

The Computer Journal, Vol. 47, No. 3, 2004

Trading Service for COTS Components 343

and independently extensible systems such as the Internet, as
discussed in [11].

Finally, traders are not fully integrated into current method-
ologies to achieve effective component-based development,
hence missing many of the potential advantages provided by
traders such as information discovery or partially automated
selection of candidate components.

In this paper, we focus on the requirements for an
effective trading service for COTS components in open
systems; we analyze some of the limitations of current
traders; and we present a trading service that tries to address
most of their current shortcomings. An extension of the
information used for describing COTS component services
is also presented, where not only are the functional aspects of
the components taken into account, but also extra-functional
requirements, architectural constraints and some other non-
technical factors. Based on this information, a template for
describing services queries is defined. With all of this, it is
possible to improve both the service ‘export’ and ‘import’
processes, and to design and develop enhanced traders that
make use of the Internet facilities for locating and retrieving
COTS components. Finally, we will see how it is possible to
integrate the trader into spiral methodologies for building
component-based systems, providing partially automated
support for the search and selection processes of COTS
components that match some of the architectural constraints.
This kind of spiral methodology is the one commonly
used in CBSD (see, e.g. [12]). It progressively produces
more detailed requirements, architectural specifications and
system designs by repeated iterations, until a stable solution
is found.

Throughout the document, we will consider components
to be binary units of possibly independent production,
acquisition and deployment that interact to form a functioning
system [13]. Although our proposal is valid for any kind
of software components, we have focused mainly on COTS
components. The adjective COTS will refer to a special kind
of component: a commercial entity—i.e. one that can be sold
or licensed—that allows for packaging, distribution, storage,
retrieval and customization by users and which is usually
coarse-grained and lives in software repositories [14].

The rest of the paper is organized as follows. Section 2
describes the features that traders should have, and discusses
the shortcomings of current traders. Section 3 defines the
concepts of ‘service’ and ‘service type’ that will be used in
our context. Then, Section 4 describes theCOTStrader,
an implementation of an Internet-based trader for COTS
components, together with a proposal for documenting
components. Section 5 discusses how the trader can be
effectively used within spiral methodologies for building
COTS-based systems, providing automated support for
CBSD. We have also looked at the situation of existing COTS
component vendors, trying to analyze how large the gap
is between the information they currently provide and the
information needed for effective trading. The results are
presented in Section 6. Finally, Sections 7 and 8 relate this
work to other similar approaches and draw some conclusions,
respectively.

2. REQUIREMENTS FOR COTS TRADERS

Trading is the natural mechanism defined in object-
and component-based systems for searching and locating
services. A client role that requires a particular component
service can query a matchmaking agent (the trader) for
references to available components that provide the kind of
service required. Service advertisements are called ‘exports’,
while queries are called ‘imports’. The trader provides just
the references to possible service providers, but without
intervening in the service provision itself.

Trading is not only relevant to CBSD. Context-aware
software, such as mobile computing or adaptable applica-
tions, can greatly benefit from trading since it provides ser-
vice discovery in local environments and enables automatic
application re-contexting. Moreover, enhanced traders with
quality of service (QoS) facilities can provide the means of
self-configuring multimedia applications. In this paper, we
will concentrate only on COTS component trading. However,
most of our discourse is also applicable to all disciplines in
which trading is required.

2.1. Trading requirements

The following list presents the features and characteristics
that we think traders should have in order to provide
an effective COTS component trading service in open
systems.

(i) Heterogeneous component model. A trader should
not restrict itself to a particular component or object
model, but it should be able to (simultaneously) deal
with different component models and platforms, such
as CORBA, the CORBA Component Model (CCM),
Enterprise Java Beans (EJB), Microsoft’s Component
Object Model (COM) and .NET etc. Heterogeneous
traders should trade with multiple service access
protocols, and accommodate the evolution of the
current models.

(ii) A trader is more than a search engine. Traders may
superficially resemble search engines, but perform
more structured searches. In a trader, the match-
making heuristics need to model the vocabulary,
distance functions and equivalence classes in a
domain-specific property space, in contrast to
the keyword-based, domain-neutral matchmaking
supported by search engines.

(iii) Federation. Cooperating traders can federate using
different strategies. The direct federation approach
requires traders to communicate directly to (and
know) the traders they federate with. Although
it is a very secure and controlled scheme, the
communication overhead grows with the number of
federated traders. In the repository-based federation,
multiple traders read and write to the same service
repository; traders are not directly aware of each
other, so this approach is scalable. The problem is the
implementation of a globally accessible repository.
However, this may not be an issue in the Internet,

The Computer Journal, Vol. 47, No. 3, 2004

344 L. Iribarne, J. M. Troya and A. Vallecillo

since search engines may naturally provide the basis
for such a repository.

(iv) Service composition and adaptation. Current traders
focus on one-to-one matches between client requests
and available service instances. A compositional
trader could also consider one-to-many matches,
by which a client request can also be fulfilled by
appropriately composing several available services,
which together provide the complete services.
Furthermore, one-to-one exact matchmaking is also
inadequate in a number of situations, e.g. when
format, QoS or performance mismatches happen
between the client and the closest matching service
instance. This problem can be addressed by
composing such a service instance with format
translators and performance monitors to reduce
mismatches.

(v) Multiple interfaces. In object-oriented systems,
services are described by interfaces, and each
object provides just one interface (although it may
be obtained from many by multiple inheritance).
However, components may simultaneously offer
several interfaces, and thus, services should be
defined in terms of sets of interfaces. This fact
has to be especially considered when integrating
components, since conflicts between components
may appear to be offering common interfaces [15].

(vi) Softmatchmaking. Traditional ‘exact’ matches be-
tween imports and exports are very restrictive in real
situations in which more ‘relaxed’ matching criteria
should be used. This is even more important when
trading for services in open and independently ex-
tensible systems, such as the Internet, where method
names and the operations that comprise the offered
services are chosen in a non-standardized arbitrary
way and without agreed procedures. Therefore, par-
tial matches that also select those candidates that may
provide (part of) a required service should be allowed
when building the list of candidate components.

(vii) Use of heuristics and metrics (preferences). Users
should be able to specify heuristic functions and
metrics when looking for components, especially in
the case of soft matches.

(viii) Extended subtyping procedures. Current traders
organize services in a service type hierarchy in order
to carry out the service matching process. Central to
type matching is the notion of subtyping. TypeA is
a subtype of TypeB (TypeA� TypeB) if instances of
TypeA can substitute instances of TypeB and clients
are not able to detect the change [16]. Subtyping
is now checked merely at the signature level, but
extensions need to be defined in order to cope
with ‘behavioral’ information [17], ‘protocols’ [18],
QoS etc.

(ix) Independent extensibility and scalability. Compon-
ent behavior, extra-functional requirements, QoS,
marketing information and semantic data should also
be considered. The information managed by the

trader should be possible to be extended by users
in an independent way, and still the trader should
be able to use all its functionalities and capabilities.
Furthermore, no matter how traders federate or organ-
ize, scalability should be guaranteed in large open
distributed environments such as the Internet.

(x) Support of both ‘automatic’ and ‘store and forward’
imports. If a trader cannot fully satisfy a request, it
can either automatically reply back to the client with
a denial (automatic behavior), or it may also store the
request and postpone the reply until a suitable service
provider is found (store and forward import).

(xi) Support of both ‘push’ and ‘pull’ models. In a push
model, exporters directly contact the trader to register
their services. A probably more convenient way of
working in a large open and distributed environment
is by using a pull model, by which exporters make
the publicity campaigns of their provided services
available at their Web sites, for instance, and the
traders are continuously looking for new services.
Bots and search engines can be used to enhance
current traders, which use a push model that crawls
the Web looking for services and ‘pushing’ them into
the traders.

(xii) Delegation. Traders should be able to delegate
requests to other (smarter) traders, if they cannot
resolve them. Delegation of the complete request or
only parts of it should be desirable.

