
Selecting Software Components with Multiple Interfaces

Luis Iribarne
University of Almerı́a

Escuela Politécnica. 04120 Almerı́a, Spain
liribarne@ual.es

José M. Troya and Antonio Vallecillo
University of Málaga

ETSI Informática. 29071 Málaga, Spain
{troya,av}@lcc.uma.es

Abstract

Component-based software development is gaining
recognition as the key technology for the construction of
high-quality, evolvable, large software systems in timely
and affordable manners. Component search and service
matching have become two of the key issues involved in this
process. However, current proposals addressing these is-
sues are based on the simplistic assumptions that compo-
nents present only one interface with the services they of-
fer. This work presents an extension of those approaches in
which components may offer and require several interfaces,
extending the traditional component “substitutability” op-
erator. In addition, an algorithm for selecting COTS com-
ponents with multiple interfaces from a repository in order
to implement a given software architecture is presented.

1. Introduction

Component-Based Software Development (CBSD) is
generating tremendous interest due to the need of plug-and-
play reusable software for developing applications, which
has led to the concept of ‘commercial off-the-shelf ’ (COTS)
components. Although currently more a goal to pursue a
than a reality, this approach moves organizations from ap-
plication development to application assembly. In CBSD,
constructing an application involves the use of prefabricated
pieces, perhaps developed at different times, by different
people, and possibly with different uses in mind. The ulti-
mate goal is to be able to reduce development times, costs,
and efforts, while improving the fle xibility, reliability, and
reusability of the final application due to the (re)use of soft-
ware components already tested and validated.

In CBSD, the system designer has to take into account
the specification of pre-developed COTS components avail-
able in software repositories, that must be even considered
when building the initial requirements of the system, in-
corporating them into all phases of the development pro-
cess [17, 21].

In this approach, an abstract software architecture of the
system is defined first, that describes the specification of
abstract components and their relationships. These abstract
components are then matched against the list of concrete
COTS components available in a repository. This process
produces a list of the candidate components from the repos-
itory that could form part of the application: both because
they provide some of the services required by the appli-
cation, and because they fulfil some of the user’s (non-
functional) requirements such as price, security, etc. With
this list, the system architecture is re-examined in order to
accommodate as much candidates from the list a possible.

Additionally, wrappers may be used for adapting the
COTS components selected (for hiding extra services non
required, or for adapting their interfaces for compatibility or
interoperability), and some glue language can be also used
for composing and coordinating component interactions.

Traditionally, the search and matching processes of com-
ponents have been defined on a one-to-one basis [9, 29, 30].
However, this is not the common case in most real appli-
cations: COTS components are coarse-grained components
that integrate several services and offer many interfaces. For
instance, an Internet navigator or a Word processor, apart
from their core services, they also offer others, such as web
page composition, spell checking, and so on.

This paper presents a proposal to deal with these issues.
In particular, we study some of the problems that appear
in this new setting—such as service gaps and overlaps—
extending the traditional compatibility and substitutability
operators to deal with components that support multiple in-
terfaces. In addition, we also take into account the services
that components require from other components, not only
the services they support, according to the currently widely-
accepted component-oriented programming paradigm [24].

This paper is structured into fi ve sections. After this in-
troduction, Section 2 presents an overview of the COTS
based software applications. Next, Section 3 presents our
proposal and an example that illustrates it. After that, Sec-
tion 4 discusses some related work, and finally Section 5
describes some conclusions, and future research activities.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

2. Software components and interfaces

In the first place, let us define what we understand by a
software component. Here we will adopt Clemens Szyper-
ski’s definition: “A software component is a unit of com-
position with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by
third parties” [24]. In addition, the “COTS” qualifier refers
to a particular kind of component: a commercial entity that
allows for packaging, distribution, storage, retrieval and
customization by users, which is usually coarse-grained,
and lives in software repositories [4, 18, 22, 26].

