
Using UML and Maude for Writing and Reasoning about ODP Policies

Francisco Durán, Javier Herrador, and Antonio Vallecillo
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Málaga, Spain
{duran,av}@lcc.uma.es

Abstract

In this paper we present a graphical UML-based nota-
tion for writing ODP actions and policies, which can be
directly mapped to Maude specifications. Our approach
may introduce important benefits to the (usually ambigu-
ous) UML specifications, such as formal support, provi-
sion for rigorous specifications, and easy access to Maude’s
toolkit. We have developed a tool for automating the trans-
lation process and for giving access to Maude’s analysis
tools. In this way we try to bridge the current gap between
graphical and formal notations, by providing an easy-to-use
environment for modeling enterprise business systems with
UML, but still with formal support.

1. Introduction

So far, most notations and tools for capturing and mod-
eling business requirements tend to be either graphical and
easy-to-use (but informal and with vague semantics), or for-
mal and with tool support for reasoning about the specifica-
tions produced (although unappealing and hard-to-use for
the average software engineer). Graphical notations are in-
tuitive and easy to learn and to use, and do not require users
to have a deep and specialized knowledge of complex con-
cepts, formalisms, and mechanisms. For instance, the adop-
tion and widespread use of UML for describing and model-
ing business systems has greatly helped involve stakehold-
ers of diverse backgrounds in the system specification pro-
cess. However, these notations usually have a weak and
imprecise semantics, which hinders the formal analysis pro-
cesses required in any “real” engineering discipline. Even
worse, their apparent simplicity may artificially hide the real
complexity of the systems being modeled.

On the contrary, formal notations provide precise and un-
ambiguous system specifications. More importantly, formal
notations also allow the rigorous analysis of the systems,
with tools for quick-prototyping, model checking, or theo-
rem proving.

These two worlds (graphical notations and formal meth-
ods) have usually lived apart. This paper tries to provide a
bridge between them in the context of the ODP enterprise
viewpoint, focusing on the specification of actions and the
behavioral policies conditioning them. In particular, this
proposal presents a tool for the graphical specification of
business systems, based on the corresponding formal spec-
ifications in Maude, aiming at getting all the benefits that
they individually provide.

For modeling business requirements and systems we will
use the concepts provided by the RM-ODP enterprise view-
point [9]. The enterprise viewpoint focuses on the purpose,
scope and policies for the system and its environment. It
describes the business requirements and how to meet them,
but without having to worry about other system considera-
tions, such as particular details of its implementation, or the
technology used to implement the system.

As formal notation for specifying the ODP enterprise
concepts we will use Maude [4], an executable rewriting
logic language specially well suited for the specification of
object-oriented open and distributed systems. In a previous
work [7] we showed a simple and natural way of modeling
the enterprise viewpoint concepts. In addition to the nice
properties of the Maude specifications obtained following
that approach, the use of Maude provides additional advan-
tages. The fact that rewriting logic specifications are exe-
cutable, allows us to apply a flexible range of increasingly
stronger formal analysis methods and tools, such as runtime
verification, model checking, narrowing analysis, or theo-
rem proving. Maude offers a comprehensive toolkit for the
analysis of specifications, including an inductive theorem
prover; an LTL model checker; tools to check the Church-
Rosser property, coherence, and termination; tools to per-
form Knuth-Bendix and coherence completion; and a tool to
specify, analyze and model check real-time specifications.

However, the use of Maude and its toolkit—as it happens
with most formal notations—is not easy for most system an-
alysts and developers, which demand simpler, more appeal-
ing, and more user-friendly notations for handling business
systems requirements and specifications. In this respect, the

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

contribution we present in this paper provides a graphical
way for specifying the structure and behavior of enterprise
systems, with a direct translation to Maude. Our goal is
to provide users with a “friendly” UML-based environment
in which the system specifications can be written and auto-
matically translated into the corresponding Maude (formal)
specifications. Then, the Maude system and its analysis
tools may be accessed from the UML environment, freeing
the system analyst from most formal technicalities.

The structure of this document is as follows. First, Sec-
tions 2 and 3 serve as brief introductions to the ODP en-
terprise viewpoint and Maude, respectively. Then, Sec-
tion 4 describes our proposal to write enterprise specifica-
tions in UML, and Section 5 discusses how to map these
UML specifications into their corresponding Maude speci-
fications. Section 6 is dedicated to a small example that il-
lustrates our approach, while Section 7 briefly describes the
tool we have built for the translation of the UML specifica-
tions into Maude and vice-versa. Finally, Section 8 draws
some conclusions and describes some future research activ-
ities.

2. The Enterprise Viewpoint

Distributed systems are inherently complex, and their
complete specifications are so extensive that fully compre-
hending all their aspects is a difficult task. To deal with this
complexity, system specifications are usually decomposed
through a process of separation of concerns to produce a set
of complementary specifications, each one dealing with a
specific aspect of the system. Specification decomposition
is a well-known concept that can be found in many architec-
tures for distributed systems. In particular, the Reference
Model of Open Distributed Processing (RM-ODP) frame-
work [8] provides five generic and complementary view-
points on the system and its environment: enterprise, infor-
mation, computational, engineering and technology view-
points. They enable different abstraction viewpoints, allow-
ing participants to observe a system from different suitable
perspectives [10].

