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Abstract. Current agent-oriented methodologies focus mainly on multi-agent 
systems analysis and design, but without providing straightforward connections 
to the implementation of such systems on any of the existing agent platforms 
(e.g. FIPA-OS, Jade, or Zeus), or just forcing the use of specific agent 
platforms. In this paper we show how the Model Driven Architecture (MDA) 
can be effectively used to derive agent implementations from agent-oriented 
designs, independently from both the methodology used and the concrete agent 
platform selected. Furthermore, this transformation process can be defined in an 
scalable way, and partly automated thanks to the use of a platform-neutral agent 
model, called Malaca. 

1   Introduction 

Software agents are becoming a widely used alternative for building open and 
distributed applications, developed as Multi-Agent Systems (MAS). This recognition 
has led to consider agent technology as a promising paradigm for software 
development [1]. As a result, several agent-oriented methodologies for developing 
MAS have been recently proposed [2], with the aim to provide tools, practical 
methods, and techniques for developing MAS. 

The variety of methodologies may become a problem for the software developer 
when it comes to select the best-suited methodology for a given application domain. 
Selection criteria may include aspects such as the effort required to learn and to use, 
completeness, documentation, and suitability. Recent works (e.g., [3, 4, 5, 6]) provide 
comparison studies between the different agent-oriented methodologies, showing the 
weaknesses and strengths of each one, with the aim to help the software engineer 
select the most suitable methodology in each case. The results clearly show that there 
is not a single unified and unique general-purpose methodology. FIPA [7] and OMG 
[8] have also created some technical committees focused on the identification of a 
general methodology for the analysis and design of agent-oriented systems, 
embracing current agent-oriented methodologies such as GAIA [9], MaSE [10], 
Tropos [11, 12] or MESSAGE [13]. The idea is to identify the best development 
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process for specific MAS. This work is being complemented with the definition of an 
agent-based unified modelling language (FIPA AUML work plan [14]).  

One of the main problems of these methodologies is that they cover the analysis 
and design phases of MAS development, but do not address the implementation 
phase, i.e., they do not completely resolve how to achieve the model derivation from 
the system design to a concrete implementation [9, 10, 13]. Thus, the software 
engineer is forced to either somehow select one of the existing agent platforms for 
implementing the agent-oriented design, or to use a concrete agent platform because it 
is the only one supported by the design methodology —which demands specialized 
skills from the developer. In the former case, the problem is that the criteria usually 
considered for choosing an agent platform are mainly based on the developer 
expertise, the programming language, available tools, or its recognition in the agent 
community. However, these criteria do not take into account the methodology used to 
design the MAS, for instance. 

Besides, this transformation process —which is not a trivial task, and could be, in 
some cases, quite complex to achieve— has to be defined in an ad hoc manner in each 
case, for each methodology and for each agent platform. Thus, every single developer 
has to define and implement the mappings and transformations from the design 
produced by the selected agent-oriented methodology, to the API’s provided by the 
particular agent platform, without any guidance or help. 

Our goal in this paper is to study how such gap can be bridged, thus covering the 
complete life cycle of MAS. Furthermore, we also analyze how much of this process 
can be automated, independently from the original methodology used to analyze and 
design the MAS, and from the agent platform selected to implement the system.  

In order to achieve such goal we will use the concepts provided by OMG’s Model 
Driven Architecture (MDA). MDA is a modelling initiative that tries to cover the 
complete life cycle of software systems, allowing the definition of machine-readable 
application and data models, which permit long-term flexibility of implementation, 
integration, maintenance, testability and simulation [15]. MDA defines platform-
independent models (PIM), platform-specific models (PSM), and transformations 
between them. 

In this paper we will show how our problem can be naturally expressed in terms of 
the MDA, and then how the MDA mechanisms can be used for defining (and partially 
automating) the mappings. By applying the MDA ideas, the design model obtained as 
the result of applying an agent-oriented methodology can be considered as a PIM, the 
target agent platform for the MAS as the PSM, and the mappings between the two can 
be given by the transformations defined for the particular agent platform selected. The 
target models needs to be expressed in terms of their corresponding UML profiles, as 
indicated by the MDA. 

