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Abstract

This paper discusses the modular development of software applications in Open Systems using reusable components and controllers. In
this work a component model for open system is proposed, in which components encapsulate computation, systems deal with the creation and
communication of components, and the rest of the context-specific requirements and concerns are implemented by first-class, reflective,
reusable entities, calledcontrollers. Controllers are thought to be the natural evolution of the traditional object wrappers or filters to the realm
of component-oriented programming, that can be added to components in a modular way, modifying their behavior according to the
requirements they implement.q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The increasing use of Open and Distributed Systems
(ODS) for the development of applications, together with
the emerging need of a global component marketplace, are
changing the way software is developed nowadays. Reusa-
bility and late composition are two driving forces towards
the separation of the computational and interoperational
aspects of components, while ODS-specific requirements
have to be incorporated into the user application too, and
in an orderly manner.

Current architectural approaches to deal with these issues
rely on components and connectors. Components encapsu-
late computation, while connectors describe how compo-
nents are integrated into the architecture. Although this
separation of concerns has clear advantages for system
design, verification and reuse, it also presents some limita-
tions. Connectors are good for defining and managing the
interconnections between components, but they still lack the
ability to abstract other importantproperties, like resource
discovery and management, placement policies, reliability
features, and other context-specific requirements [2].

On the other hand, the approach followed by the main
commercial component platforms (CORBA, DCOM or
JavaBeans) to cope with the ODS specific requirements is
to define and implement new services and features, extend-
ing and complementing their basic models. Examples are

the new CORBA services and features [4,21], the Microsoft
Distributed Component Architecture (MDCA) and its
services (security, transactions, messages and clustering)
[17], and the new versions and additions to JavaBeans
(Glasgow, Enterprise, BeanConnect and InfoBus)
[www.javasoft.com]. However, these extensions do not
provide a good solution in the long term, since they
may hinder the reusability and portability of compo-
nents. For instance, it is difficult to migrate to a differ-
ent environment a CORBA component that strongly
relies on a particular CORBA service. Even worse,
specific requirements not covered by the model should
be undertaken by the components themselves, which
unnecessarily complicate their design and development,
hindering again their reusability, portability and open-
ness. Another problem with model extensions is that
models were originally designed without any of them
in mind, which tends to produce hybrid and unnatural
results. For example, the asynchronous messages defined
in MDCA constitute quite an unnatural communication
mechanism for traditional COM components that tradi-
tionally use RPCs.

1.1. A reflective approach

A more appropriate approach for application develop-
ment in ODS considers components as black boxes that
transparently modify their behavior throughcontrollers —
also called layers, home processes, meta-actors or filters in
other models — , first-class entities that modify the compo-
nent behavior by wrapping them, taking care of the context-
specific concerns and requirements of components
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[1,3,5,11,14,15,23]. However, those meta-components
suffer from several limitations that restrict their wide use
in component-based software development:

1. they all lack of a common and uniform structure;
2. most of them are just computational filters with delay

capabilities at most, even without state;
3. they are defined in terms of the objects they are attached

to;
4. they are not reusable;
5. their functionality and behavior is too tightly coupled to

the components they wrap;
6. finally, their composition is usually undefined.

Our proposal is also based on a reflective approach and
uses wrappers to adapt third-party components to the
context-specific requirements, but tries to overcome all
those limitations. In the first place, our controllers share
the same structure, and they are not mere computational
filters: they not only capture and modify messages, but
they can also split, reorder or join them, reply to messages,
or even interrogate their environment and reconfigure them-
selves accordingly. Second, controllers are designed to be
commercial off-the-shelf (COTS) reusable entities, and
independently defined from the components they will be
later attached to. Finally, they can be composed to simulta-
neously enforce several requirements to a given component.

Based on this reflective approach our model offers a
three-layered structure: “Systems–Controllers–Compo-
nents”. Systems can be simplified to the minimum, offering
just the infrastructure for the creation and communication of
components. Components encapsulate computation, and the
standard add-on controllers provide components with the
required behavior, according to the user requirements.