The enterprise viewpoint focuses on the purpose, scope
and policies for the system and its environment. It describes
the business requirements and how to meet them, but with-
out having to worry about other system considerations, such
as particular details of its implementation, or the technology
used to implement the system.

An enterprise specification of an ODP system is an ab-
straction of the system and a larger environment in which
the ODP system exists, describing those aspects that are rel-
evant to specifying what the system is expected to do in the
context of its purpose, scope and policies [9]. An enterprise
specification describes the behavior assumed by those who
interact with the ODP system, explicitly including those

aspects of the environment that influence its behavior—
environmental constraints are captured as well as usage and
management rules.

A fundamental structuring concept for enterprise speci-
fications is that of a community. A community is a configu-
ration of enterprise objects modeling a collection of entities
(e.g. human beings, information processing systems, re-
sources of various kinds, and collections of these) that are
subject to some implicit or explicit contract governing their
collective behavior, and that has been formed for a particu-
lar objective.

The scope of the system is defined in terms of its in-
tended behavior, and this is expressed in terms of roles,
processes, policies, and their relationships. Roles identify
abstractions of the community behavior, and are fulfilled by
enterprise objects in the community. Processes describe the
community behavior by means of (partially ordered) sets of
actions, which are related to achieving some particular sub-
objective within the community. Finally, policies are the
rules that constrain the behavior and membership of com-
munities in order to make them achieve their objectives. A
policy can be expressed as an obligation, an authorization,
a permission, or a prohibition. Actions contrary to rules are
known as violations.

In general, ODP systems are modeled in terms of ob-
jects. An object is a model of an entity; it contains informa-
tion and offers services. A system is therefore composed of
interacting objects. In the case of the enterprise viewpoint
we talk about enterprise objects, which model the entities
defined in an enterprise specification.

Summing up, an enterprise specification is composed
of specifications of the elements previously mentioned, i.e.
the system’s communities (sets of enterprise objects), roles
(identifiers of behavior), processes (sets of actions leading
to an objective), policies (rules that govern the behavior and
membership of communities to achieve an objective), and
their relationships [9].

3. Rewriting Logic and Maude

Maude [4] is a high-level language and high-
performance interpreter and compiler that supports equa-
tional and rewriting logic specification and programming of
systems. The instance of rewriting logic for Maude is pa-
rameterized by membership equational logic [13], although
its underlying equational logic can also be unsorted, many-
sorted, or order-sorted equational logic. Thus, Maude inte-
grates an equational style of functional programming with
rewriting logic computation. Rewriting logic is a logic of
change that can naturally deal with state and with highly
nondeterministic concurrent computations. In particular, it
supports very well concurrent object-oriented computation.

Membership equational logic is a Horn logic whose

2

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

atomic sentences are equalities t = t′ and membership as-
sertions of the form t : S, stating that a term t has sort
S. Conditional equations (resp., membership assertions) are
written as “t = t′ if P” (resp., “t : S if P”), stating the
equality of terms t and t′ (resp., that a given term t has a sort
S) if a certain boolean condition P holds1.

Rewriting logic [12] is a logic in which the state space
of a distributed system is specified as an algebraic data type
in terms of an equational specification (Σ, E), where Σ is a
signature of sorts (types) and operations, and E is a set of
(conditional) equational axioms. The dynamics of a system
in rewriting logic is then specified by rewrite rules of the
form t → t′, where t and t′ are Σ-terms. These rules de-
scribe the local, concurrent transitions possible in the sys-
tem, i.e. when a part of the system state fits the pattern t
then it can change to a new local state fitting pattern t′. The
guards of conditional rules act as blocking pre-conditions,
in the sense that a conditional rule can only be fired if the
condition is satisfied.

In Maude, object-oriented systems are specified by
object-oriented modules in which classes and subclasses
are declared. Each class is declared with the syntax
class C | a1:S1, ..., an:Sn, where C is the name
of the class, the ai are attribute identifiers, and the Si

are the sorts of the corresponding attributes. Objects
of a class C are then record-like structures of the form
< O : C | a1:v1, ..., an:vn >, where O is the name of
the object, and the vi are the current values of its attributes.
Objects can interact in a number of different ways, includ-
ing message passing.

In a concurrent object-oriented system the concurrent
state, which is called a configuration, has the structure of
a multiset made up of objects and messages that evolves
by concurrent rewriting using rules that describe the effects
of the communication events of objects and messages. The
general form of such rewrite rules is

crl [r] :
M1 . . . Mm < O1 : C1 | atts1 > . . . < On : Cn | attsn >
=> < Oi1 : C′

i1 | atts′i1 > . . . < Oik : C′
ik | atts′ik >

< Q1 : C′′
1 | atts′′1 > . . . < Qp : C′′

p | atts′′p >
M′

1 . . . M′
q

if Cond .

where r is the rule label, M1 . . . Mm and M′
1 . . . M′

q are
messages, O1 . . . On and Q1 . . . Qp are object identifiers,
C1 . . . Cn, C′

i1 . . . C′
ik , and C′′

1 . . . C′′
p are classes, i1 . . . ik is

a subset of 1 . . . n, and Cond is a boolean condition (the
rule’s ‘guard’). The result of applying such a rule is that:
(a) messages M1 . . . Mm disappear, i.e. they are consumed;

1Membership equational logic extends order-sorted equational logic,
and supports sorts, subsort relations, subsort polymorphic overloading of
operators, and definition of partial functions with equationally defined do-
mains.