However, when we initially tried to use this approach, we saw that it could work 
for some individual cases, but that it did not scale well for the ever-increasing number 
of agent-oriented methodologies and agent platforms: somebody had to define and 
automate the mappings between every agent-oriented methodology and every agent 
platform. This is not affordable at all. However, we then discovered that the use of a 
platform-neutral agent architecture could greatly simplify this task, since the numbers 
of mappings was significantly reduced. Thus, we propose the use of the agent model 
[16, 17] Malaca.). One of the most outstanding features of this agent architecture is 
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that it is possible to execute a Malaca agent on top of any FIPA-compliant agent 
platforms, i.e., it was designed to be independent from the underlying agent platform. 
Therefore we define mappings from agent-oriented methodologies to Malaca, and 
from Malaca to the different agent platforms. Consequently, with just one 
transformation between an agent-oriented methodology and the Malaca agent model, 
the resulting MAS could run in any agent platform. The developer could then deploy 
the MAS in any agent platform, depending on the availability, price, tools provided, 
etc. 

Moreover, as we will show later, the mappings and transformations from agent-
oriented methodologies such as Tropos to Malaca are very simple, and most of them 
can be easily automated due to the use of UML and AUML, a big step towards 
bridging the gap between agent-oriented design and MAS implementation. A 
significant feature of this architecture is that any Malaca agent can be “programmed” 
simply by editing XML documents. Since most of the UML diagrams can be 
expressed easily in XML, the transformations between agent-oriented methodologies 
and Malaca are direct. This architecture reduces the development time, cost and 
effort, and simplifies the implementation of multi-agent systems. 

In order to validate our proposal, mappings from one of the most representative 
agent-oriented methodologies to Malaca have been defined, namely from Tropos. 
They will be used throughout the paper for illustrating our approach. 

The structure of this paper is as follows. Section 2 provides a brief overview of 
Tropos methodology. Section 3 introduces the Malaca agent architecture, and its 
underlying agent model. Section 4 describes our main contribution, by showing how 
to use the MDA approach for mapping MAS designs into the Malaca model, which 
can be then run into any agent platform. Section 5 outlines some of the problems and 
limitations of our approach, as well as further research work that could help address 
such limitations. Finally, Section 6 draws some conclusions. 

2   Agent-Oriented Methodology Overview 

Agent-Oriented methodologies provide a set of mechanisms and models for 
developing agent-based systems. Most agent-oriented methodologies follow the 
approach of extending existing software engineering methodologies to include 
abstractions related to agents. Agent methodologies capture concepts like 
conversations, goals, believes, plans or autonomous behaviour. Most of them take 
advantage of software engineering approaches to design MAS, and benefit from UML 
and/or AUML diagrams to represent these agent abstractions.  

There are many methodologies with different strengths and weakness and different 
specialized features to support different applications domains. Clearly there is not a 
widely used or general-purpose methodology, but we took into account some issues 
like the modelling diagrams used, the kind of application domain it is appropriated 
for, and above all, the level of detail provided at the design phase and the available 
documentation. Some methodologies were not considered in this first approach 
because of their lack of public documentation or the level of detail achieve at the 
design phase. After examining current research in this area, and despite there were 
other good candidates, such as Mase [10], we only use Tropos [11,12] for illustrating 
our proposal.  
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2.1   Tropos 

Tropos [11] is an agent-oriented methodology created by a group of authors from 
various universities in Canada, Italy, Belgium and Brazil. Tropos is founded on the 
concepts of actor and goal and strongly focus on early requirements. The development 
process in Tropos consists in five phases: Early Requirements, Late Requirements, 
Architectural Design, Detailed Design and Implementation.  

The first phase identifies actors and goals represented by two different models. The 
actor diagram depicts involved roles and their relationships, called dependencies. 
These dependencies show how actors depend on each other to accomplish their goals, 
to execute their plans, and to supply their resources. The goal diagram shows a 
analysis of goals and plans regarding a specific actor in charge of achieving them. 
This analysis is based upon reasoning techniques such as AND/OR decomposition, 
means-end and contribution analysis. These models will be extended in the second 
phase, which models the system within its environment. 