2.2. Shortcomings of current traders

Existing traders mostly follow the ODP trading model [19].
Although this is a complete and very well-designed trading
model, it follows the general ODP (object-oriented) model,
and therefore it presents some limitations when used in open
systems. Actually, based on the experience obtained from the
existing commercial implementations of the trading service
(e.g. [20, 21, 22]) and on the basis of some closely related
works and academic traders (e.g. [11, 23, 24, 25, 26]), we
can see how current traders:(1) deal with homogeneous
object models only;(2) use direct federation;(3) do not
allow service composition or adaptation;(4) work with
‘exact’ matches, and only at the signature level;(5) do not
deal with multiple interfaces; and(6) are based on a push
model only.

Our main purpose is to design a trader that can help
overcome these limitations; a trader specifically designed to
deal with COTS components in Internet-based environments.

3. SERVICES AND SERVICE TYPES

Components offer services, clients request services and
traders deal with services. Therefore, we should start by
defining what a service is. We will adopt here the ISO
definition of service given in the ODP trading service
specification [19]: ‘A service is a set of capabilities provided
by an object at a computational level. A service is an instance
of service type’.

The Computer Journal, Vol. 47, No. 3, 2004

Trading Service for COTS Components 345

In ODP, a service type is an interface signature type, a set
of property definitions and a set of rules about the modes
of the service properties. Interface signatures describe the
service functionality in terms of attributes and methods (ODP
is object-oriented). Service properties are triplets (name,
value type, mode), where the name identifies the property
(e.g.AllowEncryption), the value type establishes the type of
allowed values for the property (e.g. Boolean) and the mode
specifies whether the property is read-only or read-and-write,
or whether it is optional or mandatory. In addition, properties
can also be declared as dynamic, which means that instead of
having a fixed value assigned, they have an external evaluator
associated, which is in charge of dynamically providing the
current value of the property (e.g. the current length of a
queue).

This kind of ODP service type is the one commonly used
in most current traders. However, we need to extend this
definition in order to allow more complete descriptions of
the services, and to accommodate the specific requirements
of COTS component-based systems.

In our context, a service type will consist of four
main parts. The first one describes thefunctional (i.e.
computational) aspects of the service, including both
syntactic (i.e. signature) and semantic information. Unlike
the ODP service type which contains just one interface,
our functional description of a service defines the sets of
provided and required interfaces. Semantic information
can be described at two different levels, depending on
whether it specifies the behavior of the operations (which
can be described using pre/post conditions, for instance),
or the relative order in which a component expects their
methods to be called, and the way it calls other components’
methods—i.e. its service access protocols (also called
choreography).

The second part describes theextra-functionalaspects of
the service (e.g. QoS, security etc.) in a similar way to ODP
i.e. by means of services properties.

The third part contains thepackaginginformation: about
how to download, deploy and install the COTS component
that provides the required service, including implementation
details, context and architectural constraints etc.

Finally, themarketinginformation deals with the rest of
the non-technical issues of the service, such as licensing and
pricing information, vendor details, special offers etc.

4. A COTStrader FOR OPEN SYSTEMS

Once we have identified the requirements of a trader in
open systems, this section describes the implementation
of an Internet-based trader for COTS components, called
COTStrader.

We have divided this section into three main parts. The
first one deals with component and service documentation,
i.e. how to describe the services provided by the COTS
components in terms of their service types. The second part
defines how clients may query the trader and express service
imports. Finally, Section 4.3 describes the trading process of
COTStrader.

We have used XML as the language for documenting
components (i.e. describing services) and expressing queries.
XML is simple, extensible and widely accepted within the
Internet community.

In order to illustrate our proposal we will use a simple
example, that of a one-place buffer component with the
usual operationsread() and write(). It also makes
use of another component to print out the values written
in its cell, using methodprint() every time a new value
is written. Despite its simplicity, this example will allow
us to illustrate our approach for documenting components,
the export and import processes and the way the trader
works. This example, together with several other examples
and applications, is available at the COTStrader Web site
http://www.cotstrader.com/.

4.1. Exporting services

For the description of a COTS component we have
designed some Document Type Definition (DTD) tem-
plates based on the W3C’s XMLSchema schema language
(http://www.w3c.org/2000/10/XMLSchema).
The following shows a simple skeletal instance of the schema
template designed for the case of theOnePlaceBuffer
component.

<?xml version="1.0"?>

<COTScomponent name="OnePlaceBuffer"

xmlns="http://www.cotstrader.com/

COTS-XMLSchema.xsd"

xmlns:xsd="http://www.w3.org/2000/10/

XMLSchema">

<functional> ... </functional>

<properties> ... </properties>

<packaging> ... </packaging>

<marketing> ... </marketing>

</COTScomponent>

As we can see in the XML document, the description of a
component begins with aCOTScomponent tag where the
DTD name spaces used and the name of the component are
established. Then, the body of the XML document describes
the four main parts that a service type consists of, as defined
in Section 3.

4.1.1. Functional description
The functional description of a component follows an
approach similar to that of most common component
models such as CCM, EJB or EDOC [27]. Actually,
it can be used to describe components of any of these
models. The information contained in this part includes
the set of interfaces that the component implements, the
set of interfaces that the component requires from other
components, and the sets of emitted/consumed events.

<functional>

<providedInterfaces>

<interface name="interfaceA"> ...

</interface>

The Computer Journal, Vol. 47, No. 3, 2004

http://www.cotstrader.com/
http://www.w3c.org/2000/10/XMLSchema
http://www.cotstrader.com/
http://www.w3.org/2000/10/

346 L. Iribarne, J. M. Troya and A. Vallecillo

<interface name="interfaceB"> ...

</interface>

</providedInterfaces>

<requiredInterfaces>

<interface name="interfaceC"> ...

</interface>

<interface name="interfaceD"> ...

</interface>

</requiredInterfaces>

<consumedEvents> ... </consumedEvents>

<producedEvents> ... </producedEvents>

<choreography> ... </choreography>

</functional>

The last part (<choreography>) allows the description
of the ‘service access protocols’, which define the relative
order in which the component expects its methods and events
to be called, and the order in which it emits events and calls
other components’ methods. Semantic information can also
be added to the syntactic description of the operations using
a<behavior> tag.

Let us illustrate all this using the one-place buffer example,
for which the first two parts can be described as follows.

<providedInterfaces>

<interface name="IOnePlaceBuffer">

<description notation="IDL-CORBA">

interface IOnePlaceBuffer {

void write(in long x); long read(); };

</description>

<exactMatching href=".../servlet/

IDL-CORBA.exact"/>

<softMatching href=".../servlet/

IDL-CORBA.soft"/>

<behavior>

<description notation="Larch-CORBA">

interface IOnePlaceBuffer {

initially self’ = empty;

void write(in long x){

requires isEmpty(self);

modifies self;

ensures self’ = append(selfˆ,x);

}

long read() {

requires ˜isEmpty(self);

modifies self;

ensures isEmpty(self’) /\

result = head(selfˆ);

}

}

</description>

<exactMatching href=".../servlet/

Larch-CORBA.exact"/>

<softMatching href=".../servlet/

Larch-CORBA.soft"/>

</behavior>

</interface>

</providedInterfaces>

<requiredInterfaces>

<interface name="Printer">

<description notation="IDL-CORBA">

interface Printer {void print

(in long x); };

</description>

</interface>

</requiredInterfaces>

As we can see, not only can the syntactical description
of the interfaces (i.e. their signatures) be expressed,
but also their behavioral semantics using any nota-
tion, such as Larch-CORBA (http://www.cs.iastate.edu/
∼leavens/main.html#LarchCORBA). This notation allows
the specification of the pre- and post-conditions of the meth-
ods implemented by the component.

The main information described in this XML template
usually comes inside the<description> tag. This
information can be either implicitly included in this tag, or a
reference to an external location can be made using thehref
attribute.

We did not want to commit to any particular notation to
express the information contained in the XML templates.
Therefore, the ‘notation’ attribute is present in most
fields. It currently has several pre-defined values, but it is
a matter of clients and servers agreeing to the values they
want to use. More than providing a syntax for importing
and exporting services, our goal is to provide a template that
can be used for clients and service providers to express the
information they want to share; a template that is able to
evolve as the market does.

Associated to each notation for describing behavior, there
may also be a reference to a couple of procedures that
will allow the trader to do the matchmaking process. In
this example, ‘Larch-CORBA.exact’ is the name of
a program that is able to decide whether two behavioral
descriptionsA and B, written in Larch-CORBA, satisfy
that A can replaceB [28]. Analogously, the second
program ‘Larch-CORBA.soft’ is the one in charge of
implementing the softmatchmaking process [29].

