

J. Odell et al. (Eds.): AOSE 2004, LNCS 3382, pp. 93 – 108, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Bridging the Gap Between Agent-Oriented Design and
Implementation Using MDA*

Mercedes Amor, Lidia Fuentes, and Antonio Vallecillo

Dpto. Lenguajes y Ciencias de la Computación,
Universidad de Málaga. Campus de Teatinos,

s/n, 29071 Málaga, Spain
{pinilla, lff, av}@lcc.uma.es

Abstract. Current agent-oriented methodologies focus mainly on multi-agent
systems analysis and design, but without providing straightforward connections
to the implementation of such systems on any of the existing agent platforms
(e.g. FIPA-OS, Jade, or Zeus), or just forcing the use of specific agent
platforms. In this paper we show how the Model Driven Architecture (MDA)
can be effectively used to derive agent implementations from agent-oriented
designs, independently from both the methodology used and the concrete agent
platform selected. Furthermore, this transformation process can be defined in an
scalable way, and partly automated thanks to the use of a platform-neutral agent
model, called Malaca.

1 Introduction

Software agents are becoming a widely used alternative for building open and
distributed applications, developed as Multi-Agent Systems (MAS). This recognition
has led to consider agent technology as a promising paradigm for software
development [1]. As a result, several agent-oriented methodologies for developing
MAS have been recently proposed [2], with the aim to provide tools, practical
methods, and techniques for developing MAS.

The variety of methodologies may become a problem for the software developer
when it comes to select the best-suited methodology for a given application domain.
Selection criteria may include aspects such as the effort required to learn and to use,
completeness, documentation, and suitability. Recent works (e.g., [3, 4, 5, 6]) provide
comparison studies between the different agent-oriented methodologies, showing the
weaknesses and strengths of each one, with the aim to help the software engineer
select the most suitable methodology in each case. The results clearly show that there
is not a single unified and unique general-purpose methodology. FIPA [7] and OMG
[8] have also created some technical committees focused on the identification of a
general methodology for the analysis and design of agent-oriented systems,
embracing current agent-oriented methodologies such as GAIA [9], MaSE [10],
Tropos [11, 12] or MESSAGE [13]. The idea is to identify the best development

*This research was funded in part by the Spanish MCYT under grant TIC: 2002-04309-C02-02.

94 M. Amor, L. Fuentes, and A. Vallecillo

process for specific MAS. This work is being complemented with the definition of an
agent-based unified modelling language (FIPA AUML work plan [14]).

One of the main problems of these methodologies is that they cover the analysis
and design phases of MAS development, but do not address the implementation
phase, i.e., they do not completely resolve how to achieve the model derivation from
the system design to a concrete implementation [9, 10, 13]. Thus, the software
engineer is forced to either somehow select one of the existing agent platforms for
implementing the agent-oriented design, or to use a concrete agent platform because it
is the only one supported by the design methodology —which demands specialized
skills from the developer. In the former case, the problem is that the criteria usually
considered for choosing an agent platform are mainly based on the developer
expertise, the programming language, available tools, or its recognition in the agent
community. However, these criteria do not take into account the methodology used to
design the MAS, for instance.

Besides, this transformation process —which is not a trivial task, and could be, in
some cases, quite complex to achieve— has to be defined in an ad hoc manner in each
case, for each methodology and for each agent platform. Thus, every single developer
has to define and implement the mappings and transformations from the design
produced by the selected agent-oriented methodology, to the API’s provided by the
particular agent platform, without any guidance or help.

Our goal in this paper is to study how such gap can be bridged, thus covering the
complete life cycle of MAS. Furthermore, we also analyze how much of this process
can be automated, independently from the original methodology used to analyze and
design the MAS, and from the agent platform selected to implement the system.

In order to achieve such goal we will use the concepts provided by OMG’s Model
Driven Architecture (MDA). MDA is a modelling initiative that tries to cover the
complete life cycle of software systems, allowing the definition of machine-readable
application and data models, which permit long-term flexibility of implementation,
integration, maintenance, testability and simulation [15]. MDA defines platform-
independent models (PIM), platform-specific models (PSM), and transformations
between them.

In this paper we will show how our problem can be naturally expressed in terms of
the MDA, and then how the MDA mechanisms can be used for defining (and partially
automating) the mappings. By applying the MDA ideas, the design model obtained as
the result of applying an agent-oriented methodology can be considered as a PIM, the
target agent platform for the MAS as the PSM, and the mappings between the two can
be given by the transformations defined for the particular agent platform selected. The
target models needs to be expressed in terms of their corresponding UML profiles, as
indicated by the MDA.