The third phase is divided in three steps. In the first one, new actors, which are 
derived from the chosen architectural style, are included and described by an extended 
actor diagram. These actors fulfil non-functional requirements or support sub-goals 
identified in the previous phase. The second and third steps identify the capabilities, 
and group them to form agent types, respectively. The last step defines a set of agent 
types and assigns each of them a set of capabilities. This assignment, which is not 
unique and depends on the designer, is captured in a table. 

The Detailed Design phase deals with the detailed specification of the agents’ 
goals, belief and capabilities. Also communication among agents is specified in detail. 
This phase is usually strictly related to implementation choices since it is proposed 
within specific development platforms, and depends on the features of the adopted 
agent programming language. This step takes as input the specification resulting from 
the architectural design and generates a set of UML activity diagrams for representing 
capabilities and plans, and AUML sequence diagrams for characterizing agent 
interaction protocols. AUML is an extension of UML to accommodate the distinctive 
requirements of agent, which results from the cooperation established by FIPA and 
the OMG. This is achieved by introducing new classes of diagrams into UML such as 
interaction protocol diagrams and agent class diagrams. 

Finally, the implementation phase follows the detailed design specification given 
in the previous phase. Tropos chooses a BDI platform for the implementation of 
agents, namely JACK Intelligent Agent [18], an agent-oriented development 
environment built on top of Java. The main language constructs provided by this 
platform (agents, capabilities, database relations, events and plans) have a direct 
correspondence with the notions used in the Tropos design phase. In addition, Tropos 
provides guidelines and heuristics for mapping Tropos concepts into BDI concepts, 
and BDI concepts into JACK constructs. However, Tropos does not impose the use of 
JACK, and the developer can implement the design in any other agent platform. 

3   The Malaca Agent Model 

Most existing agent architectures focus on the type of agent (BDI, reactive), but do 
not provide direct support for handling and reusing properties and functionality 
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separately. This approach results in agent design and implementations being quite 
complex, brittle, and difficult to understand, maintain, and reuse in practice.  

The Malaca agent architecture is based on the definition and reuse of software 
components, let they be either in-house or commercial-off-the-shelf (COTS) 
components. In addition, by applying the separation of concerns principle promoted 
by aspect-oriented software development [19], we separate into different and 
decoupled entities the distribution of messages through FIPA-compliant platforms, 
the codification of exchanged messages in FIPA ACL formats, and also the agents 
functionality from their coordination. By “componentizing” agents in such way, they 
can be reused and replaced independently to build specific agent architectures 
independently from the underlying agent platform(s) used. This also enables dynamic 
composition of agent at runtime, allowing the dynamic reconfiguration and adaptation 
of the agents’ behaviour to support new interaction protocols and functionality, to 
access to different agent platforms, or to use different ACL formats. Besides, when 
treated as components, Malaca agents are simply configured using XML documents 
that contain the agents’ descriptions.  

Fig. 1 shows the meta-model of the Malaca agent model (a part of its UML 
profile), where all these entities are explicitly represented. This diagram also 
represents the basic structure of the XML agent description that is used to create an 
agent since there is a direct correspondence between the UML model shown there and 
the XML representation of the agent: meta-model classes and association represent 
the XML elements, and class attributes represent XML element attributes. 

In order to produce agents able to be executed in any FIPA-compliant agent 
platform, we have separated everything related with the use of Message Transport 
Service (MTS), bundling it into a “distribution aspect”. This distribution aspect will 
be later bound to the particular adaptors (plug-ins) of the corresponding agent 
platforms on which the agent instance will be run. Then, the actual distribution of 
messages using a particular message transport service offered by a FIPA-compliant 
agent platform is performed by an independent entity, the adaptor. Such adaptor 
defines a common interface, which will be realized by each concrete adaptor instance 
of the target agent platform(s), which will deal with the specific services of such 
platform(s). Since agent platform dependencies are encapsulated as an external plug-
ins, our agents can be adapted to engage in any FIPA-compliant agent platform, and 
even be used in more than one agent platform simultaneously (for additional details 
see [17]).  