(b) the state, and possibly the classes of objects Oi1 . . . Oik
may change; (c) all the other objects Oj vanish; (d) new ob-
jects Q1 . . . Qp are created; and (e) new messages M′

1 . . . M′
q

are created, i.e. they are sent. Rule guards can be omitted if
not needed.

For instance, the following Maude definitions specify a
class Account with an attribute balance of sort integer,
a message withdraw with an object identifier and an inte-
ger as arguments, and two rules describing the behavior of
the objects belonging to this class. The rule debit speci-
fies a local transition of the system when there is an object
A of class Account that receives a withdraw message
with an amount smaller or equal than the balance of A; as
a result of such a rule, the message is consumed, and the
balance of the account is modified. The rule transfer
models the effect of receiving a money transfer message.

class Account | balance : Int .
msg withdraw : Oid Int -> Msg .
msg transfer : Oid Oid Int -> Msg .
crl [debit] :
withdraw(A, M)
< A : Account | balance : Bal >
=> < A : Account | balance : Bal - M >
if M <= Bal .

crl [transfer] :
transfer(A, B, M)
< A : Account | balance : Bal >
< B : Account | balance : Bal’ >
=> < A : Account | balance : Bal - M >

< B : Account | balance : Bal’ + M >
if M <= Bal .

When several objects or messages appear in the left-hand
side of a rule, they need to synchronize in order for such a
rule to be fired. These rules are called synchronous, while
rules involving just one object and one message in their left-
hand sides are called asynchronous rules.

Class inheritance is directly supported by Maude’s order-
sorted type structure. A subclass declaration C < C’ is a
particular case of a subsort declaration C < C’, by which
all attributes, messages, and rules of the superclasses, as
well as the newly defined attributes, messages and rules of
the subclass characterize its structure and behavior. Multi-
ple inheritance is supported [14].

4. Modeling Enterprise Specifications in UML

Different authors have proposed the use of UML for
modeling the enterprise viewpoint concepts [1, 2, 11, 16].

At the structural level (e.g. when defining the commu-
nities, the roles, and the relationships among them) UML
proves itself to be expressive enough, offering a natural way
for modeling enterprise concepts at this level—which is the

3

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

approach followed by most authors. However, at the behav-
ioral level the situation is not so bright. Typical UML dia-
grams for modeling behavior (such as use case, sequence,
and collaboration diagrams) prove to be inadequate and in-
sufficiently expressive for modeling ODP actions and poli-
cies (cf. [16]).

In this Section we will describe our proposal for mod-
eling in UML the concepts described in Section 2, which
constitute the enterprise specification of a system.

4.1. Structural Concepts

For modeling the structural concepts we will follow
the approach commonly used by most authors (see, e.g.,
[1, 2, 11, 16]). Each role will be modeled by a class, whose
members are the objects exhibiting a behavior compatible
with the one identified by the role. The name of the class
modeling a role is the same as the role name, and the class
attributes describe the properties that characterize the ob-
jects fulfilling such a role. The fact that a role A specializes
other role B is modeled by class A inheriting from class B.

Enterprise objects will be modeled by UML objects.
Every object will always belong to a class, which may be
changed during its lifetime. The class of an object is ob-
tained by composing all the classes that model the different
roles that the object fulfills, which may be realized by mul-
tiple class inheritance.

A community is a composition of enterprise objects, and
therefore it can be modeled by a UML subsystem. How-
ever, a community may also be expressed as a composite
object when considered at a more abstract level of detail
and, dually, an enterprise object may itself be refined as a
community at a more concrete level. Thus, when abstracted
as an enterprise object, a community will be modeled by an
object (belonging to some class).

A relationship among roles establishes a semantic con-
nection among them. The concept of role relationship is not
explicitly defined in the Enterprise Language Standard, al-
though the concepts defined in ISO’s General Relationship
Model can be used here. UML relationships (despite their
vague semantics) will be used for modelling relationships.
Association classes [15] will be used in case of relationships
with attributes.

Three stereotypes will identify enterprise structural con-
cepts. Stereotypes �role� and �relationship� asso-
ciated to UML classes will model roles and relationships,
respectively. Stereotype �community� associated to a
UML subsystem will model a community.

For expressing membership policies, which constraint
the structure of the community and the assignment of enter-
prise objects to roles, we will also use the standard mecha-
nisms provided by UML, namely constraints attached to the
modeling elements, and relationships’ multiplicity.

4.2. Behavioral Concepts

Most authors that have tried to model the enterprise
viewpoint behavioral concepts using the standard UML di-
agrams and mechanisms for modeling behavior have found
serious difficulties. For instance, Steen and Derrick [16]
propose the use of use cases for representing enterprise
actions—that in theory could be further refined into inter-
action (sequence or collaboration) diagrams. But when it
comes to expressing behavioral policies, the main problem
is that the interaction model of UML is based on message
exchange between objects, whereas interactions in the en-
terprise viewpoint can be seen as pieces of shared behav-
ior. As policies constrain the behavior of roles, OCL could
be another alternative. However, OCL is not expressive
enough for that purposes either (e.g., it does not provide
powersets or timing constraints, uses the UML model of in-
teraction, and lacks a formal semantics). As a consequence,
different authors have proposed different proprietary lan-
guages for expressing ODP policies, usually with formal
support (e.g. Object-Z) but with no graphical syntax—
hence losing one of the advantages of using UML.