However, when we initially tried to use this approach, we saw that it could work
for some individual cases, but that it did not scale well for the ever-increasing number
of agent-oriented methodologies and agent platforms: somebody had to define and
automate the mappings between every agent-oriented methodology and every agent
platform. This is not affordable at all. However, we then discovered that the use of a
platform-neutral agent architecture could greatly simplify this task, since the numbers
of mappings was significantly reduced. Thus, we propose the use of the agent model
[16, 17] Malaca.). One of the most outstanding features of this agent architecture is

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 95

that it is possible to execute a Malaca agent on top of any FIPA-compliant agent
platforms, i.e., it was designed to be independent from the underlying agent platform.
Therefore we define mappings from agent-oriented methodologies to Malaca, and
from Malaca to the different agent platforms. Consequently, with just one
transformation between an agent-oriented methodology and the Malaca agent model,
the resulting MAS could run in any agent platform. The developer could then deploy
the MAS in any agent platform, depending on the availability, price, tools provided,
etc.

Moreover, as we will show later, the mappings and transformations from agent-
oriented methodologies such as Tropos to Malaca are very simple, and most of them
can be easily automated due to the use of UML and AUML, a big step towards
bridging the gap between agent-oriented design and MAS implementation. A
significant feature of this architecture is that any Malaca agent can be “programmed”
simply by editing XML documents. Since most of the UML diagrams can be
expressed easily in XML, the transformations between agent-oriented methodologies
and Malaca are direct. This architecture reduces the development time, cost and
effort, and simplifies the implementation of multi-agent systems.

In order to validate our proposal, mappings from one of the most representative
agent-oriented methodologies to Malaca have been defined, namely from Tropos.
They will be used throughout the paper for illustrating our approach.

The structure of this paper is as follows. Section 2 provides a brief overview of
Tropos methodology. Section 3 introduces the Malaca agent architecture, and its
underlying agent model. Section 4 describes our main contribution, by showing how
to use the MDA approach for mapping MAS designs into the Malaca model, which
can be then run into any agent platform. Section 5 outlines some of the problems and
limitations of our approach, as well as further research work that could help address
such limitations. Finally, Section 6 draws some conclusions.

2 Agent-Oriented Methodology Overview

Agent-Oriented methodologies provide a set of mechanisms and models for
developing agent-based systems. Most agent-oriented methodologies follow the
approach of extending existing software engineering methodologies to include
abstractions related to agents. Agent methodologies capture concepts like
conversations, goals, believes, plans or autonomous behaviour. Most of them take
advantage of software engineering approaches to design MAS, and benefit from UML
and/or AUML diagrams to represent these agent abstractions.

There are many methodologies with different strengths and weakness and different
specialized features to support different applications domains. Clearly there is not a
widely used or general-purpose methodology, but we took into account some issues
like the modelling diagrams used, the kind of application domain it is appropriated
for, and above all, the level of detail provided at the design phase and the available
documentation. Some methodologies were not considered in this first approach
because of their lack of public documentation or the level of detail achieve at the
design phase. After examining current research in this area, and despite there were
other good candidates, such as Mase [10], we only use Tropos [11,12] for illustrating
our proposal.

96 M. Amor, L. Fuentes, and A. Vallecillo

2.1 Tropos

Tropos [11] is an agent-oriented methodology created by a group of authors from
various universities in Canada, Italy, Belgium and Brazil. Tropos is founded on the
concepts of actor and goal and strongly focus on early requirements. The development
process in Tropos consists in five phases: Early Requirements, Late Requirements,
Architectural Design, Detailed Design and Implementation.

The first phase identifies actors and goals represented by two different models. The
actor diagram depicts involved roles and their relationships, called dependencies.
These dependencies show how actors depend on each other to accomplish their goals,
to execute their plans, and to supply their resources. The goal diagram shows a
analysis of goals and plans regarding a specific actor in charge of achieving them.
This analysis is based upon reasoning techniques such as AND/OR decomposition,
means-end and contribution analysis. These models will be extended in the second
phase, which models the system within its environment.

The third phase is divided in three steps. In the first one, new actors, which are
derived from the chosen architectural style, are included and described by an extended
actor diagram. These actors fulfil non-functional requirements or support sub-goals
identified in the previous phase. The second and third steps identify the capabilities,
and group them to form agent types, respectively. The last step defines a set of agent
types and assigns each of them a set of capabilities. This assignment, which is not
unique and depends on the designer, is captured in a table.