2.1. Component Interfaces

Component capabilities and usages are specified by in-
terfaces. For our proposal, an interface is “a service abstrac-
tion, that defines the operations that the service supports,
independently from any particular implementation”.

Interfaces can be described using many different nota-
tions, depending on the information that we want to include,
and the level of detail of the specification. The interfaces de-
scribe just the names of the methods, the types of their argu-
ments, and the return values—i.e., the signature. However,
this information has proved to be insufficient for developing
applications in open systems [28].

On top of signatures, the semantic level deals with the
“meaning” of operations—i.e, the behaviour [6, 13]—and
the protocol level deals just with the components’ service
access protocols—i.e., the partial order in which compo-
nents expect their methods to be called, and the order in
which they invoke other methods [25].

These three interoperability levels are the ones consid-
ered in this paper for selecting and matching components.
Of course, the notation used for describing component in-
terfaces will depend on the level we want to cover, and will
also influence the sort of results that can be obtained when
reasoning about the application’s properties right from the
specifications of the components’ interfaces.

Current approaches at the signature level use IDLs for
describing interfaces.The IDLs defined by CORBA, COM
and CCM are example of those. At the protocol level, most
of the current approaches enrich the IDL description of the
components interfaces with information about protocol in-
teractions, using many different notations: finite-state ma-
chines [28], Petri nets [3], temporal logic [10], or the π-
calculus [5]. At this level the offered/required interfaces are
referred to as roles. Finally, interfaces at the semantic level
usually describe the operational semantics of components.
Formal notations used range from the Larch family of lan-
guages, that use pre/post-conditions and invariants [8], to
algebraic equations [9], or the refinement calculus [16].

2.2. Interface operators

Independently from the notation or the level of interop-
erability used, there are some common operations that are
of special interest when building applications from reusable
components. The first one is called substitutability, and
refers to the ability of a component to replace another so
that clients of the first one remain unaware of the change.
This operator defines a partial order between components
and is usually noted by “6”. With it, given an application
and two components C and D, D 6 C means that we can
replace C with D in the application with the warranty that
the application will continue working without problems.

At the signature level, substitutability D 6 C roughly a
matter of checking that all services offered by C are also
offered by D. At the protocol level, we need to check two
main issues: (a) that all messages accepted by C are also ac-
cepted by D, and that outgoing messages of D are a subset of
the outgoing messages of C; and (b), we need to test that the
relative order among the incoming and outgoing messages
of both components are consistent [5, 28]. Finally, seman-
tic substitutability is known in this context as “behavioural
subtyping”. Here, the behaviour refers to the specification
on how the object methods manipulate the object attributes,
and behavioural types are defined as an extension of object
signature types that associate behaviour to signatures and to
identify subtypes that conform to their supertypes not only
syntactically, but also semantically.

Based on operator “6” (independently from the level at
which it is defined) we can define an equivalence relation
between interfaces, and say that two interfaces R1 and R2

are equivalent (R1 ≡ R2) iff C1 6 C2 and C2 6 C1.
A third operator defines when two components are com-

patible for interoperation (and is noted by “./”). At the sig-
nature level this means that all exchanged messages are un-
derstood by each other, and at the protocol level that their
protocols match in each role they share [28, 5]. At the se-
mantic level, it implies that the behaviour provided by a
component should be accordant to the behaviour expected
from its client component, as has been the basis for the “de-
sign by contract” development discipline [14].

Those operators are so important because they are the
ones that service traders and brokers need to use in order
to search for components in software repositories, looking
for those components that can substitute the specification of
abstract required components defined in the software archi-
tecture of an application.

Throughout this paper, operator “6” will stand for the
substitutability operator at any level. However, special care
should be taken when considering the implementation and
complexity of operator “6” at the different levels: it has a
O(1) complexity at the signature level, while it is exponen-
tial at the other two levels (cf. [5, 8]).