We propose modeling the actions by specifying tran-
sitions between object diagrams, with behavioral policies
shaping the form of such transitions. These transitions may
be conditional, where the conditions are given as expres-
sions in a notation close to OCL. We may see these transi-
tions as rewrite rules, where the source of the transition—
left-hand side of the rule—and its guard express the condi-
tions that must be satisfied by a particular set of enterprise
objects for such a transition to take place on it, that is, what
has to happen for an action to take place. The target of
the transition—its right-hand side—represents the effect of
such an action on such a subsystem. Policies (both mem-
bership and behavioral) determine the form of the transi-
tions, stating the conditions for the action to happen—either
by restricting the pattern of the source of the transition, or
by explicitly stating a condition with an if guard—or its
effects—by shaping the target of the transition.

ODP actions and behavioral policies can then be mod-
eled as (possibly conditional) transitions between object di-
agrams. The source and target of a transition are depicted
as packages, containing the object diagrams of the corre-
sponding subsystems, linked by a dependency relationship.
The dependency relationship is labeled with the name of the
transition, and it may have associated a note with the con-
dition that describes its guard. Figure 1 shows an example
of a simple transition. The left diagram (labelled Before
in the picture) represents the conditions that need to be in
place for the action to be fired, while the right one (labelled
After) represents the effects of such an action on the system.

The use of “before” and “after” instance diagrams is a
well known technique for writing pre- and postconditions.

4

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

After

o4 : C4

o1 : C1

{attr1= X + Y}

o2 : C2

{attr2 = Y + Z}

Before

o2 : C2

{attr2 = Y}

o3 : C3

{attr3 = Z}

o1 : C1

{attr1 = X}

if (0 < Z) and
 (Z <= X + Y)

a-rule

Figure 1. Object diagrams modeling business
rules.

These instance diagrams are referred to as snapshots in
Catalysis [5], and are also used by, e.g., Cheesman and
Daniels in [3]. In these cases, snapshots are used to help
clarify state changes and write the pre- and postconditions
for the involved methods. The “before” state helps to define
the precondition, and the “after” state helps to define the
postcondition of an action. In our case, we are interested in
using such representations, not just as a help, but as models
of the actions, using them for generating the corresponding
Maude specification in an automatic and transparent way.

Note that we have also added a “guard” to the pair. Al-
though the action’s condition could be expressed as a re-
striction in the Before snapshot, we have found useful hav-
ing this explicit condition in the representation of ODP poli-
cies, and it simplifies the generation of the corresponding
Maude specification. The transformation consists in map-
ping each of the Before-After transitions into a Maude
rewrite rule, which we keep straightforward by restricting
the form of the UML object diagrams used. In fact, our
starting point is the use of Maude in the formalization of the
ODP enterprise concepts (see [7]), being the present work
an attempt to offer a graphical notation to support it. Maude
rewrite rules provide a semantics for the Before-After tran-
sitions, and therefore, given their close relationship, we will
refer to them as “UML rules”, or “rules” for short.

The way in which the different policies that govern the
behavior of a system are modeled will depend on the kind
of policy:

− Permissions allow state transitions. Therefore, a per-
mission is expressed by a rule whose Before object
diagram and guard determine the scenario of the per-
mitted action(s) and their participants, while its After
diagram describes the effects of such action(s).

− To model obligations we need to differentiate between
internal and external ones. By internal obligations we
mean those actions that the system is forced to under-
take as part of its intended behavior. These actions will
be modeled as paired object diagrams (rules) that de-
termine the behavior of the system, perhaps restricting

any other behavior with appropriate guards. However,
it is difficult to impose obligations on actions that are
due to external agents of the system (e.g. a borrower
that does not return a book). In this case we shall im-
plicitly permit the obliged actions, but introducing as
well the appropriate rules for allowing the observation
of the possible violations of such obligations. Those
watchdog rules will determine the appropriate correc-
tive (penalty or incentive) actions.

− Authorizations will be modeled as permissions, explic-
itly permitting the corresponding actions. As for obli-
gations, watchdog rules need to be defined for deter-
mining the system’s behavior in case a violation of the
authorization occurs.

− Prohibitions can be treated in two different ways, de-
pending on its nature. The first way is to express them
as conditional statements, using the rules’ Before ob-
ject diagram and guards for explicitly banning such
actions. In this way, the system will automatically
prevent the prohibited action to happen. For actions
whose occurrence escapes from the control of the sys-
tem, the second way to deal with prohibitions is by us-
ing watchdog rules again, which detect the occurrence
of the prohibited action and determine the appropriate
behavior of the system in that case, if possible.

Note that an action may be expressed by more than one
UML rule, and be controlled by different policies. There-
fore, a policy may be modeled by more than one UML rule,
each of which may itself model more than one policy. Like-
wise, a policy or a collection of policies may apply to more
than one action, which can be modeled by individually ap-
plying those policies to each of the paired object diagrams
modeling such actions, or by characterizing the actions and
then applying the policies to such a characterization.