The Detailed Design phase deals with the detailed specification of the agents’
goals, belief and capabilities. Also communication among agents is specified in detail.
This phase is usually strictly related to implementation choices since it is proposed
within specific development platforms, and depends on the features of the adopted
agent programming language. This step takes as input the specification resulting from
the architectural design and generates a set of UML activity diagrams for representing
capabilities and plans, and AUML sequence diagrams for characterizing agent
interaction protocols. AUML is an extension of UML to accommodate the distinctive
requirements of agent, which results from the cooperation established by FIPA and
the OMG. This is achieved by introducing new classes of diagrams into UML such as
interaction protocol diagrams and agent class diagrams.

Finally, the implementation phase follows the detailed design specification given
in the previous phase. Tropos chooses a BDI platform for the implementation of
agents, namely JACK Intelligent Agent [18], an agent-oriented development
environment built on top of Java. The main language constructs provided by this
platform (agents, capabilities, database relations, events and plans) have a direct
correspondence with the notions used in the Tropos design phase. In addition, Tropos
provides guidelines and heuristics for mapping Tropos concepts into BDI concepts,
and BDI concepts into JACK constructs. However, Tropos does not impose the use of
JACK, and the developer can implement the design in any other agent platform.

3 The Malaca Agent Model

Most existing agent architectures focus on the type of agent (BDI, reactive), but do
not provide direct support for handling and reusing properties and functionality

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 97

separately. This approach results in agent design and implementations being quite
complex, brittle, and difficult to understand, maintain, and reuse in practice.

The Malaca agent architecture is based on the definition and reuse of software
components, let they be either in-house or commercial-off-the-shelf (COTS)
components. In addition, by applying the separation of concerns principle promoted
by aspect-oriented software development [19], we separate into different and
decoupled entities the distribution of messages through FIPA-compliant platforms,
the codification of exchanged messages in FIPA ACL formats, and also the agents
functionality from their coordination. By “componentizing” agents in such way, they
can be reused and replaced independently to build specific agent architectures
independently from the underlying agent platform(s) used. This also enables dynamic
composition of agent at runtime, allowing the dynamic reconfiguration and adaptation
of the agents’ behaviour to support new interaction protocols and functionality, to
access to different agent platforms, or to use different ACL formats. Besides, when
treated as components, Malaca agents are simply configured using XML documents
that contain the agents’ descriptions.

Fig. 1 shows the meta-model of the Malaca agent model (a part of its UML
profile), where all these entities are explicitly represented. This diagram also
represents the basic structure of the XML agent description that is used to create an
agent since there is a direct correspondence between the UML model shown there and
the XML representation of the agent: meta-model classes and association represent
the XML elements, and class attributes represent XML element attributes.

In order to produce agents able to be executed in any FIPA-compliant agent
platform, we have separated everything related with the use of Message Transport
Service (MTS), bundling it into a “distribution aspect”. This distribution aspect will
be later bound to the particular adaptors (plug-ins) of the corresponding agent
platforms on which the agent instance will be run. Then, the actual distribution of
messages using a particular message transport service offered by a FIPA-compliant
agent platform is performed by an independent entity, the adaptor. Such adaptor
defines a common interface, which will be realized by each concrete adaptor instance
of the target agent platform(s), which will deal with the specific services of such
platform(s). Since agent platform dependencies are encapsulated as an external plug-
ins, our agents can be adapted to engage in any FIPA-compliant agent platform, and
even be used in more than one agent platform simultaneously (for additional details
see [17]).

As stated before, the encoding format of messages exchanged by the agent within
an interaction is also bundled in a separated entity. Thus, the codification of ACL
messages in a concrete FIPA format is merged neither with the agent platform access,
nor with the behavior of the agent. In our agent architecture, parsers deal with
different ACL representations. Each parser has to realize a common interface to code
and decode output and input messages. In the model, for each different ACL format
supported, we provide an ACLParser plug-in that parses ACL messages formatted
according to the value of the format attribute. Once again, the agent could support
more that one ACL format at the same time.

98 M. Amor, L. Fuentes, and A. Vallecillo

Fig. 1. UML class diagram with a Malaca agent description

The behaviour of a Malaca agent is given by its functionality and by the way it
interacts with other agents (i.e., its coordination aspect). In our model, agent
functionality is provided by reusable software components, which offer the set of core
services, and also the application-dependent functionality. Components that are
initially plugged into the agent architecture are packaged into the functionality
element of the agent description. Each component is described in a
ComponentDescription class, which provides information about its provided interface
and its implementation. The component interface describes the set of offered services
in an XML document in the format specified by the notation element (by default,
OWL-S [20]). The deploymentInfo attribute points to a XML document with the
description, using the notation format (by default, the CCM softpackage format
[21]), of the component implementation. This information includes the kind of

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 99

implementation (e.g. Java, CORBA, Web service), how to locate and deploy the
component, etc.