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

2.3. Extending the “6” operator

Traditionally, the substitutability operator has been de-
fined for components offering just one interface with their
supported methods, and the search and matching processes
of components have been based on it. Now we plan to ex-
tend this operator for components with multiple interfaces,
including both supported and required. This will allow us
to define component search and matching processes.

Definition 1 (Component) A COTS component C will be
determined by two sets of interfaces C = (R,R), the
fir st one with the supported interfaces of the component
R = {R1, ...,Rn}, and the second one with the required
interfaces of the componentR = {R1, ...,Rm}.

For simplicity we will write C.R and C.R to refer to
the two sets of interfaces. For interoperability at the signa-
ture level, Ri’ s and Rj’ s represent standard interfaces (e.g.,
CORBA or COM interfaces) composed just of a set of pub-
lic attributes and methods. At the protocol level, each Ri or
Rj describes a ‘role’, and at the semantic level, each of them
corresponds to a description of an interface decorated with
semantic information (e.g., with pre/post conditions).

The following definitions will help us simplify the nota-
tion for relating interfaces, using traditional set notation:

Definition 2 (Interface inclusion) Let A = {A1, ...,As}
and B = {B1, ...,Bt} be two sets of interfaces. We shall
say that A ⊆ B if for all Ai ∈ A there exists one interface
Bj ∈ B with Bj 6 Ai.

Please note that in this definition, operator “6” stands
for the substitutability operator among simple interfaces, no
matter the interoperability level it refers to (signatures, pro-
tocols or semantics). Likewise, interface intersection can be
defined in the natural way:

Definition 3 (Interface intersection) Let A and B be two
sets of interfaces. We define R = A ∩ B as the set of in-
terfaces R = {R1, · · · ,Ru} such that for all Rk ∈ R there
exists one interface Ai ∈ A and another interface Bj ∈ B
for which Rk 6 Ai and Rk 6 Bj (Ai ≡ Bj).

On the other hand, components need to be composed in
order to build other components and applications:

Definition 4 (Component composition) Let C1 =
(R1,R1) and C2 = (R2,R2) be two components. We
define C1 | C2 as a component C3 = (R3,R3), such that

R3 =

{
R1 ∪R2 iffR1 ∩R2 = ∅

undefined iffR1 ∩R2 6= ∅

R3 =

{
R1 ∪R2 − {R1 ∪R2} iffR1 ∩R2 = ∅

undefined iffR1 ∩R2 6= ∅

Please note that the composition is commutative and as-
sociative. We have defined it as a partial operation in order
to avoid the conflicts that appear in an application in which
two of its components offer the same service—i.e., service
overlaps. In order to compose components we need a new
operation for hiding services:

Definition 5 (Hiding) Let C1 represent a component C1 =
(R1,R1) and letR be a set of interfaces. The hiding opera-
tor “−” is defined by C1−{R} = (R1−R,R1), allowing
us to hide from C1 all interfaces inR.

When composing components to build applications, we
may also find that some of the services required by any of
the components are missing in order to make the applica-
tion work (i.e., service gaps). Hence, we need to talk about
“closed” applications, with no service gaps:

Definition 6 (Closed application) Let C1, C2, ..., Cn be
components, and A = C1 | C2 | ... | Cn a new compo-
nent obtained by composition. We shall say that A is closed
iff
⋃

i∈{1..n} Ci.R ⊆
⋃

i∈{1..n} Ci.R.

Finally, we are in a position to extend the traditional sub-
stitutability operator to deal with components offering (and
requiring) several interfaces:

Definition 7 (Substitutability) Let C1 = (R1,R1) and
C2 = (R2,R2) represent two components. We shall say
that C1 can be replaced (or substituted) by C2, and denoted
by C2 6 C1, iff (C1.R1 ⊆ C2.R2) ∧ (C2.R2 ⊆ C1.R1).

3. Building software applications from COTS

Once all the concepts that constitute our working con-
text have been defined, let us go back to the original prob-
lem: how to build applications from COTS components
right from the specification of the application architecture.