The idea is to ease the task of building applications by
using COTS components and controllers, in a software
marketplace with room not only for systems and compo-
nents manufacturers, but also for developers of reusable
controllers. In order to do so, some goals must be achieved.
First, components and controllers should be defined in such
way that controllers can be added to components in a
compatible, modular and independent manner, and
composed to apply multiple properties simultaneously to a
component. Secondly, formal methods and models are
needed for specifying the behavior of the components, the
controllers and the aggregates, for reasoning about them,
and for proving that the application requirements can be
met when putting all the pieces together. Finally, interoper-
ability mechanisms are needed for integrating components
from different models, making them interoperate seam-
lessly, and for incorporating legacy applications to our
systems.

This paper presents a new component model for open
systems that tries to meet all those requirements. It defines
the concepts of components and controllers, allows their
modular composition and aggregation to build applications,

and it is devised to address in an independent manner many
of the ODS specific issues, such as heterogeneity,
component evolution and dissemination, dynamic reconfi-
guration, or environment-awareness. The model offers two
different parts. First, a communication infrastructure based
on asynchronous messages with local broadcasting capabil-
ities. And second, a reflective architecture on top of it to
wrap components with controllers. The model is also
supported by a formal framework in Object-Z for specifying
its concepts and providing reasoning mechanisms about the
components [20].

The structure of this document is as follows. The next
section describes the basic concepts of the model and its
communication mechanisms. Section 3 describes the reflec-
tive mechanisms and the basic properties, together with an
example that shows how the model can be used to build up
an application from existing components and controllers.
Section 4 introduces an interface description language,
and Section 5 discusses other interesting aspects of the
model, like its interoperability with the existing component
platforms, or some of its limitations. Finally, we relate our
contribution to other works in this area and draw some
conclusions.

2. The SCcomponent model

In the first place, the model provides components with a set
of communication mechanisms for inter-operating among
themselves, together with reflective mechanisms to modify
their behavior according to the application requirements (by
means of controllers). This section describes the model
communication mechanisms, while its reflective features
are covered in Section 3. The nameSC comes fromSelf-
Coordination, a concept that claims that each component
should be responsible for achieving its own goal, and that
constitutes one of the underlying ideas of the model.

In SC communication is based on mailboxes and asyn-
chronous message passing, each component having a mail-
box where other components can send messages to.
Mailboxes have a unique global address that must be speci-
fied when delivering messages to them. On top of that, we
have also addedinspectionand local broadcasting, two
facilities that allow components to cope with both the static
and dynamic requirements of information passing in ODS.
Inspection is used to interrogate components for their imple-
mented methods, and local broadcasting allows components
to send messages to all components currently at a domain (a
set of related machines). In the following sections, we will
discuss all those concepts in more detail.

2.1. Components

Generally speaking, any computational entity can be
modeled as an object (although it may be implemented by
many), with a state (given by the values of its attributes) and
some access operations (its methods). We definecomponent
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as an object encapsulated with an interface compatible with
the communication mechanisms offered by the system. The
capsule abstracts its behavior, hides its implementation and
allows its interaction with other components. Besides,
components need to be able to be independently deployed
and subject to late composition by third parties if we want to
use them in a global component marketplace [18].

2.2. Messages and mailboxes

In SC components interoperate using asynchronous
messages, a very appropriate mechanism to express and
implement the communication among components that
takes place in ODS. In order to minimize the system require-
ments and to model the real requirements of large ODS, we
will not suppose that transmission times are bounded, that
the relative order between messages is preserved, or that
transmissions are error-free. As we shall see, these issues
can be separately addressed by the reusable controllers.

Messages are information entities with a header and a
body. The header is a set of fields with the delivery informa-
tion (destination and originator mailbox addresses, message
reference, timestamp, the result of the operation for reply
messages, etc.). The body is just another field (Info) with no
predefined structure used to store the data being delivered
with the message (operation parameters, etc.). Then, the
structure of messages can be described as follows:

String To; /* Target mailbox */
int Result; /* Result of the operation */
String Reply; /* Source mailbox */
Date Sent; /* Timestamp */
String Subj; /* Msg selector */
Date ReplyBy; /* Reply deadline */
int Ref; /* Msg reference */
int Cid; /* Controller id */
int RefTo; /* Reply reference */
String Info; /* Msg data */

An important field is the message selector (theSubject)
that determines the operation to be executed by the target
component. For every methodf implemented by a compo-
nent, we define four different message selectors: !f, ?f, Re:!f
and Re:?f. The first one invokes the method, and Re:!f is
used for replying to it. Selector ?f asks the destination
component whether it implements methodf or not, and
Re:?f answers this question. Besides, message selector
‘??’ queries a component for the methods it implements,
that is, for its complete interface.