Coordination is also modelled by using an independent entity called connector,
which decouples the agent functionality from its interactions. Every time a new
conversation starts, a new connector is created to control it. For this task, the
connector uses a description of the interaction protocol followed. The set of roles of
interaction protocols supported is given by the coordination element. Each role
description is part of an interaction protocol is described by a XML document using
the notation format (by default, the ProtocolDescription XML schema [16]).

The UML class diagram in Fig. 1 also depicts the structure of a protocol
description. Agent interaction protocols are described by the set of message
description, interchanged during the interaction and by a set of finite state machines
for representing the behavior of each participant role. The description of a message, in
a MessageDescription element, should include the performative and should contain at
least some description of the message content. The value of any other message field
can also be specified. A separate finite state machine within the RoleDescription
class, identified by an attribute roleName, describes each side of a conversation (at
least the initiator and the responder). Each finite state machine is represented by a set
of state transition rules enclosed by the FiniteStateMachine class and each rule is
defined in a StateTransitionRule class.

The transition from a state to another carries out the execution of the agent
functionality (defined in the StateTransitionRule by the attribute executeTransition).
The TransitionDescription class encloses the set of agent actions that are invoked
during protocol execution. Instead of a simple sequence of invocations to the agent
internal functionality, it is possible to use more complex control structures to
coordinate the execution of the agent functionality. OWL-S provides the basis for the
definition of agent functionality as services. As part of the DARPA Agent Markup
Language [22] program and within the OWL-based framework, OWL-S is an
ontology for describing Web services that gives a detailed description of a service’s
operation, and provides details on how to interoperate. The control structures defined
in the Process Model of OWL-S are used to encompass a set of agent actions in a
transition description.

Finally, the agent description also contains the initial content of the agent
Knowledge Base, expressed in terms of beliefs, goals, and conditions; the
acquaintance database, defined as a set of the identifiers of the agents with which the
agent will interact; and an active context of the agent upon start up. Within an
ActiveContext class, it is possible to specify the initial behaviour the agent will
execute (expressed in OWL-S by a sequence of actions, a set of protocols executed in
parallel, etc.).

The Malaca UML Profile, which is derived from its metamodel, defines
stereotypes for each metamodel element and also defines constraints, associated to
stereotypes, which impose restrictions on the corresponding metamodel elements.
Constraints can be used, for instance, to state that the attribute transitionID has a
unique value for all the elements in the transitions collection of a FiniteStateMachine.
The abovementioned restriction can be expressed by the following OCL [23]
constraint:

100 M. Amor, L. Fuentes, and A. Vallecillo

Context MalacaAgentMetamodel::FiniteStateMachine
Inv: self.transitions -> isUnique(transitionID)

The Malaca agent model is implemented in Java, and currently provides adaptors
for Jade [24], Zeus [25], and FIPA-OS [26] agent platforms. It also supports String
and XML ACL encodings. One of the benefits of this model is that the only artifacts
that should be provided by the developer to define a MAS in Malaca are the XML
documents with the agent descriptions, the components provided interfaces, and the
protocol descriptions. We shall see in the next section how these artifacts can be even
automatically generated from the MAS designs produced by Tropos. This will allow a
direct connection between the MAS design and its implementation in any of the agent
platforms.

4 Applying MDA to MAS Design to Produce Implementations

The problem of transforming the design diagrams produced by a given agent-oriented
methodology to a set of implementation classes of an agent platform API, such as the
ones provided by FIPA-OS, Zeus, or Jade, can be addressed by expressing such
designs and agent platforms as models, and then expressing the transformations
between them in terms of mappings between models. The OMG Model Driven
Architecture (MDA) provides the right kind of mechanisms for expressing such kind
of models, the entities of each one, and for defining transformation between them.

MDA is an approach to system development based on the use of models, which are
descriptions of a system and its environment for some certain purpose. A model is
often presented as a combination of drawings and text (the text may be in a modelling
language or in natural language). Regarding a set of models, MDA sets down how
those models are prepared, and the relationships between them. In MDA, a platform is
a set of subsystems and technologies that provides a set of functionality through
interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality provided by
the platform is implemented. MDA distinguishes between platform-independent
models (PIM) and platform-specific models (PSM).