These programs have the same interface. They are both
servlets that accept as arguments two pieces of text (i.e. two
strings) with the two specifications to compare, and return a
Boolean value with the result of the comparison:TRUE if the
specification given in the first argument is a subtype of the
second,FALSE otherwise.

We have distinguished between two kinds of matchings:
exact(�E) and soft(�S). Exact matching is the usual kind:
given two interfacesA andB, we shall say thatA �E B if A

can replaceB, i.e. if A is a subtype ofB using the common
subtyping relations for interface signatures [19, 30]. This
operator can be defined not only at the signature level, but also
be naturally extended to deal with the semantic descriptions
of components, following the usual subtyping relations for
pre- and post-conditions [17, 31] or protocols [16, 18].

On the other hand, softmatchmaking between interfaces
is defined for achieving partial matches. At the signature
level we shall say thatA �S B if interface B ‘contains’

The Computer Journal, Vol. 47, No. 3, 2004

http://www.cs.iastate.edu/

Trading Service for COTS Components 347

some of the services defined inA, and we shall also write
A ∩ B �= ∅ (please note that�S is not a pre-order). This
relation intuitively means thatB offers at least one of the
methods required byA. The extension of this operator to deal
with semantic information is due to Miliet al. [29], who also
define semantic distances between component specifications.

The last part, called ‘choreography’, deals with the
semantic aspects of the component that globally describe its
behavior, and that cannot be usually captured by the semant-
ics of the individual interfaces, namely the relative order in
which the component expects its methods to be called, the
way it calls other components’ methods, or how operations
in separate interfaces interleave. In the example, the Larch
description uses pre- and post-conditions to specify the
behavior of the operations provided by the buffer. However,
this information does not capture details as to when the
required operationprint is invoked, or the partial order
in which the buffer operations should be called. This
is commonly known as protocol information [7, 32], and
can be expressed in many different notations such as Petri
Nets, π -calculus, Message Sequence Charts etc. In this
example, the actual description is given in-line and there are
two external references to the programs that implement the
exact and softmatchmaking checks [18]. The parameters of
these two servlet programs are again two strings with the
specifications to compare, and the result is a Boolean value
indicating if the specification given in the first argument is a
subtype of the second.

<choreography>

<description notation="PI-CORBA">

Empty(ref,printer) =

ref?write(x,rep).printer!print(x).

printer?().rep!().

Full(ref,printer,x) ;

Full(ref,printer,x) =

ref?read(rep).rep!(x).

Empty(ref,printer) ;

</description>

<exactMatching href=".../servlet/

PI-CORBA.exact" />

<softMatching href=".../servlet/

PI-CORBA.soft" />

</choreography>

The choreography for the buffer is expressed in a
π -calculus-based notation [32]. As we can see, initially, the
buffer only accepts awrite operation, and then calls the
print method of theprinter component, waits for its
response and replies to thewrite operation. After that, its
behavior is defined by processFull, which specifies that
the buffer can only accept aread operation in that state.
A response is sent once this operation has been received, and
the buffer changes its state toEmpty. In [7] we can find more
information on protocols and their importance for specifying
components, beyond pre- and post-condition information.
Further information on the notation used can be found in
[32], and the subtyping mechanisms used in the matching
programs are described in [18].

4.1.2. Extra-functional description
The second part of theCOTScomponent template describes
extra-functionalaspects (e.g. QoS, ‘ilities’, ‘nesses’ etc.) in a
similar way to ODP, i.e. by means of service properties [33].

We have studied the importance of extra-functional
information and how to include it into our COTS documents
[34]. We have adopted the ODP way of describing
extra-functional properties, using properties, which is the
usual way in which the extra-functional aspects of objects,
services and components are expressed in the literature.
We suggest using W3C types for describing properties,
although any notation is valid for describing them (e.g. the
OMG’s CCM style [35, pp. 10–365], that also uses an XML
vocabulary).

Thus, the<properties> tag will describe a collection
of properties, each one indicated by a<property> tag,
and with a type and a value associated (see below). Dynamic
properties can also be implemented in this approach,
indicating the reference to the external program that will
evaluate their current values.

<properties notation="W3C">

<property name="capacity">

<type>xsd:int</type> <value>1</value>

</property>

<property name="isRunningNow">

<type>xsd:boolean</type>

<value href=".../running.cgi"/>

<!--dynamic property-->

</property>

<property name="keywords" composition="AND">

<property name="keyword">

<type>xsd:string</type>

<value>storage</value>

</property>

<property name="keyword">

<type>xsd:string</type>

<value>bounded</value>

</property>

</property>

</properties>

Please notice how we allow keyword-based searches too,
including the special property ‘keywords’.

In order to deal effectively with extra-functional
requirements, we have used some principles from a
qualitative approach called the NFR Framework [9]. This
approach is based on the explicit representation and
analysis of extra-functional requirements. Considering their
complex nature, we cannot always say that extra-functional
requirements can be entirely accomplished or satisfied.
Rather, the NFR Framework represents extra-functional
requirements as softgoals, which do not necessarily have
a priori, clear-cut criteria of satisfaction.

In addition, extra-functional requirements can contribute
positively or negatively, and fully or partially, toward
achieving other extra-functional requirements. First,
they are decomposed into more specific extra-functional
requirements. For instance, the security requirement can

The Computer Journal, Vol. 47, No. 3, 2004

348 L. Iribarne, J. M. Troya and A. Vallecillo

be considered to be quite broad and abstract. To explicitly
deal with such a broad requirement, we may need to break it
down into smaller parts, so that unambiguous solutions can be
found. By treating this high-level requirement as a softgoal
to be achieved, we can decompose it into more specific
subgoals, which together satisfy the higher level softgoal
(this is an AND type of contribution). For instance, the
security softgoal can be decomposed into three sub-softgoals:
integrity, confidentiality and availability. Another kind of
composition is the OR type: the softgoal is satisfied if any of
its subgoals is.

Thus, at the COTS component description level we can
enrich the description of properties, which may be either
single properties, or composition of properties. Composition
can be either AND-composition or OR-composition.

<property name="authorization"

composition="OR">

<property name="userAuthorization">

<type>xsd:string</type>

<value>LOGIN</value>

</property>

<property name="managerAuthorization">

<type>xsd:string</type>

<value>ADMIN</value>

</property>

</property>

We may need to express that a given property (no matter
whether it is simple or composed) is ‘implemented by’ a
given functional element (e.g. an interface). In NFR terms,
this expresses that the functional element ‘operationalizes’
the property, i.e. this element is the one in charge of
‘implementing’ it. This permits traceability of requirements
(in order to determine the functional elements which provide
a given extra-functional requirement). Analogously, we can
express that a given property is ‘present’ in a given functional
element, i.e. this element ‘exhibits’ the property (by default,
the whole component).

For instance, think of a property named
‘userAuthorization’ that reflects the require-
ment of having to authorize any component user before
accessing any of its services. Among the many alterna-
tive ways of implementing it, imagine that the component
provides an interface (ILogin) with operations for
user ‘login’. In this sense, theuserAuthorization
property is implemented by theILogin interface,
which can be expressed as a child XML element of the
property:

<property name="userAuthorization">

<type>xsd:string</type>

<value>LOGIN</value>

<implementedBy>ILogin</implementedBy>

</property>

Expressing that a given property is implemented in (i.e.
supported by) a component or in a functional element may
also be useful. For instance, the fact that the response time of

any of the operations provided by theIOnePlaceBuffer
interface is less than 10 ms can be expressed as follows:

<property name="responseTime">

<type>xsd:float</type><value>10</value>

<implementedIn>IOnePlaceBuffer

</implementedIn>

</property>

For a list of the quality properties for COTS components,
the interested reader can consult [36].

4.1.3. Packaging/architectural constraints
This part contains thepackaging information about how
to download, deploy and install the COTS component that
provides the required service, including implementation
details, context and architectural constraints etc. Again, there
is a<description> tag with the appropriate information
written according to a particular notation, either implicitly
encoded in the XML document, or pointed at by anhref
reference.