An interesting issue worth pointing out here is the use
of UML paired object diagrams for modeling both actions
and policies. Of course, there are other alternatives for
specifying business systems and business rules. For in-
stance, we could have modeled ODP actions by messages
(following the UML standard interaction model), and ODP
policies by UML rules. In general, object-oriented model-
ing approaches may be perceived to require using message-
oriented communication models, while the enterprise view-
point (and RM-ODP in general) does not require so. In our
approach both ODP actions and policies are modeled by
paired object diagrams, with guards that determine when
the actions are enabled—and thus can happen. We think
that this is a more abstract and general approach than using
messages. First, it allows to deal with each kind of policy
in a different way, to define the so-called watchdog rules
that determine the behavior of the system upon the occur-
rence of a policy violation. And second, UML messages

5

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

naturally correspond to ODP messages, that model interac-
tions between objects—but in the computational viewpoint,
where they naturally belong (in ODP, a messages is a com-
putational viewpoint concept).

In addition, it ought to be emphasized how the use of ob-
ject diagrams (representing sets of objects) and our UML
rules (paired object diagrams that specify collective behav-
ior) allows a natural representation of the collective state
and collective behavior of a system (that is, state and be-
havior not owned by a specific object), in contrast to other
(object-oriented) modeling approaches in which each action
needs to be assigned to just one actor, and where there is no
explicit representation of the collective state.

The use of UML rules for modeling both actions and be-
havioral policies greatly facilitates the UML modeling of
these two enterprise concepts, unifying the notation and
simplifying the modeling elements and mechanisms used.
Furthermore, there is a clear and direct correspondence be-
tween the UML and Maude representation of ODP actions
and policies.

5. Translating the UML Enterprise Specifica-
tions into Maude

In this Section we will discuss how the UML enterprise
specifications can be translated into Maude (formal) enter-
prise specifications, and vice-versa. A detailed description
of the use of Maude for modeling enterprise concepts can
be found in [7].

Although possible (see, e.g., the work by Toval-Álvarez
and Fernández-Alemán in [17]), we do not intend getting
an automatic translation of all UML elements into Maude,
but only of those that we found relevant for our purposes,
and that have been described in Section 4. They are enough
for writing the ODP enterprise specifications of a system.
Any other UML element—class methods, tagged values,
sequence diagrams, etc.—will be ignored in the translation
process. Of course, they can appear in the UML description
of the system for illustration or clarification purposes, but
will not be considered in this formalization of the system in
Maude.

5.1. Structural Concepts

We have found that there is a strong correspondence
between the UML model classes and the Maude classes,
which allows an easy translation between both models.
UML classes modeling roles and relationships will be di-
rectly mapped to the corresponding Maude classes, and
UML subsystems modeling communities will be directly
mapped to Maude configurations. UML class attributes will
be mapped to Maude class attributes.

Roles can be related in different ways, including gen-
eralizations (which are defined by role subtyping relation-
ships), dependencies (such as usage and other kinds of in-
teractions), compositions (e.g. “is part of” relationships and
aggregations), and associations (such as conceptual rela-
tionships among roles that involve a connection).

In order to translate UML relationships, we will distin-
guish between generalizations and the other ways in which
roles can be related. First, generalizations can be modeled
in Maude by using inheritance, as mentioned earlier. The
rest of the relationships (usage and other dependencies, dif-
ferent kinds of associations, etc.) can be mapped to Maude
classes, with the name of the relationship as the Maude class
name, and whose attributes are the identifiers of the partic-
ipants and the relationship’s attributes. Instances of a rela-
tionship are therefore objects of the class that models the
relationship.

The particular case of binary relationships without at-
tributes can be mapped in a simpler way. We model in
Maude this kind of relationships by using an additional at-
tribute in each of the classes modeling the roles involved
in the relationship. These attributes will hold the identi-
fier(s) of the object(s) at the other end of the relationship. In
the case of directed binary relationships without attributes
(e.g. simple composition or dependency relationships) it is
enough to store the identifiers of the managed objects as at-
tributes of the managing objects.

Each constraint can be seen as a static invariant on the
system. Constraint expressions on the model elements will
be translated using membership assertions. Thus, if we
want to express that a given predicate P is an invariant
over a configuration of information objects, we may specify
a subsort CorrectConfig of Configuration, such
that only those configurations represented by terms of sort
Configuration satisfying P are in CorrectConfig.

op P : Configuration -> Bool .
subsort CorrectConfig < Configuration .
var C : Configuration .
cmb C : CorrectConfig if P(C) .

These declarations make the invariants always true: a
term of sort Configuration is in CorrectConfig if
and only if it satisfies the invariant predicate. However, it
does not constrain the possible states and state changes of
the objects to which rules apply. To get this, we need to
make sure that the configurations on which the rules apply
satisfy the invariant, that is, that are of the right type.

crl [r] : C => C’ if C : CorrectConfig .

Note that this approach is completely systematic and
therefore can be easily automated. The invariant predicate
P contains all the UML constraints on the model elements.
Currently, we assume that these constrains are expressed in
the Maude syntax.

6

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

5.2. Behavioral Concepts

As mentioned earlier, the way we model actions and be-
havioral policies in UML directly reflects the way we mod-
eled them in Maude. Hence, there is again a direct transla-
tion between these two specifications.

Both actions and their corresponding policies are mod-
eled in UML by paired object diagrams, joined by a depen-
dency relationship with a condition attached. The two ob-
ject diagrams (Before and After) can then be mapped into
the left- and right-hand sides of the rule, respectively. The
condition attached to the dependency relationship directly
maps to the rule guard.

With all this, Maude’s configurations (multisets of ob-
jects whose collective behavior is determined by the rewrite
rules) clearly correspond to UML’s object diagrams, whose
behavior is now defined by our UML rules.