The general MDA model transformation is depicted by the MDA pattern, shown in
Fig. 2(a). The PIM and some other information are combined by the transformation to
produce a PSM. MDA defines many ways in which such transformations can be done.
A MDA mapping provides specifications for transformation of a PIM into a PSM for
a particular platform. A model type mapping specifies a mapping from any model
built using types. Another approach to mapping models is to identify model elements
in the PIM, which should be transformed in a particular way, given the choice of a
specific platform for the PSM. However, most mappings will consist in some
combination of type and instance mappings. A mapping may also include templates to
specify particular kinds of transformations. In order to apply these concepts to agent
technologies, we need to define agent-oriented PIMs and PSMs, and mappings
between them. Here, the design model of a MAS produced by an agent-oriented
methodology will constitute the PIM, that needs to be marked using the UML profile,
or the metamodel expressed in UML, MOF or any other language, of the target agent
platform to produce a PSM.

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 101

PIM

PSM

Transfor-
mation

Tropos MAS
Design Model

Malaca MAS
(Jade, FIPA-OS, ...)

Malaca Agent
Model Profile

Transfor-
mation

 (a) (b)

Fig. 2. (a) The MDA pattern for model transformation, and (b) The MDA model transformation
from Tropos design model to the Malaca MAS specification using the Malaca Agent Model
UML Profile

To illustrate this approach, in this paper we will apply MDA to transform Tropos
design model to the Malaca agent model. An important benefit of our agent model is
that it does not depend on the target agent platform on which it will be executed, and
therefore there is no need to develop different implementations for each FIPA-
compliant agent platform. This fact greatly simplifies the process of providing an
implementation for each different agent platform. Fig. 2(b) graphically shows the
process that will be described in detail in the next sections. The transformations are
illustrated using UML, AUML diagrams produced by Tropos, the agent-oriented
methodology used here. The MDA transformation process shown here is based on
marking the Tropos design model. The developer performs this step manually. After
that, the marked model is transformed into a Malaca model applying some
transformation rules. This process can be automated.

4.1 Applying MDA: From Tropos to Malaca

Now we will show through an example how the set of models resulting from applying
Tropos can be transformed in a set of Malaca agents using the MDA mechanisms.

To illustrate the transformation for the Tropos design model, we will use the
diagrams supplied in [11], which provides a case study. Unfortunately, available
literature of Tropos does not provide a complete example, and also the process that
explains each phase varies from paper to paper.

Marking Tropos Detailed Design Model. As stated before, in Tropos, the design
phase deals with the detailed specification of the agents, capabilities and
communications. More precisely, the design phase in Tropos produces:

− Agent assignments, expressed as a table resulting from the architectural design
phase, that defines the agent types and the capabilities assigned to each agent. An
agent can have assigned capabilities that are associated to different actors.

− Agent Interaction Diagrams. AUML sequence diagrams are used to model basic
interactions between agents. In [12], interactions are described by introducing
additional interactions, together with constraints on the exchanged messages.

102 M. Amor, L. Fuentes, and A. Vallecillo

− Capability Diagrams. One UML activity diagram models each capability. External
events, such as input messages, define the starting state of a capability diagram;
activity nodes model plans, transition arcs model events, and beliefs are modelled
as objects. UML activity diagrams can further specify each plan node of a
capability at the lowest level. In this case, the activity nodes correspond to simple
or complex actions.

Now we will show how the Tropos detailed design given in [11], can be
transformed into a Malaca Model. In order to define this transformation we will
“mark” the Tropos design model using the classes defined in the Malaca metamodel
showed in Fig. 1. A mark represents a concept stereotyped in the Malaca profile and
is applied to an element of the Tropos design model to indicate how it should be
transformed. Thus, we will mark Tropos design elements (agents, interactions,
messages, capabilities, plans and so on), with the corresponding Malaca entities that
will implement them (AgentDescription, ProtocolDescription, TransitionDescription,
OWL-S processes, etc). Agent types are marked as AgentDescription. Each capability
is marked as a TransitionDescription, and each interaction (represented in UML
sequence diagram) is marked as a ProtocolDescription.

<<ProtocolDescription>>
UMLInteractionDiagram

<<ProtocolDescription>>
protocolID = RequestForInfo

Fig. 3. Marked Agent Interaction Diagram in Tropos (extracted from [10])

The elements of each UML diagram can also be marked. Fig. 3 shows the marked
agent interaction diagram given in [11]. Every agent (object) in the agent interaction
diagram (UML interaction diagram) is marked as a RoleDescription, and every

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 103

communicative act between agents is marked as a MessageDescription, but also as an
Input (an element of a StateTransitionRule). Also, we specify the value of the tagged
value (that corresponds to an attribute of the metamodel class) associated to the
stereotype element including notes that show the corresponding stereotype, the name
of the tagged value, and the value assigned to it.