As stated before, the encoding format of messages exchanged by the agent within 
an interaction is also bundled in a separated entity. Thus, the codification of ACL 
messages in a concrete FIPA format is merged neither with the agent platform access, 
nor with the behavior of the agent. In our agent architecture, parsers deal with 
different ACL representations. Each parser has to realize a common interface to code 
and decode output and input messages. In the model, for each different ACL format 
supported, we provide an ACLParser plug-in that parses ACL messages formatted 
according to the value of the format attribute. Once again, the agent could support 
more that one ACL format at the same time. 
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Fig. 1. UML class diagram with a Malaca agent description 

The behaviour of a Malaca agent is given by its functionality and by the way it 
interacts with other agents (i.e., its coordination aspect). In our model, agent 
functionality is provided by reusable software components, which offer the set of core 
services, and also the application-dependent functionality. Components that are 
initially plugged into the agent architecture are packaged into the functionality 
element of the agent description. Each component is described in a 
ComponentDescription class, which provides information about its provided interface 
and its implementation. The component interface describes the set of offered services 
in an XML document in the format specified by the notation element (by default, 
OWL-S [20]). The deploymentInfo attribute points to a XML document with the 
description, using the notation format (by default, the CCM softpackage format  
[21]), of the component implementation. This information includes the kind of 
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implementation (e.g. Java, CORBA, Web service), how to locate and deploy the 
component, etc.  

Coordination is also modelled by using an independent entity called connector, 
which decouples the agent functionality from its interactions. Every time a new 
conversation starts, a new connector is created to control it. For this task, the 
connector uses a description of the interaction protocol followed. The set of roles of 
interaction protocols supported is given by the coordination element. Each role 
description is part of an interaction protocol is described by a XML document using 
the notation format (by default, the ProtocolDescription XML schema [16]). 

The UML class diagram in Fig. 1 also depicts the structure of a protocol 
description. Agent interaction protocols are described by the set of message 
description, interchanged during the interaction and by a set of finite state machines 
for representing the behavior of each participant role. The description of a message, in 
a MessageDescription element, should include the performative and should contain at 
least some description of the message content. The value of any other message field 
can also be specified. A separate finite state machine within the RoleDescription 
class, identified by an attribute roleName, describes each side of a conversation (at 
least the initiator and the responder). Each finite state machine is represented by a set 
of state transition rules enclosed by the FiniteStateMachine class and each rule is 
defined in a StateTransitionRule class.  

The transition from a state to another carries out the execution of the agent 
functionality (defined in the StateTransitionRule by the attribute executeTransition). 
The TransitionDescription class encloses the set of agent actions that are invoked 
during protocol execution. Instead of a simple sequence of invocations to the agent 
internal functionality, it is possible to use more complex control structures to 
coordinate the execution of the agent functionality. OWL-S provides the basis for the 
definition of agent functionality as services. As part of the DARPA Agent Markup 
Language [22] program and within the OWL-based framework, OWL-S is an 
ontology for describing Web services that gives a detailed description of a service’s 
operation, and provides details on how to interoperate. The control structures defined 
in the Process Model of OWL-S are used to encompass a set of agent actions in a 
transition description. 

Finally, the agent description also contains the initial content of the agent 
Knowledge Base, expressed in terms of beliefs, goals, and conditions; the 
acquaintance database, defined as a set of the identifiers of the agents with which the 
agent will interact; and an active context of the agent upon start up. Within an 
ActiveContext class, it is possible to specify the initial behaviour the agent will 
execute (expressed in OWL-S by a sequence of actions, a set of protocols executed in 
parallel, etc.).  