Definition 8 (Application Architecture) An application
architecture A will be determined as a set of component-
abstract specifications A = {A1, . . . ,An}, such that Ai can
be described as a COTS component C in Definition 1.

3.1. An example application

In this section we will present an example to illustrate
the following concepts. The example consists of a simple
desktop application E, with some basic components: a Cal-
culator, a Calendar, an Agenda, and a Meeting Scheduler.

Figure 1 shows the application architecture, expressed in
terms of its components and their interconnections. Black
circles represent supported interfaces, while white circles
represent required ones. Arrows represent invocations. The
definition of those components using our notation is de-
scribed in Table 1—left column—which shows their depen-
dencies, too.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

Figure 1. Architecture of example application.

E Architecture CB(E): Candidate components
(Abstract specifications) (Concrete specifications)

CIO = {RCIO} C1 = {RCIO}
CAL = {RCAL} C2 = {RCAL}
AG = {RAG,RLIS,RCAL,RCIO} C3 = {RAG,RCIO,RCAL}
MS = {RMS,RAG,RCAL,RCIO} C4 = {RLIS}

C5 = {RMS,RAG,RCIO}
C6 = {RCAL,RLIS,RP}

Table 1. Abstract vs. concrete specifications

3.2. The building process

In this setting, we need to confront the abstract spec-
ifications of the application components—as described by
the architecture A—with the concrete specifications of the
components in a software repository B. For this we define:

Definition 9 (Configuration) Given an application archi-
tecture A, and a repository of components B, we define a
configuration S as a set of software components from B, ful-
filling the following two conditions: (a) the set of services
offered by the components of S must coincide with the set of
services offered by A (i.e., no service gaps), and (b) no two
components from S provide the same common service (i.e.,
no service overlaps).

Let us see in more detail how configurations can be built.
The following three-step process has been defined in order
to produce the set of all valid configurations for a given ap-
plication A: (a) Selection of components from the reposi-
tory that match any of the services defined in the architec-
ture; (b) generation of configurations with no service gaps
or overlaps; and (c), closure of the configurations obtained.
Let us describe all these steps in more detail.

3.2.1 Component Selection.

The first step consists of selecting from the repository B the
set of components B = {B1, . . . ,Bm} that may potentially
participate in application A because they offer at least one
of the services offered by the application.

Definition 10 (Candidates) Let A = {A1, · · · ,An} be an
application architecture and let B = {B1, . . . ,Bm} be the
repository. We define the set of candidate components as
CB(A) = {B ⊂ B | A.R∩ B.R 6= ∅}.

Therefore, we will concentrate just on the services sup-
ported byA, by consideringA = A1 | A2 | . . . | An as a new
component with A.R and A.R to refer the set of provided
and required interfaces, respectively.

In order to build this set we need to go through the repos-
itory only once, and decide for each of its elements whether
it is a candidate or not. If m = card(B) is the number of
components in the repository, and L the complexity of the
substitutability operator (constant for signatures, exponen-
tial for protocol and semantic checks), then the complexity
of the selection process is O(mL).

Let us try to use the example application E, starting from
the selection of the candidate components from a given soft-
ware repository. The first thing to do is to consider the ap-
plication E as a single component, obtaining:

E.R = {RCIO,RCAL,RAG,RLIS,RMS}, E.R = {}

With those services we can go through the components
in the repository, selecting those that offer at least one of the
services that E supports. A possible result of this match is
shown in the right column of Table 1.

In this example, six components have been found as can-
didates. Please notice that candidate component C6 requires
an external service defined by interface RP. In case this
component is included in a configuration, we would need
to close it first in order to produce a working application.
The last step of our process takes care of this, closing the
configurations with regard to repository B.

3.2.2 Generating the configurations.

The second phase tries to build a set S of all possible con-
figurations with the candidate components.