<packaging>

<description notation="CCM-softpkg"

href=".../MyImplementOfOnePlaceBuffer.

csd" />

</packaging>

In this example, the CCM ‘softpackage’ [35] description
style is used. A CORBA component package maintains one
or more implementations of a component, and consists of
one or more descriptors and a set of files. The descriptors
describe the characteristics of the package—such as its
contents or its dependencies—and point to its several
files. This information allows description of the resources,
configuration files, the location of different implementations
of the component for different operating systems, the way
those implementations are packaged, the resources and the
external programs they need etc.

4.1.4. Marketing information
Finally, other non-technical details of the service are also
described in this section. Typical information described
here includes vendor information, licensing and commercial
aspects, certificates, vendor support, level of customization
allowed etc.

<marketing>

<license href=".../license.html" />

<expirydate>05-10-2003</expirydate>

<certificate href=".../lcard.png" />

<vendor>

<companyname>E-Brokering corp.

</companyname>

<webpage>http://www.e-B.com/</webpage>

<mailto>sales@e-Brokering.com</mailto>

<address>

<zip>04120</zip>

<street>Ctra Sacramento s/n</street>

The Computer Journal, Vol. 47, No. 3, 2004

http://www.e-B.com/</webpage

Trading Service for COTS Components 349

<city>Almeria</city>

<country>Spain</country>

</address>

</vendor>

<description>A one-place buffer

</description>

<ManMonthsRD>1</ManMonthsRD>

<ManMonthsSkillFactor>3

</ManMonthsSkillFactor>

<LinesOfCode>53</LinesOfCode>

<Developer-CMM-level>4</Developer-CMM-level>

</marketing>

We have also included three tags that capture the infor-
mation currently provided by ComponentSource (www.
componentsource.com), one of the major software com-
ponent vendors for the industry. These tags are the
ManMonthsRD, ManMonthsSkillFactor and
LinesOfCode. The Man Months Research and Develop-
ment is the time taken to research, develop and test the
current version of the product. The Man Months Skill Fac-
tor is the business skill-level needed to design and develop
the product in the number of man months indicated in the
ManMonthsRD field. Finally, Lines of Code is the number
of lines of code that is in the current version of the prod-
uct. Please note how these values try to measure the effort
involved in developing the component, so the potential
acquirer can decide whether it is worth buying the compo-
nent, or if it is better to develop it from scratch—which is
probably the most crucial decision. (An old rule of thumb
in CBSD says that if you have to adapt more than 20% of
the component functionality in order to integrate into your
system, you had better develop it yourself.)

Another interesting information is the capacity and
maturity of the development environment of the component
developer, expressed in terms of the Capability Maturity
Model (CMM). Finally, it is also worth noting the
<expirydate> tag, which allows old service offers to be
readily purged.

4.2. Importing services

Once we have described how to document component
services, this section discusses how to import them, i.e.
how a client may locate them using theCOTStrader
service.

In order to import a service, the client needs to provide
two XML documents. The first one, calledCOTSquery,
contains the selection criteria to be used by the trader to look
for the service. The second document describes the main
features of the required service.

<?xml version="1.0"?>

<COTSquery name="ClientQuery"

xmlns="http://www.cotstrader.com/

COTS-XMLSchema.xsd">

<COTSdescription href=".../Query1.xml" />

<functionalMatching>

<interfaceMatching>

<exactMatching href=".../

exact2match.cgi" />

</interfaceMatching>

<choreographyMatching>

<softMatching />

</choreographyMatching>

</functionalMatching>

<propertyMatching>

<constraints notation="XQuery">

(responseTime <= 10) and

(isRunningNow = TRUE)

</constraints>

<preferences notation="ODP">first

</preferences>

</propertyMatching>

<packagingMatching notation="XQuery">

description/notation = "CCM-softpkg" and

(description/implementation/os/

name="WinNT" or

description/implementation/os/

name="Solaris")

</packagingMatching>

<marketingMatching notation="XQuery">

vendor/address/country = "Spain"

</marketingMatching>

</COTSquery>

The first section (COTSdescription) explains
the target service by using the previously described
COTScomponent template. The client fills in the required
values (interfaces and properties) that will be used to com-
pare against the information available in the service exports
that the trader knows about. An example of such a de-
scription template is shown below (the one referenced as
Query1 in theClientQuery template above).

<?xml version="1.0"?>

<COTScomponent name="Query1"

xmlns="http://www.cotstrader.com/

COTS-XMLSchema.xsd">

<functional>

<providedInterfaces>

<interface name="onePlaceBuffer">

<description notation="IDL-CORBA">

interface IOnePlaceBuffer {

void write(in long x); long read();

};

</description>

</interface>

</providedInterfaces>

</functional>

<properties notation="W3C">

<property name="responseTime"

priority="7">

The Computer Journal, Vol. 47, No. 3, 2004

http://www.cotstrader.com/
http://www.cotstrader.com/

350 L. Iribarne, J. M. Troya and A. Vallecillo

<type>xsd:float</type>

</property>

<property name="isRunningNow"

priority="2">

<type>xsd:boolean</type>

</property>

</properties>

</COTScomponent>

The last four parts of theClientQuery XML document
describe the selection criteria to be used. In the functional
part, apart from the services description, the required
kind of matching in each case can also be specified.
The client may specify whether the matchmaking process
should be exact or soft, and optionally the matchmaking
program to be used (in that case, the program originally
stated in the target COTS component description is
ignored).

Property-based matching is done in the usual way for ODP
traders, using constraints and preferences. Constraints are
Boolean expressions consisting of service property values,
constants, relational operators (<, >=, =, !=), logical
operators (not, and, or) and parenthesis, that specify
the matching criteria in order to include a component
in the trader’s list of candidates for the current search.
Constraints are evaluated by the trader by substituting the
property names with their actual values, and then evaluating
the logical expression. Components whose constraints are
evaluated to be false are discarded. We have used the
notation defined in the W3C’s XML QueryAlgebra proposal
to write the matching expression (http://www.w3.org/
TR/query-algebra/).

Another issue during the selection/matching process
is resolving conflicts between contradictory properties.
Assigning priorities is one of the possible solutions to deal
with conflicts. Priorities can be assigned to each first-level
property in the<properties> tag, using the scale 0
(very low) to 9 (very high), which is the scale commonly
used in many decision-making processes. For instance,
some security properties may be in conflict with some
performance requirements (security checks may consume
some time, which will have a negative impact on the
response time of the component). Assigning priorities can
help to decide the order between components in case none
of them implement all required properties (e.g. a very fast
but not secure component versus another component that
implements security mechanisms but with a slower response
time than required).

Preferences allow the sorting the list of candidates accord-
ing to a given criterion using the termsfirst, random,
min(expr) and max(expr), whereexpr is a simple
mathematical expression involving property names [19].

Finally, packaging and marketing information is matched
using expressions that relate the values in the appro-
priate tags (<packaging> or <marketing>) of the
COTSdescription query. In this example, the notation
defined in the W3C’s QueryAlgebra proposal is used again
for building the ‘select’ expressions.

4.3. The trading process

COTStrader is an implementation of a trading service that
provides a mapping between a client query (i.e. an import
operation) and a set of COTS components that may act as
valid service providers for that query (exporter candidates).
We have already discussed the notation for exporting and
importing services, by means of XML documents. In this
section, we will discuss how the trading process works, and
how potential clients can make use of it.

Our implementation of theCOTStrader consists of a
CORBA object, which has two main interfaces,Register
and Lookup, similar to the ones supported by the ODP
trader.

module COTStrader {

interface Register {

boolean export (in string

XMLCOTSComponent,

in string userID,

out string results);

boolean withdraw(in string

XMLCOTSComponent,

in string userID,

out string results);

boolean replace (in string

oldXMLCOTSComponent,

in string olduserID,

in string

newXMLCOTSComponent,

in string newuserID,

out string results);

};

interface Lookup {

boolean query (in string

XMLCOTSqueryTemplate,

in long

MaxCandidates,

in boolean

StoreAndForward,

out long nHits,

out string templates,

out string results);

};

};

The three methods of interfaceRegister allow
registration of a COTScomponent document in the
trader, repository, its removal and updating of this
information respectively. All methods returnTRUE if the
operation succeeds,FALSE if it fails. The results
parameter contains a description of the failure in the
latter case.