The Malaca UML Profile, which is derived from its metamodel, defines 
stereotypes for each metamodel element and also defines constraints, associated to 
stereotypes, which impose restrictions on the corresponding metamodel elements. 
Constraints can be used, for instance, to state that the attribute transitionID has a 
unique value for all the elements in the transitions collection of a FiniteStateMachine. 
The abovementioned restriction can be expressed by the following OCL [23] 
constraint: 

 



100 M. Amor, L. Fuentes, and A. Vallecillo 

 

Context MalacaAgentMetamodel::FiniteStateMachine 
Inv: self.transitions -> isUnique(transitionID) 

The Malaca agent model is implemented in Java, and currently provides adaptors 
for Jade [24], Zeus [25], and FIPA-OS [26] agent platforms. It also supports String 
and XML ACL encodings. One of the benefits of this model is that the only artifacts 
that should be provided by the developer to define a MAS in Malaca are the XML 
documents with the agent descriptions, the components provided interfaces, and the 
protocol descriptions. We shall see in the next section how these artifacts can be even 
automatically generated from the MAS designs produced by Tropos. This will allow a 
direct connection between the MAS design and its implementation in any of the agent 
platforms. 

4   Applying MDA to MAS Design to Produce Implementations 

The problem of transforming the design diagrams produced by a given agent-oriented 
methodology to a set of implementation classes of an agent platform API, such as the 
ones provided by FIPA-OS, Zeus, or Jade, can be addressed by expressing such 
designs and agent platforms as models, and then expressing the transformations 
between them in terms of mappings between models. The OMG Model Driven 
Architecture (MDA) provides the right kind of mechanisms for expressing such kind 
of models, the entities of each one, and for defining transformation between them.  

MDA is an approach to system development based on the use of models, which are 
descriptions of a system and its environment for some certain purpose. A model is 
often presented as a combination of drawings and text (the text may be in a modelling 
language or in natural language). Regarding a set of models, MDA sets down how 
those models are prepared, and the relationships between them. In MDA, a platform is 
a set of subsystems and technologies that provides a set of functionality through 
interfaces and specified usage patterns, which any application supported by that 
platform can use without concern for the details of how the functionality provided by 
the platform is implemented. MDA distinguishes between platform-independent 
models (PIM) and platform-specific models (PSM). 

The general MDA model transformation is depicted by the MDA pattern, shown in 
Fig. 2(a). The PIM and some other information are combined by the transformation to 
produce a PSM. MDA defines many ways in which such transformations can be done. 
A MDA mapping provides specifications for transformation of a PIM into a PSM for 
a particular platform. A model type mapping specifies a mapping from any model 
built using types. Another approach to mapping models is to identify model elements 
in the PIM, which should be transformed in a particular way, given the choice of a 
specific platform for the PSM. However, most mappings will consist in some 
combination of type and instance mappings. A mapping may also include templates to 
specify particular kinds of transformations. In order to apply these concepts to agent 
technologies, we need to define agent-oriented PIMs and PSMs, and mappings 
between them. Here, the design model of a MAS produced by an agent-oriented 
methodology will constitute the PIM, that needs to be marked using the UML profile, 
or the metamodel expressed in UML, MOF or any other language, of the target agent 
platform to produce a PSM. 
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Tropos MAS 
Design Model

Malaca MAS 
(Jade, FIPA-OS, ...)

Malaca Agent 
Model Profile

Transfor-
mation 

        (a)     (b)  

Fig. 2. (a) The MDA pattern for model transformation, and (b) The MDA model transformation 
from Tropos design model to the Malaca MAS specification using the Malaca Agent Model 
UML Profile 

To illustrate this approach, in this paper we will apply MDA to transform Tropos 
design model to the Malaca agent model. An important benefit of our agent model is 
that it does not depend on the target agent platform on which it will be executed, and 
therefore there is no need to develop different implementations for each FIPA-
compliant agent platform. This fact greatly simplifies the process of providing an 
implementation for each different agent platform. Fig. 2(b) graphically shows the 
process that will be described in detail in the next sections. The transformations are 
illustrated using UML, AUML diagrams produced by Tropos, the agent-oriented 
methodology used here. The MDA transformation process shown here is based on 
marking the Tropos design model. The developer performs this step manually. After 
that, the marked model is transformed into a Malaca model applying some 
transformation rules. This process can be automated. 