6. An Example

In order to illustrate our proposal we will use a simple
example, which was first used by Steen and Derrick in [16]
to illustrate the use of Object-Z for the specification of the
enterprise viewpoint, and then by ourselves for validating
our proposal and for comparing both approaches [6]. The
example is loosely based on the regulations of the Temple-
man Library at the University of Kent at Canterbury, espe-
cially those that rule the borrowing process of the Library
items:

1. Borrowing rights are given to all academic staff, and
postgraduate and undergraduate students.

2. There are prescribed periods of loan and limits on the
number of items allowed on loan to a borrower at any
one time. These limits are detailed below.

• Undergraduates may borrow 8 books. They may
not borrow periodicals. Books may be borrowed
for four weeks.

• Postgraduates may borrow 16 books or periodi-
cals. Periodicals may be borrowed for one week.
Books may be borrowed for one month.

• Teaching staff may borrow 24 books or periodi-
cals. Periodicals may be borrowed for one week.
Books may be borrowed for up to one year.

3. Items borrowed must be returned by the due date.

4. Borrowers who fail to return an item when it is due,
will become liable to a charge at the rates prescribed
until the book or periodical is returned to the library.

5. Failure to pay charges may result in suspension by the
Librarian of borrowing facilities.

Although not explicitly mentioned as such, these rules
define the permissions, obligations and prohibitions for the
people, systems and artifacts playing a role in the library
community. Note the high level at which this description is
given, and the many details left unspecified.

6.1. The Structure of the System

Let us begin with the static aspects of this community,
i.e., its structure. Following our proposed approach, we can
identify here three main roles, namely Borrowers, library
Items, and Librarians. There are three special kinds of
borrowers (academic staff, undergrads, and postgrads), and
two kinds of items (books and periodicals). There is also
a possible Loan relationship between borrowers and items.
A library community can be seen as composed by objects
playing these roles. There is also a Library role which rep-
resents the community when considered as a composite ob-
ject. Finally, role Calendar models the passage of time and
provides the current date.

Figure 2 shows a UML class diagram with a possible
model of the structure of our example. The corresponding
Maude specifications describing this structure can be ob-
tained as a direct translation from that diagram, and are as
follows.

class Library | borrowers : Set(Oid),
calendar : Oid,
items : Set(Oid),
librarians : Set(Oid),
loans : Set(Oid) .

class Calendar | date : Date .
class Librarian .
class Borrower | bookLoanPeriod : Int,

borrowedItems : Int,
fines : Money,
loans : Set(Oid),
maxLoans : Int,
periodicalLoanPeriod : Int,
suspended : Bool .

classes Academic Undergrad Postgrad .
subclasses

Academic Undergrad Postgrad < Borrower .
class Item | free : Bool,

loan : Default(Oid) .
classes Periodical Book .
subclasses Periodical Book < Item .
class Loan | borrower : Oid,

dueDate : Date,
issueDate : Date,
item : Oid .

Please notice how attributes modelling the different rela-
tionships have been added to the classes modelling the roles
involved in them. Predefined sorts Oid and Cid are used

7

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Figure 2. Structure of the library community.

for representing object identifiers and class identifiers, re-
spectively.

There is also an invariant predicate capturing the restric-
tions imposed by the constraints in the model, namely the
maximum allowances of each kind of borrower, the loan
periods (e.g., 7 days for an academic to have a periodical,
etc.). This invariant predicate can be expressed as follows:

op P : Configuration -> Bool .
eq P(none) = true .
eq P(< B : Academic | maxLoans : M > C)
= (M == 24) and P(C) .

eq P(< B : Undergrad | maxLoans : M > C)
= (M == 16) and P(C) .

...

6.2. Actions and Policies Governing the System’s
Behavior

Five actions can be identified in the example: a bor-
rower borrows an item, a borrower returns a borrowed item,
a librarian fines a borrower, a fined borrower pays his/her
debts, and a librarian suspends a borrower for being late in
paying his/her fines. For the sake of brevity, in this paper
we will concentrate just on particular cases two of these ac-
tions (the borrowing and the return of a book). See [6] for a
discussion on the other actions.

Associated to these two actions there is a set of poli-
cies that govern their behavior, as for instance: (1) Any
borrower is permitted to borrow an item if the number of
his/her borrowed items is less than his/her allowance (al-
lowances as per the text: 8 items for Undergrads, etc.) and is
not suspended; (2) an Undergrad is forbidden to borrow
a Periodical item; and (3) any borrower is permitted to
borrow an item for a given period of time.

Let us see how these actions and policies can be specified
in a graphical way, and then its corresponding translation to
Maude rules.

In the first place, borrowing a book needs the borrower
object not to be suspended, and that the number of its bor-
rowed items is smaller than its allowance. We specify such
an action with the UML diagram shown in Fig. 3, in which
there are several objects involved, namely, a borrower bor-
rowing a book, the book, a librarian, the library, and a cal-
endar object supplying the current date. Please notice how
a new object (the loan), appears on the After object dia-
gram, and the appropriate attributes of the other objects are
updated. In our approach (following the Maude conven-
tion [4]) attributes of an object that are not relevant for a rule
do not need to be mentioned, while attributes not appearing
in the After object diagram will maintain their previous val-
ues unmodified.