InterfaceLookup has only thequery operation, used
to look for components. In addition to theCOTSquery
template with the selection criteria, the user may specify the
maximum number of candidates to be returned, and whether
a ‘store-and-forward’ policy is followed. This operation
returns the number of services found and a string with the

The Computer Journal, Vol. 47, No. 3, 2004

http://www.w3.org/

Trading Service for COTS Components 351

sequence ofCOTScomponent templates, one for each
component found.

COTS vendors may export their services to the
COTStrader using either a push or a pull model. In the first
case, the exporter directly accesses the trader and registers
the component information using the operations listed above.
Apart from this CORBA interface, we have built a portal to
access theCOTStrader services using Web forms.

In the pull model, the exporter only has to leave the
XML document with the component template in a place
accessible to Web search engines. Together with the basic
trader we have also developed another component called the
ServiceFetcher, which uses automated searchers (bots) and
well-known search engines to locate Web pages that contain
XML descriptions of services, i.e.COTScomponent
templates. Once found, they are automatically registered at
theCOTStrader.

Our current implementation ofCOTStrader just keeps a
database with the XML registered templates, which serves
as its repository. In this sense, it is just a prototype
implementation to validate the feasibility of our proposal.

Once a query is received, the trader looks in the repository
trying to match existing component descriptions with the
required one. The algorithm currently followed by the
COTStrader to match whether a COTSquery templateQ

matches a templateT from the repository (hence includingT
in the list of candidates for that query) performs the following
steps:

(i) If a <marketingMatching> tag is present inQ,
the QueryAlgebra expression is evaluated for the
fields of the corresponding tag ofT referenced in
the expression.T is discarded if the expression is
evaluated to be false. It may happen that any field in
the expression is present inT ; in this case the expres-
sion evaluates toTRUE.

(ii) The same happens for the<packaging-
Matching> tag.

(iii) The same happens for the<propertyMatching>
tag (which includes not only quality properties, but
also keywords etc). In this case, the dynamic
properties should be evaluated prior to evaluating the
QueryAlgebra expression. The criterion described in
the<preferences> tag is used to insertT into the
list of candidates, in case it is finally selected.

(iv) Functional information is then matched using the
‘matching’ programs. Signatures (provided and
required interfaces, in this order) are matched first,
then events if they are indicated, then choreographies
and finally behaviors. This follows the usual least-
cost pattern [37], which first filters those functional
elements that are easier to test.

In the case of functional elements, the templates might
specify the matching programs for every particular element:
interface, behavior or protocol (events are only syntactically
matched).

(i) In case a matching programm is specified inQ for
a particular element, and the notations in which the

elements are described inQ andT are compatible,
the programm is used for the element.

(ii) If there is no such matching program specified inQ,
but there is one inT , it is used.

(iii) Otherwise, if there is a default matching program in
theCOTStrader that can handle the notation in which
the elements to be matched are described, it is used.

(iv) Otherwise, the component is marked as ‘potential’
candidate, since no checks are possible for that
particular element.

After repeating this process for all elements inQ, template
T is: (a) discarded if any of the tests has failed, (b) included
in the list of candidates if all tests have succeeded or
(c) considered as ‘potential’ candidate if all tests have either
succeeded or there was no matching program for a particular
functional element. The manner of dealing with ‘potential’
candidates will depend on the sort of matching selected by
the client (soft or exact).

(i) In the case of soft matching,T is included in the list
of candidates, after those which passed all the tests.

(ii) In the case of exact matching, our algorithm compares
only the signature information, checking that:
(a) all provided interfaces and consumed events

defined inQ should be present inT , and they need
to be syntactically equal;

(b) the sets of required interfaces and emitted events
in Q should be a superset of those inT , using a
syntactic match.

5. BUILDING COTS-BASED SYSTEMS USING
THE TRADER

As mentioned in the Introduction section, CBSD challenges
some of the current Software Engineering methods and
tools. For instance, the traditional top-down or bottom-up
development methods are not directly transferable to CBSD.
Here, the system designer has also to take into account the
specification of pre-developed COTS components available
in software repositories, incorporating them into all phases
of the development process [1, 2, 3].

Current solutions addressing these issues are usually based
on spiral methodologies (see e.g. [12]), which progressively
produce more detailed requirements, architectural specifica-
tions and system designs by repeated iterations.

A good methodology for CBSD that follows this
approach is due to Cheesman and Daniels [38]. After
the requirement analysis phase, an abstract and preliminary
software architecture of the system is defined from the user’s
requirements, which defines its high-level structure, exposing
its organization as a collection of interacting components.
These are called abstract components that are then matched
against the list of concrete COTS components available in
software repositories. This is the so-called gap analysis
problem for which our trader tries to provide a solution. This
trading process produces a list of the candidate components
that could form part of the application: both because they
provide some of the required services, and because they may

The Computer Journal, Vol. 47, No. 3, 2004

352 L. Iribarne, J. M. Troya and A. Vallecillo

GTS (Geographic
Translator Service)

SC (Sender
Component)

RC (Receiver
Component)

(1) XML request

(2) Translate image
from XML request

(3) UUID Image
Translated Reference

Image Reference

(5) Pull Translated
Image from UUID

(4) Send UUID Image
 Reference

FIGURE 1. A schematic view of the GTS example.

fulfil some of the user’s (extra-functional) requirements such
as price, security limitations etc.

With this list, the system architecture is re-examined in
order to accommodate as many candidates from the list as
possible. There are usually different ways to combine the
candidate components to build the system. Such different
combinations (that we will call configurations) need to be
generated and then shown to the system designer for a
decision to be made: which configuration is the one that best
matches the user requirements, which components are still
missing and hence need to be developed and how much the
initial software architecture should be changed (and whether
it is worth changing) in order to accommodate the COTS
components found.

Then, the system requirements are matched by the soft-
ware architect against those provided by the obtained
architecture, and revised if needed. The process starts again
until a software architecture that meets the user require-
ments and is ‘implementable’ from COTS components is
obtained [38].

As we can see, the software architecture is refined
(re-adjusted) at each step of the iteration. At the initial stages,
instead of specifying abstract component interfacesa priori,
they are obtained after analyzing the software components
offered in the component marketplace. The first trading for
components is made basically looking for the main required
‘features’ of the components, using just selected keywords,
and ‘soft’ matchmaking. As the architecture gets more and
more refined, the searches are based on more ‘exact’ matches.
In this way, the architecture of the system is always built by
taking into account the third-party components available in
software repositories, using a bottom-up approach.

In this section we will see an example of how it is possible
to integrate theCOTStrader into this kind of spiral process,
automating most of the search and selection activities.

5.1. An example application

In order to illustrate our proposal we will use another
example, extracted from a large application we developed
within an industrial project, in which COTS components had
to be used as much as possible. The example application
comes from the distributed geographic information systems

(GIS) arena, and consists of a common service to convert
spatial images, usually known as a Geographic translator
service (GTS). Briefly, a Sender component needs to send
a formatted image to a Receiver component, but instead of
sending it directly, it uses a translator service for dealing
with all the issues related to image format conversion
and compression. This simplifies both the Sender and
the Receiver, taking away from them all those format-
compatibility issues.

The way the service works is shown in Figure 1. First,
the Sender forwards a request to the GTS with the required
service and its related information:

<image url="http://.../download/">

<name input="RiverImage"

output="RiverImage"/>

<format input="DWG" output="DXF"/>

<compression input=".zip" output=".tar"/>

</image>

Then, the GTS downloads a zip-compressed DWG image
from thehttp site, generates a DXF file with the same name,
stores it in a buffer, associates a unique (Universal Unique
IDentifier UUID) to it and returns the UUID to the Sender to
extract the converted file from the GTS buffer.

The following sections briefly describe how the example
system was built. The interested reader can consult [39] for
a more detailed description of this example.

5.2. Describing software architectures

Complex software systems and applications require expres-
sive notations to represent their architectures. Traditionally,
specialized Architecture Description Languages (ADLs)
have been used, allowing the formal description of the struc-
ture and behavior of the architecture of the application being
represented [40]. However, the formality and lack of visual
support of most ADLs have encouraged the quest for more
user-friendly notations.

One of the proposals that makes use of UML to represent
software architectures is UML-RT [41], which originally
defined UML extensions for modeling real-time systems, but
that has also been successfully used in wider environments,
in particular to describe the software architecture of financial
and banking systems [42]. It is also supported by commercial
tools (e.g. Rational Rose RealTime).