Fig. 4 displays the marked diagram of the capability Present Query results. The
external event is marked as a MessageDescription and every plan —activity node— is
marked as an Atomic or a Composite OWL-S process. If the plan node is not further
specified in another UML activity diagram it is marked as an Atomic process (see
Present Empty Result and Present Query Results node s). Otherwise, it is marked as a
Composite process, as occurs with the Evaluate Query Result plan, since it is further
specified in another UML activity diagram. Plan diagrams are also marked.

<<TransitionDescription, Sequence>>
UMLActivityDiagram

<<If-Then-Else>>

<<TransitionDescription>>
ID = PresentQueryResultToTheUser

Fig. 4. Marked Capability Diagram (extracted from [10])

Tropos to Malaca Mappings and Transformations. After applying the marks
defined in the Malaca profile, we obtain a set of marked UML and AUML diagrams.
The transformation process applies mapping rules for the same mark depending on
the marked element. The result of the application of such mapping rules is, in this
case, a set of XML documents that specify the PSM of the system for the Malaca
platform.

In order to illustrate the mapping rules, we will describe here, as example, some
rules that have been applied to a few elements marked in the diagram of Fig. 4.

104 M. Amor, L. Fuentes, and A. Vallecillo

• When a mark <<TransitionDescription>> is applied to a UML activity diagram
the transformation produces an XML instance of the complex type
TransitionDescription (defined in a XML schema). The value of the XML
attribute is taken from the value assigned to the tagged value ID in the note (in
the example is PresentQueryResultToTheUser).

• When a mark <<Sequence>> is applied to a UML activity diagram the
transformation produces the definition of a CompositeProcess XML description
attached to the TransitionDescription element produced by the application of the
previous rule. The components of the Sequence are derived from the application
of the following transformation rules.

• When a mark <<AtomicProcess>> is applied to an action state element within a
UML activity diagram the transformation produces the XML description of an
AtomicProcess, which is included as a component of the ControlConstruct
element produced by the application of the previous rule.

• When a mark <<CompositeProcess>> is applied to an action state element within
a UML activity diagram the transformation produces the XML description of an
CompositeProcess, which is included as a component of the ControlConstruct
element produced by the application of the previous rule.

• When a mark <<If-Then-Else>> is applied to a junction element within a UML
activity diagram the transformation produces the XML description of an If-Then-
Else control construct which is included as a component of the ControlConstruct
element produced by the application of the previous rule.

• When a mark <<IfCondition>> is applied to a transition element within a UML
activity diagram that depart from a junction marked as <<If-Then-Else>>, the
transformation produces the XML description of a condition ,which is included
as a ifCondition element of the If-Then-Else element produced by the application
of the previous rule.

• When a mark <<thenProcess>> or <<elseProcess>> is applied to a action state
element, marked also as a <<AtomicProcess>>, within a UML activity, the
transformation produces the XML description of an atomic process, which is
included as a then (or else) element of the If-Then-Else element produced by the
application of a previous rule.

The application of these transformation rules to the diagram of Fig. 4 produces the
XML description of a transition identified as PresentQueryResults as depicted in Fig.
5.

Also, we can apply the constraints expressed in OCL to ensure that the identifier of
the transition is unique within the collection of transitions identifiers.

This is only a very brief example of how MDA can be applied to transform
elements of the Tropos design model into a Malaca agent description, using marks
and transformation rules. Again, once we count with a Malaca description of the
MAS, it can be implemented in any FIPA-compliant agent platform. Then, we can
obtain a straightforward implementation from that design by applying MDA
mappings and transformations again.

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 105

 -<TransitionDescription ID="PresentQueryResultsToTheUser">
 -<CompositeProcess>
 -<composedOf>
 -<Sequence>
 -<components>
 +<CompositeProcess ID="EvaluateQueryResult">
 -<If-Then-Else>
 -<ifCondition>
 <IsTrue resource="emptyResultSet" />
 </ifCondition>
 -<then>
 <AtomicProcess ID="presentEmptyResults" />
 </then>
 -<else>
 -<AtomicProcess ID="presentQueryResults"/>
 </else>
 </If-Then-Else>
 </components>
 </Sequence>
 </composedOf>
 </CompositeProcess>
</TransitionDescription>

Fig. 5. Present Query Result XML description (complete)

MAS metamodel are becoming relevant in the context of MDA. Using
metamodels, the transformation can be automated from the beginning to the end.
Regarding the example followed here, the Tropos metamodel, provided in [11], could
be used to define general transformations from elements of the source metamodel into
elements of the target metamodel. The developer has not to mark manually the Tropos
design model elements before to transform them. Instead, transformations are
automatically applied to instances of the elements of the metamodel. However, for
this purpose, the Tropos metamodel has to provide a more detailed and accurate
description of the Tropos design model elements and concepts (their relationships,
attributes, constraints, etc) in order to derive and automate the transformation process
as much as possible.