Now, the Maude rule that corresponds to such a UML
paired object diagram can be directly obtained:

8

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Borrow-After

O : Librarian
L : LibraryC : Calendar

{date = Today}

A : Loan

{dueDate = Today + BL,
issueDate = Today}

B : Borrower

{borrowedItems = N + 1}

I : Book

{free = false}

Borrow-Before

I: Book

{free = true}

O : LibrarianL : LibraryC : Calendar

{date = Today}

B : Borrower

{borrowedItems = N,
bookLoanPeriod = BL,

maxLoans = ML,
suspended = false}

if N < ML.
a-borrower-borrows-a-book

Figure 3. Graphical specification of the rule
a-borrower-borrows-a-book.

crl [a-borrower-borrows-a-book] :
< B : Borrower | borrowedItems : N,

maxLoans : ML,
bookLoanPeriod : BL,
loans : BLS,
suspended : false >

< I : Book | free : true, loan : null >
< L : Library | items : I IS,

borrowers : B BS,
librarians : O OL,
calendar : C,
loans : LLS >

< O : Librarian | >
< C : Calendar | date : Today >
=> < B : Borrower | loans : A BLS,

borrowedItems : N + 1 >
< I : Book | free : false, loan : A >
< L : Library | loans : A LLS >
< O : Librarian | >
< C : Calendar | >
< A : Loan | borrower : B, item : I,

dueDate : Today + BL,
issueDate : Today >

if N < ML .

The second business rule is concerned with the return of
an item, whose graphical representation is shown in Fig-
ure 4. We can see how the Loan object disappears in the
After object diagram of the rule. The corresponding Maude
rule is as follows.

Return-After

L : Library

B1 : Borrower

{borrowedItems = N - 1}

O : Librarian

I1 : Item

{free = true}

Return-Before

L : Library

B1 : Borrower

{borrowedItems = N}

A : Loan

O : Librarian

I1 : Item

{free = false}

return

Figure 4. Graphical specification of the rule
return.

rl [return] :
< B : Borrower | borrowedItems : N,

loans : A BLS >
< I : Item | loan : A >
< A : Loan | borrower : B, item : I >
< L : Library | items : I IS,

borrowers: B BS >
=> < B : Borrower | borrowedItems : N - 1,

loans : BLS >
< I : Item | free : true, loan : null >
< L : Library | > .

Note that our goal is to keep this formal specification
hidden. Users of our tool work only at the graphical level,
i.e., with the UML more-intuitive representation of the busi-
ness rules modelling the actions and policies, being com-
pletely unaware of the corresponding formal specifications
supporting them.

7. From UML to Maude and vice-versa

In this section we will discuss some of the features and
implementation details of the tool we have developed for
the automatic translation of the UML enterprise specifica-
tion into the corresponding (formal) Maude specifications.
The main goal of this tool is to help the software engineer
capture the system requirements and model the behavior of
the system using a friendly UML environment, while being
supported by a formal method. In this way the software en-
gineer can be unaware of all the complexity associated to
the use of a formal notation such as the one provided by
Maude, and its corresponding analysis toolkit. Despite this
apparent simplicity and appealing interface, with this tool

9

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

Figure 5. Writing rules in UML with MagicDraw.

we can still make use of many of the benefits and useful
utilities that formal methods may provide.

The way our tools work is as follows. In the first place,
the user draws the UML diagrams using any of the many
software tools available in the market, with the only re-
striction that it should store the UML information using
the XML tags defined in XMI 1.1 for UML. We have ex-
perienced the real benefits of using XMI, which has really
provided the interoperability we needed, and has allowed
us to accomplished the drawing-tool independence that we
were pursuing. We have used MagicDraw as a drawing tool
(http://www.magicdraw.com). Figure 5 shows the
look and feel of the working environment. Once the dia-
grams are drawn, the user has just to invoke our tool, which
then extracts all the information it needs from the XML de-
scriptions of the diagrams, and builds the Maude class def-
initions from the UML class diagram, and the Maude rules
specifying the system business rules from the paired object
diagrams. We have strongly relied on the one-to-one rela-
tionship between the UML diagrams and the Maude classes
and rules for automating the translation process.

Once the Maude specifications are written, they are
passed on to the Maude interpreter. The translation process
may help uncovering some common mistakes and under-
specifications, such as inconsistent or missing data types of
attributes, or missing details. They are communicated to the
user so they can be fixed.

Once the Maude specifications are accepted by the

Maude interpreter, we are ready for running some of the
analysis tools provided by Maude. The simplest example
is quick-prototyping. Maude specifications are executable,
and therefore we can provide an initial configuration of ob-
jects, and ask the system to use the default strategy for the
execution of the rewrite rules on them. In our case, it is just
a matter of drawing a paired object diagram with the ini-
tial configuration on the Before diagram, its After diagram
empty, and a number instead of the business rule label. That
number indicates the maximum number of rewrite steps that
the Maude engine should perform before returning the re-
sulting configuration. This number is important, since the
specifications of most business systems are neither Church-
Rosser nor terminating. Hence, an upper limit of rewrite
steps should be specified if we want the rewrite process to
end. The initial configuration of objects and the number of
rewrites is then passed to Maude, which processes it using
the rules already defined. The result from Maude is another
configuration of objects, which our tool translates and fits
into the corresponding After object diagram (that was pre-
viously empty) so the user can visualize it.

Our tool is still at a preliminary stage. Current work tries
to give access to other formal analysis tools from the UML
environment. Our first goal is to be able to specify user-
defined strategies for guiding the rewriting inference pro-
cess. After that we plan to give support to stronger analysis
methods, such as model checking [4]. The results obtained
so far are promising and encouraging.