Figure 2 shows the software architecture of the example
application drawn using UML-RT. Components are repre-
sented by means of UML-RT capsules. Users’ requirements
and other component properties are documented by means of
UML notes and tagged values (not shown for simplicity in
the drawing).

This subsystem contains a main component, the
Translator, which uses the services of four other compo-
nents: a file compressor, a geographical image converter,
a buffer for storing the image files, and a component for
intermediate representation and manipulation of the XML
data. ComponentsXDR and XMLBuffer use another
component (DOM) to deal with XML documents using the

The Computer Journal, Vol. 47, No. 3, 2004

Trading Service for COTS Components 353

+/ImageTranslator
:ProtTransImg

+/XMLBuffer
:ProtBuffer~

+/FileCompressor
:ProtComp

/fC:FileCompressor

/iT:ImageTranslator

+/ImageTranslator
:ProtTransImg~

+/XDR
:ProtXdr

+/XDR
:ProtXdr~

+/Element
:ProtElem~

+/Document
:ProtDocum~

+/Document
:ProtDocum

+/Element
:ProtElem

+/Element
:ProtElem

+/Document
:ProtDocum

+/Translator
:ProtTrans~

+/transProv
:ProtTrans~ +/FileCompressor

:ProtComp~

+/XMLBuffer
:ProtBuffer

/trans:Translator

/xmlBuf
:XMLBuffer

/dom:DOM

/xDR:XDR

GTS Component

FIGURE 2. The GTS software architecture in UML-RT.

DOM model. The interface of theDOM component is
available in commercial software packages such as IBM
XML4J or Sun JAXP.

5.3. Extracting component information

Once the software architecture of the application is drawn, the
information about the components, the services they offer and
require, and their properties must be extracted from the UML-
RT diagram. For that purpose we use a process that parses
the (RTMDL) files produced by Rational Rose RealTime,
and produces a list of XMLCOTScomponent templates
with the description of the components found in that
architecture. Moreover, we have a generic tool that processes
XML Metadata Interchange (XMI) files (www.omg.org) and
produces theCOTScomponent templates, since we did not
want to commit to any particular tool or graphical notation.

5.4. Invoking the trader services

Once we have a list ofCOTScomponent templates
describing the services that the components in our system
should have, the next step is to invoke the trader. For
each of those templates describing the abstract components,
the trader produces a list of candidate components, which
are available to implement the system. This process was
described in detail in Section 4.

As we mentioned earlier, the matching operations start
with ‘soft’ matches (basically, by looking for keywords only)
and get more and more ‘exact’ in each iteration, as the

software architecture gets progressively refined. Typical
(increasingly stronger) levels of matching are: keywords,
marketing and packaging information (operating systems,
component models etc.), quality properties, interface
names, interface operations and behavioral and semantic
information. Although the latter matchings are in theory very
useful, our experience shows that it is difficult to go beyond
the level of looking for quality properties. Software vendors
do not even include the names of the interfaces that provide
their services, not to mention their semantics [10].

5.5. Building ‘configurations’

Traditionally, the search and matching processes of
components have been defined on a one-to-one basis
[30, 31, 37], whereby each component implements just one
service, and requires none. However, this is not the common
case in most real applications; in general, COTS components
are coarse-grained components that integrate several services
and offer several interfaces. Think for instance of an Internet
navigator or a word processor: apart from their core services
they also offer many other services, such as Web page
composition, spell check etc.

The trader can help to find and locate those components
that implement any of the services specified in the system
architecture. In this step, we face the problem of defining
those ‘combinations’ of the components found by the
trader that may implement the system (or parts of it). Of
course, there are usually many different ways of combining
the components found, since more than one component may

The Computer Journal, Vol. 47, No. 3, 2004

354 L. Iribarne, J. M. Troya and A. Vallecillo

offer the same service (as may usually happen in the case of
complex components providing several services). Let us call
configurations to every alternative combination that can be
built with the components found by the trader [15].

Not all configurations are ‘valid’ for building the system.
The goal is to find those configurations with no service gaps
and no service overlaps. Gaps happen when any component
in a configuration provides one of the services required by
the architecture. On the contrary, overlaps happen when two
or more components in the same configuration provide the
same service.

The task of building valid configurations from the set of
candidate components found by the trader is not an easy task,
especially when components may offer and require more than
one service simultaneously. The idea is to start exploring
all the possible alternatives, and discard those with gaps or
overlaps.

A backtracking algorithm to build valid configurations
has been reported in a separate work [15], together with a
more rigorous definition of the concepts ‘valid configuration’,
‘closure’ etc. The implementation of the algorithm is now
part of the tool suite that accompanies the trader, and can be
obtained at theCOTStrader Web site. In [15] we also discuss
the process of ordering the valid configurations according to
some criteria, and how they are presented to the software
architect, for him/her to decide which is the most suitable for
his/her system.

In our example, we had a COTS component repository
built from the information provided by different software
component vendors. The trader found eight components
which provided one or more of the seven services required by
the components specified in the architecture. Out of the 28 =
256 possible combinations, 24 were valid configurations of
which only five were closed. ([39] contains a complete
description of this example.)

It is now up to the system architect to decide, based on
the list of configurations produced, how to proceed. For
instance, the system designer may decide to use one of the
configurations obtained, it being the best one that matches
his/her requirements. But he/she may also decide to review
the initial architecture in order to accommodate it to the
components found if any configuration really satisfies the
requirements. With this new architecture, he/she may start
the process again.

6. RESULTS AND DISCUSSION

In this section we will discuss some of the issues that cur-
rently have an impact on the applicability of our proposal
in commercial environments. The first issue is about the
documentation of components. There are several proposals
for documenting them, using different notations and strate-
gies [3]. Most of the approaches agree on the basic
information that needs to be captured in order to build
component-based systems (e.g. [10, 43, 44, 45]. However,
few of the proposals are supported by tools, and probably
none is widely accepted by the industry for documenting
commercial software components.

In order to validate our proposal we tried to build the
GIS example application described in Section 5.1 using
COTS components. First of all, we surveyed the Web sites
of different software component providers (such as IBM,
Sun, ComponentSource, Flashline and OpenSource RedHat
Community), trying to fill-in our component templates with
the information available about the components they sell
or license. The study was conducted during the first half
of 2002, and the repository built with these samples can
be found at http://www.cotstrader.com/samples/templates/
repository.

The results clearly show the gap between what is claimed
by the research community about the information needed for
component reuse (especially if we want to have automated
support), and the (scarce) information provided by software
component vendors. More precisely, we found that only
25–40% of the information described in our templates was
available from the vendors.

• <marketing> Most of this information is available
from most vendors.

• <packaging> Basically, only deployment character-
istics are available: CPUs, operating systems etc.

• <properties> Extra-functional information was
difficult to find, apart from some of the supported
features, and some very specific characteristics. For
instance, in the case of the spatial image conversion
components (such as BBN’s OpenMap or ESRI’s
MapObject) there was information available about the
supported conversions (DXF, DWG, MIF, …), map
projections (Orthographic, Polyconic, Azimuthal, …)
or the coordinate systems handled (UTM, GKM,
ECEF). But very little extra-functional information was
found about the quality of service provided, for instance.

• <functional> Apparently, the most ‘technical’
and ‘easy-to-provide’ information. Most academic
proposals for effective CBSD provide successful
solutions based on this kind of information (component
interfaces and behavioral semantics), without which
(automated) CBSD seems unaffordable. However, that
was surprisingly the most difficult information to be
found. The very few vendors that provided some
functional information described just (some of) the
names of the supported interfaces, but nothing about
their operations, or their protocols or semantics.

These results evidence the need of better component
documentation, if effective component search and selection
processes are to be achieved. Our evidence shows that we are
currently far from this, since we cannot even count with the
functional information required for checking whether a given
COTS component fits into a software architecture described
by the interfaces and method names of its constituent
components.

Finally, another issue worth mentioning is that trading
can be particularly effective in the case of large companies
working in very specific environments, and/or using product-
line architectures [46] that rely on in-house repositories of
components previously developed for similar applications.