4.1   Applying MDA: From Tropos to Malaca 

Now we will show through an example how the set of models resulting from applying 
Tropos can be transformed in a set of Malaca agents using the MDA mechanisms.  

To illustrate the transformation for the Tropos design model, we will use the 
diagrams supplied in [11], which provides a case study. Unfortunately, available 
literature of Tropos does not provide a complete example, and also the process that 
explains each phase varies from paper to paper. 

Marking Tropos Detailed Design Model. As stated before, in Tropos, the design 
phase deals with the detailed specification of the agents, capabilities and 
communications. More precisely, the design phase in Tropos produces:  

− Agent assignments, expressed as a table resulting from the architectural design 
phase, that defines the agent types and the capabilities assigned to each agent. An 
agent can have assigned capabilities that are associated to different actors.  

− Agent Interaction Diagrams. AUML sequence diagrams are used to model basic 
interactions between agents. In [12], interactions are described by introducing 
additional interactions, together with constraints on the exchanged messages. 
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− Capability Diagrams. One UML activity diagram models each capability. External 
events, such as input messages, define the starting state of a capability diagram; 
activity nodes model plans, transition arcs model events, and beliefs are modelled 
as objects. UML activity diagrams can further specify each plan node of a 
capability at the lowest level. In this case, the activity nodes correspond to simple 
or complex actions. 

Now we will show how the Tropos detailed design given in [11], can be 
transformed into a Malaca Model. In order to define this transformation we will 
“mark” the Tropos design model using the classes defined in the Malaca metamodel 
showed in Fig. 1. A mark represents a concept stereotyped in the Malaca profile and 
is applied to an element of the Tropos design model to indicate how it should be 
transformed. Thus, we will mark Tropos design elements (agents, interactions, 
messages, capabilities, plans and so on), with the corresponding Malaca entities that 
will implement them (AgentDescription, ProtocolDescription, TransitionDescription, 
OWL-S processes, etc). Agent types are marked as AgentDescription. Each capability 
is marked as a TransitionDescription, and each interaction (represented in UML 
sequence diagram) is marked as a ProtocolDescription.  

 

<<ProtocolDescription>> 
UMLInteractionDiagram 

<<ProtocolDescription>> 
protocolID = RequestForInfo 

 

Fig. 3. Marked Agent Interaction Diagram in Tropos (extracted from [10]) 

The elements of each UML diagram can also be marked. Fig. 3 shows the marked 
agent interaction diagram given in [11]. Every agent (object) in the agent interaction 
diagram (UML interaction diagram) is marked as a RoleDescription, and every 
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communicative act between agents is marked as a MessageDescription, but also as an 
Input (an element of a StateTransitionRule). Also, we specify the value of the tagged 
value (that corresponds to an attribute of the metamodel class) associated to the 
stereotype element including notes that show the corresponding stereotype, the name 
of the tagged value, and the value assigned to it. 

Fig. 4 displays the marked diagram of the capability Present Query results. The 
external event is marked as a MessageDescription and every plan —activity node— is 
marked as an Atomic or a Composite OWL-S process. If the plan node is not further 
specified in another UML activity diagram it is marked as an Atomic process (see 
Present Empty Result and Present Query Results node s). Otherwise, it is marked as a 
Composite process, as occurs with the Evaluate Query Result plan, since it is further 
specified in another UML activity diagram. Plan diagrams are also marked. 

 
 

<<TransitionDescription, Sequence>>
UMLActivityDiagram 

<<If-Then-Else>> 

<<TransitionDescription>> 
ID = PresentQueryResultToTheUser 

 

Fig. 4. Marked Capability Diagram (extracted from [10]) 

Tropos to Malaca Mappings and Transformations. After applying the marks 
defined in the Malaca profile, we obtain a set of marked UML and AUML diagrams. 
The transformation process applies mapping rules for the same mark depending on 
the marked element. The result of the application of such mapping rules is, in this 
case, a set of XML documents that specify the PSM of the system for the Malaca 
platform. 