5 Limitations and Further Extensions to Our Work

One of the problems found when trying to implement multi-agent systems directly
from their high-level designs and descriptions appear when the designer describes
what needs to be done, but gives no indication on how (for instance, using heuristics,
guidelines and examples rather than algorithms). In such cases, the transformations
cannot be automated, since such algorithms have to be provided. In general, the level
of detail provided in the design phase determines the accuracy of the implementation,
and therefore its potential automated implementation. Thus, an important aspect in
selecting a methodology is the level of detail provided.

Second, the diagrams and texts used in the design phase have to be interpreted and
mapped during the transformation process. Since one of our goals is to automate such
mappings, it is very important for diagrams and texts used in agent-oriented
methodologies to follow standard notations (such as UML), allowing its automatic
processing. Besides, AUML diagrams should also allow for some kind of automated

106 M. Amor, L. Fuentes, and A. Vallecillo

support, currently inexistent —although the advent of UML 2.0 and its new
extensions mechanisms can alleviate this if AUML gets aligned with UML 2.0.

Finally, MDA seems a very attractive and powerful approach for automated
development. However, it also has many unresolved issues, and still lacks tool
support. The availability of MAS metamodels [27, 28], the use of UML 2.0, the
advent of QVT [29] and the emergence of new modelling tools that support the MDA
principles can also help MDA get more mature and consolidate its ideas.

MAS´s GAM Model

Transfor-
mation

MAS´s MaSE
design model

UML profile for
GAM Metamodel

Transfor-
mation

MAS´s Tropos
design model

Malaca Agent
Model Profile

Transfor-
mation

MAS´s Malaca
Model

(Jade, FIPA-OS,...)

Fig. 6. Derivation of MAS implementations using a middle GAM model

Apart from these shortcomings, there are further extensions to our work. First, we
plan to develop some tools for automating the transformations described in this paper.
Apart from providing a proof-of-concept to our work, we think they can be of great
value to any MAS developer that follows MaSE or Tropos

methodologies. They will also assist uncover some more issues of our proposal,
helping us make it more robust.

A second line of work is related to the interesting idea by FIPA and the OMG to
define a common agent model to most agent-oriented methodologies. Here we have
seen the benefits of using a neutral model (Malaca) for MAS implementation
purposes, which provides the common mechanisms provided by FIPA-compliant
agent platforms. In this way, any design model of the MAS produced using an agent-
oriented methodology can be implemented by mapping it (using the MDA
mechanisms) into its corresponding Malaca model. But this means that a different
transformation is needed for every methodology into the Malaca model. Instead, a
better solution is to identify and standardize the commons elements of the existing
agent-oriented methodologies at the design phase, as pursued by FIPA and the OMG.
The common elements could form a generic agent model (GAM) on which
specialized features of every agent-oriented methodology might be based. Thus, we
could introduce an intermediate model that semantically can cope with the concepts

 Bridging the Gap Between Agent-Oriented Design and Implementation Using MDA 107

managed at design time by agent-oriented methodologies. With this, MAS design
models could be naturally mapped to a new design model conforming the element
defined in the GAM. From there, we will count with a general and common model for
MAS designing purposes, a common model for implementation purposes, and the
only thing that needs to be done is to define (just) one MDA transformation from the
GAM to Malaca, as shown in Fig. 6.

6 Conclusions

In this paper we have presented how MDA can be effectively applied to agent
technologies, providing a partially automated support for the derivation of MAS
implementations right from their designs, independently from the methodology used
to realize the design, and the target agent platform selected.

Our main contributions have been the definition of a common and neutral agent
model that implements all the concepts required by FIPA-compliant agent platforms,
and the use of the MDA mechanisms for defining the transformations between the
design models produced by existing agent-oriented methodologies and the Malaca
model. From there, the MAS implementation is quite straightforward. We have
presented our experience in deriving and applying these transformations to a well-
known methodology, Tropos.

References

1. M. Wooldridge, P. Ciancarini, “Agent-Oriented Software Engineering: The State of the
Art”, in First Int. Workshop on Agent-Oriented Software Engineering, LNAI 1957, 2000.
pp. 1-28.

2. C.A. Iglesias, M. Garijo, J.C. Gonzalez, “A Survey of Agent-Oriented Methodologies”, in
Intelligent Agents V – Proceedings of the Fifth International Workshop ATAL 98¸
Springer-Verlag, 1998.

3. S. A. O´Malley, S.A. DeLoach, “Determining When to Use an Agent-Oriented Software
Engineering Paradigm”, in Second International Workshop On Agent-Oriented Software
Engineering, 2001.