The Computer Journal, Vol. 47, No. 3, 2004

http://www.cotstrader.com/samples/templates/

Trading Service for COTS Components 355

7. RELATED WORK

Two main research lines can be related to ours: the design of
software component traders, and the documentation of COTS
components so that they can be fully integrated into Software
Engineering practices and methodologies.

Most of the existing traders (e.g. [20, 21, 22, 23, 24,
25, 26]) follow the ODP model [19] (which is also the one
adopted by the OMG), and therefore have similar features,
advantages and disadvantages, as we have already discussed
in Section 2.2. An approach that somehow distinguishes it
from the rest, and which claims that an enhanced model for
trading is needed for Internet-based software development is
called WebTrader [11]. This proposal uses XML to describe
component services, but the problem is that the information
it manages about components is somehow limited (actually,
it is very close to the information handled by the standard
ODP trader).

A proposal very similar to ours is called Component-
Xchange [44], which also uses an XML-based specification
language for components, and implements a component
broker over the Internet. However, it is quite focused on
e-commerce, forcing components to be license-aware and
imposing the trader to be involved in the transaction. Fur-
thermore, it does not deal with any behavioral description of
the semantics of the components and has limited support for
some of the features required for COTStrader, such as imple-
menting a pull-based model and store-and-forward requests.

Agora is an interesting search engine for components
developed at the SEI, that provides agents that crawl the
Web for components [45]. The components descriptions are
indexed and stored in the search engine. However, Agora
deals only with the syntactic aspects of components, without
considering the rest of their aspects (packaging, marketing,
properties etc.).

There is also a directory service for WebServices, called
(Universal Description, Discovery, and Integration UDDI,
http://www.uddi.com). The companies that are willing to
advertise a WebService they provide, must register at a
(UDDI Business Registry UBR), which is the repository used
by UDDI to locate WebServices. A UBR repository contains
data about the registered companies structured in white,
yellow and green pages. White pages contain information
about the company providing the service. Yellow pages
group companies according to the kind of services they
provide. Finally, green pages contain the references to
the WebServices Definition Language (WSDL) description
of the services provided by a company, i.e. the technical
description of the offered WebServices.

Apart from using these technical descriptions, searches are
focused on aspects of location, binding and communication
of WebServices. Precisely, one of the limitations of UDDI
comes from the fact that these technical descriptions rest
on WSDL, which only allows the capture of functional
information about the services being described, and that
too only at the signature level (it does not allow any
behavioral or protocol descriptions). Furthermore, extra-
functional information (e.g. quality-related attributes) about

services cannot be captured with WSDL either, hindering the
automated assessment and selection of WebServices based on
extra-functional requirements and architectural constraints.
In this sense, UDDI provides a very useful and complete
directory service, but it cannot really be regarded as a
trader: a trading service can be considered as an advanced
directory service which allows attribute-based search [47].
Besides, as a directory service, UDDI does not currently
implement two features common to traders: federation and
query propagation. Although the UDDI specification allows
the concept of ‘affiliation’, it does not really contemplate
the possibility of federation of UDDI repositories. Query
propagation between different UBRs is not allowed either.

Regarding the documentation of components, this is
currently a hot topic, and many authors are making different
proposals [48]. To mention some of them, IBM is working
on a proposal to document their large-grained components
(www.ibm.com/software/components), and there are several
good proposals from SEI (www.sei.cmu.edu) claiming better
component documentation. Han [43] has defined some
component specification templates in a joint project with
Fujitsu, Australia, which provide semantic information for
proper usage and selection of components, in addition to
their standard signature description. Bastideet al. [49]
and Canalet al. [32] are among the authors that propose
IDL extensions in order to deal with protocol information
using Petri nets andπ -calculus respectively. Finally, Alves
et al. [8] are working on the extra-functional side of
components, trying to add this kind of information to
commercial components, with the goal of relating it to the
architectural specification of the applications, too. Our
proposal for documenting components just tries to provide
a common template to integrate most of these different
notations, aiming at being flexible and versatile enough to
host all of them.

8. CONCLUSIONS AND FUTURE WORK

CBSD aims at building software systems by searching,
selecting, adapting and integrating (COTS) software
components. In a world where the complexity of the
applications is continuously growing, and the amount of
available information is becoming too large to be handled
by human intermediaries, automated trading processes need
to play a critical role.

In this paper we have analyzed the features that COTS
components traders should have in open systems, and
presentedCOTStrader, an Internet-based trader for COTS
components that addresses the heterogeneity, scalability and
evolution of COTS markets. Furthermore, we have shown
how it can be integrated into some kinds of spiral CBSD
methodologies, providing partially automated support for
COTS components search and selection processes.

There are several possible extensions to our work. In the
first place, theCOTStrader fulfils some of the requirements
described in Section 2.1, but does not implement all of
them. Some issues remain open, such as the dynamic
service composition and adaptation, the definition and usage

The Computer Journal, Vol. 47, No. 3, 2004

http://www.uddi.com

356 L. Iribarne, J. M. Troya and A. Vallecillo

of heuristic functions or the query delegation. ‘Semantic’
trading is not covered by our proposal either, since we do not
currently deal with concepts, ontologies or knowledge-based
trading.

We also need more tools to automate the matchmaking
operators at the protocol and semantic levels. Compatibility
and replaceability of services are two of the key issues in
CBSD, together with predictable assembly, and therefore the
automated support for them seems to be crucial.

Moreover, the emergence of Semantic Web cannot be
ignored. Part of our current efforts is focused on enhancing
the COTStrader to deal with the new Web advances,
integrating our proposal with their notations (WSDL, WSFL,
RDF), resources and repositories, so they can be successfully
handled by theCOTStrader.

Likewise, we are building bridges to other existing traders
(especially to CORBA ones). The idea is to be able to connect
COTStrader with other trading services tied to particular
component technologies, aiming at the provision of a more
complete and global COTS trading service.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees
for their insightful comments and suggestions that greatly
helped them improve the contents and readability of the paper.
This work has been partially supported by Spanish CICYT
Projects TIC2002-04309-C02-02 and TIC2002-03968.

REFERENCES

[1] Mili, H., Mili, F. and Mili, A. (1995) Reusing software: issues
and research directions.IEEE Trans. Softw. Eng., 21, 528–562.

[2] Robertson, S. and Robertson, J. (1999)Mastering the
Requirement Process. Addison-Wesley and ACM Press.

[3] Wallnau, K. C., Hissam, S. A. and Seacord, R. C. (2002)
Building Systems from Commercial Components. Addison-
Wesley, Boston.

[4] Tran, V. and Liu, T. (1997) A procurement-centric model for
engineering component-based software systems. InProc. Fifth
Int. Symp. on Assessment of Software Tools, Pittsburgh, PA,
USA, June 3–5, pp. 70–79. IEEE Computer Society Press.

[5] Garlan, D., Allen, R. and Ockerbloom, J. (1995) Architectural
mismatch: why reuse is so hard.IEEE Softw., 12, 17–26.

[6] Ncube, C. and Maiden, N. (2000) COTS software selection:
the need to make tradeoffs between system requirements,
architectures and COTS components. InCOTS Workshop:
Continuing Collaborations for Successful COTS Development,
Limerick, Ireland, June 4–5. ACM Press.

[7] Vallecillo, A., Hernández, J. and Troya, J. M. (2000)
New issues in object interoperability. InObject-Oriented
Technology: ECOOP 2000 Workshop Reader, Lecture Notes
in Computer Science,1964, Sophia Antipolis and Cannes,
France, June 12–16, pp. 256–269. Springer-Verlag.

[8] Alves, C. F., Rosa, N. S., Cunha, P. R. F., Castro, J. F. B.
and Justo, G. R. R. (2001) Using non-functional requirements
to select components: a formal approach. InProc. Fourth
Iberoamerican Workshop on Requirements Engineering and
Software Environments (IDEAS’01), San José, Costa Rica,
April 3–6. Instituto Technológico de Costa Rica.

[9] Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J. (1999)
Non-Functional Requirements in Software Engineering.
Kluwer Academic Publishers.

[10] Bertoa, M. F., Troya, J. M. and Vallecillo, V. (2003) A
survey on the quality information provided by soft-
ware component vendors. InProc. 7th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engi-
neering (QAOOSE 2003), Darmstadt, Germany, July 21–25,
pp. 25–30. Universidade Nova de Lisboa.