The basic idea is to build all combinations of candidate
components (hiding the possible service overlaps in order to
compose them without problems), and select those combi-
nations Sol = {S1, · · · , Sl} such that A.R ⊆ Sol.R (hence
guaranteeing no service gaps).

Table 2 shows a backtracking algorithm that imple-
ments this process. It produces, from the set of candidates
CB(A) = {C1, · · · ,Ck}, and from the application A con-
sidered as one component, a set S of valid configurations.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

The initial invocation of the algorithm is S = ∅; Sol =
∅; configs(1, Sol,S). An implementation of this algo-
rithm in C++ is available at http://www.cotstrader.
com/selectingCOTS/home.html.

As we can see, the algorithm explores all possibilities,
building a final set with all valid configurations step by step
(line 11). Each individual configuration (line 9) is gener-
ated by trying all candidates, incorporating those services
Ci.Rj not yet included in A, and discarding those already
considered (lines 8 and 10). When the algorithm finishes,
variable S contains all configurations. Due to the way the
algorithm works, no service gaps or overlaps may happen,
hence producing only valid configurations.

1 function configs(i, Sol,S)
2 // 1 ≤ i ≤ size(CB(A)) traverse the repository
3 // Sol is the configuration being built
4 // S contains the set of all valid configurations A
5 if i ≤ size(CB(A)) then
6 for j := 1 to size(Ci.R) do // all service in Ci

7 // we try to include Ci.Rj service in Sol
8 if {Ci.Rj} ∩ Sol.R = ∅ then // Ci.Rj 6∈ Sol.R?
9 Sol := Sol ∪ {Ci.Rj};
10 if A.R ⊆ Sol.R then // Is Sol a configuration?
11 S := S ∪ {Sol}; // if so, it is included in S
12 else // but if there are still service gaps ...
13 configs(i, Sol,S); // search in Ci ...
14 endif
15 Sol := Sol− {Ci.Rj};
16 endif
17 endfor
18 configs(i + 1, Sol,S); // Next in CB(A).
19 endif
20 endfunction

Table 2. Obtaining all valid configurations.

For instance, Table 3 shows some results produced by
algorithm configs() for the desktop E. In this case the al-
gorithm generates 29 = 512 combinations, since the total of
services provided by all candidate components was 9. From
those 512 possible combinations, only 16 configurations are
valid, which are shown in the table. In addition, some other
discarded configurations are shown for completeness.

3.2.3 Closing configurations.

Once all configurations have been generated, we need to
close them in order to get a “complete” application. The
process of closing a given configuration can be carried out
by applying any of the existing algorithms for calculating
the transitive closure of a set (i.e., a configuration) with re-
gard to another bigger set (in this case the repository B).
This process is well-known and established, and is beyond
the scope of this paper.

Following with our desktop example, in Table 3 columns
2-7 show the services provided by each component in each
configuration, column 8 describes the configuration, in
terms of its constituent components (hidding also the ap-
propriate services), and column 9 shows an “R” if the con-
figuration respects the application structure, and a “C” if it
is a closed configuration.

For instance, configuration number 1 contains all candi-
date components but C6, and each component provides just
one service. This configuration is closed and respects the
application’s structure. From the 16 configurations found,
four are closed, and four respect the structure. Now it is a
decision of the system designer to select the configuration
that better suits his requirements from this list of valid con-
figurations, or to revisit the original architecture.

It is important to observe that the process described here
has been defined for complete applications. However, it
could also be used for some parts of an application, too.
In this way we could allow the designer to decide which
parts of the whole application he wants to implement with
COTS components from the repository, and which parts not,
applying the process only to the selected parts.

3.3. Further considerations

Once we count with a process that produces a set of valid
configur ations that can implement the services described
in an application’s architecture, let us discuss some issues
which are worth pointing out.