10

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

8. Concluding Remarks

In this paper we have presented a proposal for the graph-
ical modeling of some of the ODP concepts, in particular
actions and policies, for which no natural representation in
UML existed as yet. The UML diagrams produced have
a direct translation into Maude, therefore providing formal
support.

One of the major benefits of our contribution is that it
allows the stakeholders of the system to use a more user-
friendly graphical notation like UML to express the sys-
tem’s structure, requirements and behavior, and then trans-
late them into Maude specifications. The fact that the se-
mantics of UML is often weak and imprecise, as opposed
to the semantics of Maude, is taken care by the way the
ODP specifications are written in UML, with a few stereo-
types and object diagrams which guide the development of
the specifications. Moreover, the tool that automates the
translation process helps the production of correct specifi-
cations, asking for any missing details found in the UML
specifications, but which are required by Maude (e.g. types
of the attributes).

Apart from extending our tool for a smoother integration
with Maude’s analysis toolkit, there is much work ahead.
For instance, there is the issue of how the individual ODP
policies are combined, or how to deal with overlapping or
inconsistent policies. Besides, in our approach polices are
not explicitly stated, they just “shape” the rules that express
the ODP actions. A possible alternative would be using a
policy language for expressing the ODP policies, and then
try to automate such a shaping of the actions. Identifying
this policy language and integrating it in our proposal is a
matter of further research.

Finally, representing enterprise policies is a valuable ex-
ercise in its own right, but it would be even more useful
if they could be related to the computational and engineer-
ing mechanisms implementing them. In this sense, we are
working in modeling other ODP viewpoints in Maude, and
then using UML for providing a graphical access to these
Maude specifications. Enhancing our tool for representing
other viewpoints in UML is therefore another of our short-
term goals.

Acknowledgements This work has been partially
supported by Spanish Projects TIC2002-04309-C02-01,
TIC2000-0701-C02, and TIC2001-2705-C03.

References

[1] J. Aagedal and Z. Milos̃ević. ODP enterprise language:
UML perspective. In Proc. of EDOC’99, pages 60–71, Ger-
many, Sept. 1999. IEEE CS Press.

[2] X. Blanc, M.-P. Gervais, and R. L. Delliou. Using the UML
language to express the ODP enterprise concepts. In Proc.
of EDOC’99, pages 50–59, Germany, Sept. 1999. IEEE CS
Press.

[3] J. Cheesman and J. Daniels. UML Components. A simple
process for specifying component-based software. Addison-
Wesley, 2000.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and J. Quesada. Maude: specification and
programming in rewriting logic. Theoretical Comput. Sci.,
285:187–243, Aug. 2002.

[5] D. F. D’Souza and A. C. Wills. Objects, Components, and
Frameworks with UML. The Catalysis Approach. Addison-
Wesley, 1999.

[6] F. Durán and A. Vallecillo. Writing ODP Enterprise specifi-
cations in Maude. In J. Cordeiro and H. Kilov, editors, Proc.
of WOODPECKER’01, pages 55–68, Setubal, Portugal, July
2001.

[7] F. Durán and A. Vallecillo. Formalizing ODP Enterprise
specifications in Maude. To appear in Computer Standards
& Interfaces, 2003.

[8] ISO/IEC. RM-ODP. Reference Model for Open Distributed
Processing. Rec. ISO/IEC 10746-1 to 10746-4, ITU-T
X.901 to X.904, ISO, 1997.

[9] ISO/IEC. RM-ODP Enterprise Language. Draft Interna-
tional Standard ISO/IEC 15414, ITU-T X.911, ISO, 2001.

[10] P. Linington. RM-ODP: The architecture. In K. Milosevic
and L. Armstrong, editors, Open Distributed Processing II,
pages 15–33. Chapman & Hall, Feb. 1995.

[11] P. Linington. Options for expressing ODP enterprise com-
munities and their policies by using UML. In Proc. of
EDOC’99, pages 72–82, Germany, Sept. 1999. IEEE CS
Press.

[12] J. Meseguer. Conditional rewriting logic as a unified model
of concurrency. Theoretical Comput. Sci., 96:73–155, 1992.

[13] J. Meseguer. Membership algebra as a logical framework
for equational specification. In F. Parisi-Presicce, editor, Re-
cent Trends in Algebraic Development Techniques, volume
1376 of Lecture Notes in Computer Science, pages 18–61.
Springer-Verlag, 1998.

[14] J. Meseguer. Rewriting logic and Maude: A wide-spectrum
semantic framework for object-based distributed systems. In
S. Smith and C. Talcott, editors, Proc. of FMOODS 2000,
pages 89–117, Stanford, CA, Sept. 2000. Kluwer Academic
Publishers.

[15] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Mod-
eling Language Reference Manual. Addison-Wesley, 1999.

[16] M. W. Steen and J. Derrick. ODP Enterprise Viewpoint
Specification. Computer Standards & Interfaces, 22:165–
189, Sept. 2000.

[17] A. Toval-Álvarez and J. L. Fernández-Alemán. Formally
modeling UML and its evolution: A holistic approach. In
S. Smith and C. Talcott, editors, Proc. of FMOODS 2000,
pages 183–206, Stanford, CA, Sept. 2000. Kluwer Aca-
demic Publishers.

11

Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (POLICY’03)
0-7695-1933-4/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