[11] Vasudevan, V. and Bannon, T. (1999) Webtrader: discovery
and programmed access to web-based services.Poster at the
8th Int. WWW Conf. (WWW8), Toronto, Canada, May 11–14.
University of Toronto.

[12] Nuseibeh, B. (2001) Weaving together requirements and
architectures.IEEE Comp., 34, 115–117.

[13] Szyperski, C. (1998)Component Software. Beyond Object-
Oriented Programming. Addison-Wesley Professional.

[14] Brown, A. W. and Wallnau, K. (1999) The current state of
CBSE.IEEE Softw., 15, 37–46.

[15] Iribarne, L., Troya, J. M. and Vallecillo, A. (2002) Selecting
software components with multiple interfaces. InProc. 28th
Euromicro Conf., Dortmund, Germany, September 4–6,
pp. 26–32. IEEE Computer Society Press.

[16] Nierstrasz, O. (1995) Regular types for active objects. In
Nierstrasz, O., and Tsichritzis, D. (eds),Object-Oriented
Software Composition. Prentice-Hall, pp. 99–121.

[17] Leavens, G. T. and Sitaraman, M. (2000)Foundations of
Component-Based Systems. Cambridge University Press.

[18] Canal, C., Pimentel, E. and Troya, J. M. (2001) Compatibility
and inheritance in software architectures.Sci. Comput.
Program., 41, 105–138.

[19] ISO/IEC 13235, ITU-T X.9tr (1996) Information
Technology—Open Distributed Processing—ODP Trad-
ing Function. International Organization for Standarization
and International Telecommunication Union.

[20] IONA (2000) ORBacus trader. ORBacus forC++ and
Java. Object Oriented Concepts, Inc., IONA. http://www.ooc.
com/ob.

[21] PrismTech (2001)Trading Service—White Paper. PrismTech
OpenFusion, Enterprise Integration Services. http://www.
prismtechnologies.com.

[22] Shmidt, D. C. (2001)AceORB (TAO). The Adaptative
Communication Environment. Department of Computer
Science and Engineering, Washington University, USA. http://
www.cs.wustl.edu/∼schmidt/TAO.html.

[23] Bearman, M. (1997)Tutorial on ODP Trading Function.
Faculty of Information Sciences Engineering, University of
Canberra, Australia.

[24] Beitz, A. and Bearman, M. (1995) An ODP trading service
for DCE. In Proc. First Int. Workshop on Services in
Distributed and Networked Environments (SDNE), Prague,
Czech Republic, June 27–28, pp. 42-49. IEEE Computer
Society Press.

[25] Kutvonen, L. (1996) Overview of the DRYAD trading system
implementation. In IFIP/IEEE Int. Conf. on Distributed
Platforms, New York, USA, May 21–23, pp. 314–326.
Chapman and Hall.

[26] Merz, M., Muller, K. and Lamersdorf, W. (1994) Service
Trading and Mediation in Distributed Computing Systems.
In Proc. 14th Int. Conf. on Distributed Computing Systems,
Poznan, Poland, June 21–24, pp. 450–457. IEEE Computer
Society Press.

The Computer Journal, Vol. 47, No. 3, 2004

http://www.ooc
http://www
http://

Trading Service for COTS Components 357

[27] OMG ad/2001-08-19 (2001)A UML Profile for Enterprise
Distributed Object Computing V1.0. Object Management
Group.

[28] Dhara, K. K. and Leavens, G. T. (1996) Forcing behavioral
subtyping through specification inheritance. InProc. 18th
Int. Conf. on Software Engineering (ICSE-18), Berlin,
Germany, March 23–30, pp. 258–267. IEEE Computer Society
Press.

[29] Mili, R., Desharnais, J., Frappier, M. and Mili, A. (2000)
Semantic distance between specifications.Theoret. Comp.
Sci., 247, 257–276.

[30] Zaremski, A. M. and Wing, J. M. (1995) Signature matching:
a tool for using software libraries.ACM Trans. Softw. Eng.
Methodol., 4, 146–170.

[31] Zaremski, A. M. and Wing, J. M. (1997) Specification
matching of software components.ACM Trans. Softw. Eng.
Methodol., 6, 333–369.

[32] Canal, C., Fuentes, L., Pimentel, E., Troya, J. M. and
Vallecillo, A. (2003) Adding roles to CORBA objects.IEEE
Trans. Softw. Eng., 29, 242–260.

[33] ISO/IEC 10746:1-4, ITU-T X.901-904 (1997)RM-
ODP. Reference Model for Open Distributed Process-
ing. International Organization for Standardization and
International Telecommunication Union.

[34] Iribarne, L., Vallecillo, A., Alves, C. and Castro, J. (2001)
A non-functional approach for COTS components trading.
In Proc. Fourth Workshop on Requirements Engineering
(WER’01), Buenos Aires, Argentina, November 22–23,
pp. 124–138. Universidad Technológica Nacional de Buenos
Aires.

[35] OMG TC/2002-06-65 (2002)The CORBA Component Model.
Object Management Group.

[36] Bertoa, M. F. and Vallecillo, A. (2002) Quality attributes for
COTS components.I+D Computación, 1, 128–144.

[37] Goguen, J. A., Nguyen, D., Meseguer, J., Luqi, Zhang, D.
and Berzins, V. (1996) Software component search.J. Syst.
Integration, 6, 93–134.

[38] Cheesman, J. and Daniels, J. (2001)UML Components.
A Simple Process for Specifying Component-based Software.
Addison-Wesley.

[39] Iribarne, L., Troya, J. M. and Vallecillo, A. Trading for COTS
components to fulfil architectural requirements. In Lycett,

M. G., de Cesare, S. and Macredie, R. D. (eds)Development
of Component-Based Information Systems. M. E. Sharpe, Inc.,
to appear.

[40] Medvidovic, N. and Taylor, R. N. (2000) A classification and
comparison framework for software architecture description
languages.IEEE Trans. Softw. Eng., 26, 70–93.

[41] Selic, B. and Rumbaugh, J. (1998) Using UML for
modeling complex real-time systems. Available at http://www.
rational.com/media/whitepapers/umlrt.pdf.

[42] Bastos, L. and Castro, J. (2002) An event based layered
architecture for bank system. InProc. Fifth Iberoamer-
ican Conf. on Requirements Engineering and Software
Environments (IDEAS’02), La Havana, Cuba, April 23–26,
pp. 138–148. University of La Havana.

[43] Han, J. (2000) Temporal logic based specifications of com-
ponent interaction protocols. In Vallecillo, A., Hernández, J.
and Troya, J. M. (eds)Proc. ECOOP 2000 Workshop on
Object Interoperability (WOI’00), Lecture Notes in Computer
Science,1850, Sophia Antipolis and Cannes, France, June
12–16, pp. 43–52. Springer-Verlag.

[44] Varadarajan, S., Kumar, A., Gupta, D. and Jalote, P.
(2002) ComponentXchange: an e-exchange for software
components. InProc. IADIS Int. Conf. WWW/Internet 2002,
Lisbon, Portugal, November 13–15, pp. 62–72. IADIS
Press.

[45] Seacord, R. C., Hissam, S. A. and Wallnau, K. C. (1998)
Agora: a search engine for software components.IEEE
Internet Comput., 2, 62–70.

[46] Bosch, J. (2000)Design & Use of Software Architectures.
Addison-Wesley.

[47] Kutvonen, L. (1995) Achieving interoperability through
ODP trading function. In Second Int. Symp. on Au-
tonomous Decentralized Systems (ISADS’95), Arizona, USA,
April 25–27, pp. 63–69. IEEE Computer Society Press.

[48] Lüders, F., Lau, K.-K. and Ho, S. (2002) Specification of
software components. In Crnkovic, I. and Larsson, M. (eds)
Building Reliable Component-based Systems. Artech House,
London, pp. 52–69.

[49] Bastide, R., Sy, O. and Palanque, P. (1999) Formal
specification and prototyping of CORBA systems. InProc.
ECOOP’99, Lecture Notes in Computer Science,1628,
Lisbon, Portugal, June 14–18, pp. 474–494. Springer-Verlag.

The Computer Journal, Vol. 47, No. 3, 2004

http://www