The process shown here builds a set of valid configura-
tions so that the system designer can choose the one that fits
better his/her requirements. A good idea could be assign-
ing weights to configurations that help the user to finally
select one. Those weights could include many different fac-
tors, from commercial issues (component prices or avail-
ability), to complexity (number of supported and required
interfaces), or other non-functional requirements [1, 7].

Defining weights could also bring additional benefits.
First, we could order the configurations obtained using their
weights, ranking them according to the user’s given criteria.
And second, we could change the algorithm into a ‘branch
and bound’ one that use upper bounds to prune many of the
options in the exploration tree.

On the other hand, configurations have been built
from the existing candidate components in the repository,
but without taking into account the application’s internal
structure—as defined by its application architecture.

By structure we mean the divisions of the applications
services in abstract components A = {A1, · · · ,An}. But
this issue can also be contemplated in our proposal. It
is simply the case of discarding those configurations with
components that cross the boundaries established by the ar-
chitecture, i.e., those that do not respect the architecture A.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

C1 C2 C3 C4 C5 C6 Configurations

– RCIO RCAL RAG RLIS - - NONE: RMS missing (gap)

1 RCIO RCAL RAG RLIS RMS - C1,C2,C3−{RCIO},C4,C5−{RAG} RC
2 RCIO RCAL RAG - RMS RLIS C1,C2,C3−{RCIO},C5−{RAG},C6−{RCAL} R
3 RCIO RCAL - RLIS RMS,RAG - C1,C2,C4,C5 C
4 RCIO RCAL - - RMS,RAG RLIS C1,C2,C5,C6−{RCAL} R
5 RCIO - RAG RLIS RMS RCAL C1,C3−{RCIO},C4,C5−{RAG},C6−{RLIS} R
6 RCIO - RAG - RMS RCAL,RLIS C1,C3−{RCIO},C5−{RAG},C6

– RCIO - RAG - - RLIS NONE: RCAL,RMS missing (gaps)
7 RCIO - - RLIS RMS,RAG RCAL C1,C4,C5,C6−{RLIS}
8 RCIO - - - RMS,RAG RCAL,RLIS C1,C5,C6

– RCIO RCAL - - - - NONE: RAG,RLIS,RMS missing (gaps)
9 - RCAL RAG,RCIO RLIS RMS - C2,C3,C4,C5−{RAG} C

10 - RCAL RAG,RCIO - RMS RLIS C2,C3,C5−{RAG},C6−{RCAL}
– - RCAL RAG RLIS RMS - NONE: RCIO missing (gap)

11 - RCAL RCIO RLIS RMS,RAG - C2,C3−{RAG},C4,C5 C
12 - RCAL RCIO - RMS,RAG RLIS C2,C3−{RAG},C5,C6−{RCAL}
– - RCAL - - RMS - NONE: RCIO,RAG,RLIS missing (gaps)

13 - - RAG,RCIO RLIS RMS RCAL C3,C4,C5−{RAG},C6−{RLIS}
14 - - RAG,RCIO - RMS RCAL,RLIS C3,C5−{RAG},C6

15 - - RCIO RLIS RMS,RAG RCAL C3−{RAG},C4,C5,C6−{RLIS}
16 - - RCIO - RMS,RAG RCAL,RLIS C3−{RAG},C5,C6

– - - - - - RCAL,RLIS NONE: RCIO,RAG,RMS missing (gaps)

Table 3. Some results of the configs() algorithm for the example.

4. Related Work

The contributions presented in this paper can be related
to three main research lines, which work on component in-
teroperability, component acquisition, and about building
systems from commercial components.

In the first place we find those works that address com-
ponent interoperability, at any of the three levels: signa-
ture level [20, 29], protocol level [5, 28], and semantic level
[1, 2, 8, 10]. These works have been already discussed in
Section 2, and our approach tries to extend them to deal with
components offering (and requiring) multiple interfaces.