In order to illustrate the mapping rules, we will describe here, as example, some 
rules that have been applied to a few elements marked in the diagram of Fig. 4. 
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• When a mark <<TransitionDescription>> is applied to a UML activity diagram 
the transformation produces an XML instance of the complex type 
TransitionDescription (defined in a XML schema). The value of the XML 
attribute is taken from the value assigned to the tagged value ID in the note (in 
the example is PresentQueryResultToTheUser). 

• When a mark <<Sequence>> is applied to a UML activity diagram the 
transformation produces the definition of a CompositeProcess XML description 
attached to the TransitionDescription element produced by the application of the 
previous rule. The components of the Sequence are derived from the application 
of the following transformation rules. 

• When a mark <<AtomicProcess>> is applied to an action state element within a 
UML activity diagram the transformation produces the XML description of an 
AtomicProcess, which is included as a component of the ControlConstruct 
element produced by the application of the previous rule. 

• When a mark <<CompositeProcess>> is applied to an action state element within 
a UML activity diagram the transformation produces the XML description of an 
CompositeProcess, which is included as a component of the ControlConstruct 
element produced by the application of the previous rule. 

• When a mark <<If-Then-Else>> is applied to a junction element within a UML 
activity diagram the transformation produces the XML description of an If-Then-
Else control construct which is included as a component of the ControlConstruct 
element produced by the application of the previous rule. 

• When a mark <<IfCondition>> is applied to a transition element within a UML 
activity diagram that depart from a junction marked as <<If-Then-Else>>, the 
transformation produces the XML description of a condition ,which is included 
as a ifCondition element of the If-Then-Else element produced by the application 
of the previous rule. 

• When a mark <<thenProcess>> or <<elseProcess>> is applied to a action state 
element, marked also as a <<AtomicProcess>>, within a UML activity, the 
transformation produces the XML description of an atomic process, which is 
included as a then (or else) element of the If-Then-Else element produced by the 
application of a previous rule. 

The application of these transformation rules to the diagram of Fig. 4 produces the 
XML description of a transition identified as PresentQueryResults as depicted in Fig. 
5. 

Also, we can apply the constraints expressed in OCL to ensure that the identifier of 
the transition is unique within the collection of transitions identifiers. 

This is only a very brief example of how MDA can be applied to transform 
elements of the Tropos design model into a Malaca agent description, using marks 
and transformation rules. Again, once we count with a Malaca description of the 
MAS, it can be implemented in any FIPA-compliant agent platform. Then, we can 
obtain a straightforward implementation from that design by applying MDA 
mappings and transformations again. 
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 -<TransitionDescription ID="PresentQueryResultsToTheUser"> 
 -<CompositeProcess> 
  -<composedOf> 
   -<Sequence> 
   -<components> 
    +<CompositeProcess ID="EvaluateQueryResult"> 
    -<If-Then-Else> 
     -<ifCondition> 
       <IsTrue resource="emptyResultSet" />  
      </ifCondition> 
     -<then> 
       <AtomicProcess ID="presentEmptyResults" />  
      </then> 
     -<else> 
       -<AtomicProcess ID="presentQueryResults"/> 
      </else> 
     </If-Then-Else> 
    </components> 
   </Sequence> 
  </composedOf> 
 </CompositeProcess> 
</TransitionDescription> 

 

Fig. 5. Present Query Result XML description (complete) 

MAS metamodel are becoming relevant in the context of MDA. Using 
metamodels, the transformation can be automated from the beginning to the end. 
Regarding the example followed here, the Tropos metamodel, provided in [11], could 
be used to define general transformations from elements of the source metamodel into 
elements of the target metamodel. The developer has not to mark manually the Tropos 
design model elements before to transform them. Instead, transformations are 
automatically applied to instances of the elements of the metamodel. However, for 
this purpose, the Tropos metamodel has to provide a more detailed and accurate 
description of the Tropos design model elements and concepts (their relationships, 
attributes, constraints, etc) in order to derive and automate the transformation process 
as much as possible.  