4. Sturn, O. Shehory, “A Framework for Evaluating Agent-Oriented Methodologies”, in
International Workshop On Agent-Oriented Information Systems, 2003.

5. K.H. Dam, M. Winikoff, “Comparing Agent-Oriented Methodologies”, in International
Workshop On Agent-Oriented Information Systems, 2003.

6. J. Sudeikat et al. “Evaluation of Agent-Oriented Software Methodologies – Examination of
the Gap Between Modeling and Platform”, in Proceedings of AOSE 2004.

7. FIPA, “FIPA Methodology Technical Committee”, Foundation for Intelligent Physical
Agents http://www.fipa.org/activities/methodology.

8. OMG, “OMG Agent Working Group”, in Object Management Group
http://www.objs.com/agent/

9. F. Zambonelli, M. Wooldridge, and N. R. Jennings, “Developing Multiagent Systems: The
Gaia methodology”, in ACM Transactions on Software Engineering and Methodology,
Vol.12 , Issue 3, pp. 317 – 370, 2003

108 M. Amor, L. Fuentes, and A. Vallecillo

10. S. A. DeLoach, M. F. Wood, C. H. Sparkman, “Multiagent System Engineering”, in
International Journal of Software Engineering and Knowledge Engineering, vol. 11, n. 3,
pp. 231-258. July 2001.

11. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. “Tropos: An
Agent-Oriented Software Development Methodology”, in International Journal of
Autonomous Agents and Multi-Agent Systems, Vol. 8, Issue 3, pp. 203 - 236, May 2004.

12. J. Castro, M. Kolp, J. Mylopoulos, “Towards Requirements-Driven Information Systems
Engineering: The Tropos Project”, in Information Systems, vol. 27, Issue 6, 2002. pp. 365-
389.

13. MESSAGE: Methodology for Engineering Systems of Software Agents. Deliverable 1.
Initial Methodology. July 2000. EURESCOM Project P907-GI.

14. B. Bauer, J. P. Muller, J. Odell, “Agent UML: A Formalism for Specifying Multiagent
Software Systems”, in International Journal of Software Engineering and Knowledge
Engineering, vol.11, n.3, 2001. pp 207—230.

15. OMG, “Model Driven Architecture. A technical Perspective”, Object Management Group,
OMG Document ab/2001-01-01, 2001. Available from www.omr.org.

16. M. Amor, L.Fuentes, J.M. Troya, “Training Compositional Agents in Negotiation
Protocols”, next publication in Integrated Computer-Aided Engineering International
Journal, 2004.

17. M. Amor, L.Fuentes, J.M. Troya, “A Component-Based Approach for Interoperability
Across FIPA-Compliant Platforms”, in Cooperative Information Agents VII, LNAI 2782,
2003. pp. 266—288.

18. The Agent Oriented Software Group, “Jack Development Environment”,
http://www.agent-software.com

19. Aspect-Oriented Software Development, in http://www.aosd.net
20. The DAML Services Coalition, “OWL-S: Semantic Mark-up for Web Services” available

at http://www.daml.org/services/
21. OMG, “CORBA Components. Packaging and Deployment”, in Object Management

Group, OMG Document formal/02-06-74, June 2002.Available from www.omg.org.
22. The DARPA Agent Markup Language Homepage, http://www.daml.org/
23. Object Management Group. Object Constraint Language Specification, OMG document

ad/02-05-09, 2002. Available from www.omg.org.
24. F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, “Jade Programmer’s Guide”, 2003,

available at http://sharon.cselt.it/projects/jade/
25. J. Collis, D. Ndumu, C. van Buskirk “The Zeus Technical Manual”, Intelligent Systems

Research Group, BT Labs. July 2000.
26. Emorphia, “FIPA-OS Developers Guide”, Nortel Networks' Agent Technology Group,

2002, available at http://sourceforge.net/projects/fipa-os/
27. C. Bernon, M. Cossentino, and M.P. Gleizes, “A Study of some Multi-Agent Meta-

Models”, in Proceedings of AOSE 2004.
28. J. Odell, M. Nodine, and R. Levy,” A Metamodel for Agents, Roles, and Groups”, in

Proceedings of AOSE 2004.
29. OMG, “MOF 2.0 Query/View/Transformation RFP”, in Object Management Group, OMG

Document ad/03-08-03. 2003. Available from www.omg.org.

	Introduction
	Agent-Oriented Methodology Overview
	Tropos

	The Malaca Agent Model
	Applying MDA to MAS Design to Produce Implementations
	Applying MDA: From Tropos to Malaca

	Limitations and Further Extensions to Our Work
	Conclusions
	References