The second group of work is related to the search and
selection processes of components from software repos-
itories, also known as components acquisition. These
works take into account the architecture requirements—
denoted in some cases as applications engineering—and
the component specifications available in well-known soft-
ware repositories—denoted in some cases as domain engi-
neering. In that sense, there are a lot of works on component
acquisition [18, 19, 15], here we underline three of them.

For instance, Rolland [22] proposes a technique by
which requirements are captured by transition diagrams
called maps, based in four basic models: the As-Is model,
the To-Be model, the COTS model, and the integrated
match model. However, this approach does not propose any
particular way for specifying COTS components, or gives

any indication on how to carry out the syntactic and seman-
tic matchmaking process between components. Another
proposal is due to Goguen et al. [9], where a set of crite-
ria for searching and selecting components from a repos-
itory is presented and discussed. However, this proposal
deals only with components offering simple interfaces, and
therefore the problems of service gaps and overlaps do not
appear. Furthermore, we highlight an important work: Sea-
cord et al. [23] propose a process for identifying component
ensembles that satisfy a system requirements specification
based on a knowledge base of system integration rules.

Finally, in the third place we underline those works on
building applications from COTS components. In this case,
we highlight two interesting work areas. First one is the
COTS-Based Systems (CBS) Initiative1 at Software Engi-
neering Institute (SEI), where we find the work of Kurt
Wallnau, Scott Hissam and Robert Seacord on building sys-
tems from commercial components [27]. In second place,
we find another very interesting proposals about CAFE and
ESAPS projects2, both from European Software Institute
(ESI). One of their works is due to Cherki et al. [6], where
they are describing a platform called Thales for building
systems based on COTS parts.

1Available at http://www.sei.cmu.edu/cbs web site.
2These projects are available at http://www.esi.es/Cafe and

http://www.esi.es/esaps web sites.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

5. Conclusions and future work

This paper presents two main contributions. First, it ex-
tends traditional interface operators to the case in which
components support more than one interface and also spec-
ify the interfaces required from other components to work.
We have been very careful when defining those extensions
so they can extend the traditional interoperability operators
no matter the level they refer to (signature, protocols, or
semantics). And second, we have shown an algorithm for
producing configur ations based on the previous operators.

There are several possible extensions of our work, such
as defining some metrics and heuristics for configurations,
which can help systems designers in their decision pro-
cesses when building applications from existing COTS
components. On the other hand, our work is a first step
towards a more ambitious goal of defining a methodology
for the development of applications by assembling COTS
components living in software repositories (or in the Web),
whose composition implements a target software architec-
ture. In this sense, we want to use formal notations for de-
scribing the application software architecture, e.g., by us-
ing an Architectural Description languages (ADL) such as
Darwin, LEDA, ACME, or UML-RT. Then, we also need
to enrich current IDLs to cope with protocols or semantic
information compatible with the ADLs used, beyond the
mere signature information they contain now. And once we
have compatible notations for describing the abstract and
the concrete specification of components, we plan to work
on extension of current repositories and service traders so
they can make effective use of all this information. Some
preliminary results have already been obtained, and can be
found in [12].

References

[1] C. F. Alves et al. Using non-functional requirements to se-
lect components: A formal approach. In (IDEAS’01) , 2001.

[2] P. America. Designing an object-oriented programming lan-
guage with behavioral subtyping. Number 489 in LNCS,
pages 60–90. Springer-Verlag, 1991.

[3] R. Bastide, O. Sy, and P. Palanque. Formal specification and
prototyping of CORBA systems. In ECOOP’99 , number
1628 in LNCS, pages 474–494. Springer-Verlag, 1999.

[4] A. W. Brown and K. Wallnau. The current state of CBSE.
IEEE Software, 15(5):37–46, Sep-Oct 1999.

[5] C. Canal, L. Fuentes, J. M. Troya, and A. Vallecillo. Extend-
ing CORBA interfaces with π-calculus for protocol compat-
ibility. In TOOLS’00 , pages 208–225. IEEE Press, 2000.