5   Limitations and Further Extensions to Our Work 

One of the problems found when trying to implement multi-agent systems directly 
from their high-level designs and descriptions appear when the designer describes 
what needs to be done, but gives no indication on how (for instance, using heuristics, 
guidelines and examples rather than algorithms). In such cases, the transformations 
cannot be automated, since such algorithms have to be provided. In general, the level 
of detail provided in the design phase determines the accuracy of the implementation, 
and therefore its potential automated implementation. Thus, an important aspect in 
selecting a methodology is the level of detail provided.  

Second, the diagrams and texts used in the design phase have to be interpreted and 
mapped during the transformation process. Since one of our goals is to automate such 
mappings, it is very important for diagrams and texts used in agent-oriented 
methodologies to follow standard notations (such as UML), allowing its automatic 
processing. Besides, AUML diagrams should also allow for some kind of automated 
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support, currently inexistent —although the advent of UML 2.0 and its new 
extensions mechanisms can alleviate this if AUML gets aligned with UML 2.0.  

Finally, MDA seems a very attractive and powerful approach for automated 
development. However, it also has many unresolved issues, and still lacks tool 
support. The availability of MAS metamodels [27, 28], the use of UML 2.0, the 
advent of QVT [29] and the emergence of new modelling tools that support the MDA 
principles can also help MDA get more mature and consolidate its ideas. 

 

MAS´s GAM Model 

Transfor-
mation 

MAS´s MaSE 
design model 

UML profile for 
GAM Metamodel 

Transfor-
mation 

MAS´s Tropos 
design model 

Malaca Agent 
Model Profile 

Transfor-
mation 

MAS´s Malaca 
Model  

(Jade, FIPA-OS,...)  

Fig. 6. Derivation of MAS implementations using a middle GAM model 

Apart from these shortcomings, there are further extensions to our work. First, we 
plan to develop some tools for automating the transformations described in this paper. 
Apart from providing a proof-of-concept to our work, we think they can be of great 
value to any MAS developer that follows MaSE or Tropos  

methodologies. They will also assist uncover some more issues of our proposal, 
helping us make it more robust. 

A second line of work is related to the interesting idea by FIPA and the OMG to 
define a common agent model to most agent-oriented methodologies. Here we have 
seen the benefits of using a neutral model (Malaca) for MAS implementation 
purposes, which provides the common mechanisms provided by FIPA-compliant 
agent platforms. In this way, any design model of the MAS produced using an agent-
oriented methodology can be implemented by mapping it (using the MDA 
mechanisms) into its corresponding Malaca model. But this means that a different 
transformation is needed for every methodology into the Malaca model. Instead, a 
better solution is to identify and standardize the commons elements of the existing 
agent-oriented methodologies at the design phase, as pursued by FIPA and the OMG. 
The common elements could form a generic agent model (GAM) on which 
specialized features of every agent-oriented methodology might be based. Thus, we 
could introduce an intermediate model that semantically can cope with the concepts 
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managed at design time by agent-oriented methodologies. With this, MAS design 
models could be naturally mapped to a new design model conforming the element 
defined in the GAM. From there, we will count with a general and common model for 
MAS designing purposes, a common model for implementation purposes, and the 
only thing that needs to be done is to define (just) one MDA transformation from the 
GAM to Malaca, as shown in Fig. 6. 

6   Conclusions  

In this paper we have presented how MDA can be effectively applied to agent 
technologies, providing a partially automated support for the derivation of MAS 
implementations right from their designs, independently from the methodology used 
to realize the design, and the target agent platform selected.  

Our main contributions have been the definition of a common and neutral agent 
model that implements all the concepts required by FIPA-compliant agent platforms, 
and the use of the MDA mechanisms for defining the transformations between the 
design models produced by existing agent-oriented methodologies and the Malaca 
model. From there, the MAS implementation is quite straightforward. We have 
presented our experience in deriving and applying these transformations to a well-
known methodology, Tropos. 
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