[6] S. Cherki et al. Development Support prototype for system
families based on COTS. Technical report, ESAPS Project,
2001. http://www.esi.es/esaps.

[7] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, 1999.

[8] K. K. Dhara and G. T. Leavens. Forcing behavioral sub-
typing through specification inheritance. In ICSE-18, pages
258–267. IEEE Press, 1996.

[9] J. Goguen, D. Nguyen, J. Meseguer, Luqi, D. Zhang, and
V. Berzins. Software component search. Journal of Systems
Integration, 6:93–134, Sept. 1996.

[10] J. Han. Semantic and usage packaging for software compo-
nents. In WOI-ECOOP’99 , pages 25–34, 1999.

[11] G. T. Heineman and W. T. Councill. Component-Based Soft-
ware Engineering. Putting the Pieces Together. Addison-
Wesley, May 2001. ISBN 0-201-70485-4.

[12] L. Iribarne, J. M. Troya, and A. Vallecillo. Trading for
COTS components in open environments. In 27th Euromi-
cro, pages 30–37. IEEE CS Press, 2001.

[13] G. T. Leavens and M. Sitaraman. Foundations of
Component-Based Systems. Cambridge University, 2000.

[14] B. Meyer. Object-Oriented Software Construction. 2nd Ed.
Series on Computer Science. Prentice Hall, 1997.

[15] B. C. Meyers and P. Oberndorf. Managing Software Acqui-
sition. SEI Series in SE. Addison-Wesley, 2001.

[16] A. Mikhajlova. Ensuring Correctness of Object and Compo-
nent Systems. PhD thesis, Åbo Akademi University, 1999.

[17] H. Mili, F. Mili, and A. Mili. Reusing software: Issues and
research directions. IEEE Trans. SE, 21(6):528–562, 1995.

[18] C. Ncube and N. Maiden. COTS software selection. In Con-
tinuing Collaborations COTS Development, 2000.

[19] B. Nuseibeh. Weaving together requirements and architec-
tures. IEEE Computer, pages 115–117, March 2001.

[20] OMG. The CORBA Component Model. Object Management
Group, June 1999. http://www.omg.org.

[21] S. Robertson and J. Robertson. Mastering the Requirement
Process. Addison-Wesley, 1999.

[22] C. Rolland. Requirements engineering for COTS based sys-
tems. IS Technology, 41:985–990, 1999.

[23] R. C. Seacord, D. Mundie, and S. Boonsiri. K-BACEE:
Knowledge-Based Automated Component Ensemble Eval-
uation. In 27th Euromicro. IEEE CS Press, 2001.

[24] C. Szyperski. Component Software. Beyond Object-
Oriented Programming. Addison-Wesley, 1998.

[25] A. Vallecillo, J. Hernández, and J. M. Troya. New issues
in object interoperability. In Object-Oriented Technology:
ECOOP’2000 Workshop Reader, number 1964 in LNCS.
Springer-Verlag, 2000.

[26] K. C. Wallnau, D. Carney, and B. Pollack. How COTS soft-
ware affects the design of COTS-intensive systems. SEI In-
teractive, 1998.

[27] K. C. Wallnau, S. Hissam, and R. Seacord. Building Systems
from Commercial Components. Addison-Wesley, 2002.

[28] D. M. Yellin and R. E. Strom. Protocol specifications
and components adaptors. ACM Trans. Prog. Lang. Syst.,
19(2):292–333, Mar. 1997.

[29] A. M. Zaremski and J. M. Wing. Signature matching: A
tool for using software libraries. ACM Trans. on Software
Engineering and Methodology, 4(2):146–170, Apr. 1995.

[30] A. M. Zaremski and J. M. Wing. Specification matching of
software components. ACM Trans. on Software Engineering
and Methodology, 6(4):333–369, Oct. 1997.

Proceedings of the 28 th Euromicro Conference (EUROMICRO’02)
1089-6503/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