Each component has amailboxthrough which the compo-
nent sends messages to other mailboxes and receive
messages from other components. Mailboxes have a unique
global address and two FIFO queues, one of incoming
messages and other of outgoing messages (Fig. 1). Mail-
boxes offer two basic operations: Send to send messages
to other mailboxes, andReceive to read a message from
the mailbox incoming queue.Receive is a blocking
operation if the queue is empty. When created, a mailbox
is registered at the current machine and assigned a unique
global identifier (its address), that has two parts: a local
name and the machine address (e.g.av@lcc.uma.es ).
The sender of a message can specify just a destination
name, meaning that the mailbox belongs to its local
machine, or a complete mailbox address. But it can also
specify a special name (BCST) so that the message gets
sent to all mailboxes currently at the destination domain.

2.3. Domains

In our context, adomain is a set of interconnected
machines that defines the ‘environment’ of a component.
Domains are structured as trees, where the nodes are
machines and the existence of an arc from machineM1

to its child M2 means thatM2 wants to receive all
broadcast messages sent toM1. Each domain is uniquely
identified by its root address, and subtrees of a domain
are also domains.

J.M. Troya, A. Vallecillo / Information and Software Technology 43 (2001) 189–202 191

Elicit Expert
Domain

Knowledge

Undertake
Market Product

Analysis

Undertake
Market Needs

Analysis

Capture
Customer

Specification

Decide Domain Analysis
Means (one or more)

1 2 3 4

Fig. 1. A componentC and its mailbox.



Local broadcasting to domains is a powerful mechanism
since it permits to deal with many ODS-related issues in a
simple way, like environment-awareness, dynamic monitor-
ing, adaptation of activities or resource discovery. And as
we shall see, it also helps alleviating one of the drawbacks
of mailboxes: having to specify the destination address
when sending a message.

2.4. Interfaces

Components being black boxes, their behavior is defined
by their interfaces. In general terms, theinterface of a
componentC is given by two sets:O(C) and I(C). O(C) is
the set of message selectors that the component sends out
(its outputs) andI(C) is the set of message selectors that the
component receives and implements (its inputs). Received
messages not understood by a component are discarded.

Traditional object-oriented interfaces contain only infor-
mation about the incoming messages. However, in a compo-
nent-based model it is important to consider the outgoing
messages too. Without them it is not possible for instance to
check the compatibility between two components, since we
do not only need to know the services the component imple-
ments, but also the services it requests from other compo-
nents.

Based on these two sets it is possible to define the
concepts of (syntactic)compatibility, replaceabilityand
equivalenceof components. Two components are said to
be equivalent (A ù B) if the sets that define their interfaces
are the same; compatible if all messages interchanged
between them are understood by each other; and we will
say that componentC is replaceable by componentD (or
thatD is backwards-compatible withC) if D implements all
messages thatC does, andD‘s answers to them are the same
asC‘s (a more detailed description of all these concepts can
be found in Ref. [20]). There are different degrees of repla-
ceability, depending on whether the new component can
substitute the old one in every possible application (strong),
only in particular ones (relative), or whether additional
components need to be incorporated to the application
when replacing the component (weak replacement). ù is
an equivalence relation, and therefore introduces equiva-
lence classes. In the following, [C] will denote the repre-
sentative component of the equivalence class of components
whose interface is the same asC.

2.5. Applications

Components are not self-sufficient, they need the services
and resources offered by other components to achieve their
goals. Therefore the concept ofapplicationis introduced as
a parallel composition of components that interact to
accomplish a goal. The goal of the application usually coin-
cides with the goal of one of its components, that we have
called the applicationinitiator.

More formally, we can define anapplication Aas a paral-
lel composition of equivalent classes of components

(moduloù ) A� �C1�i�C2�i…i�Cn�; where each one is
compatible with at least one other. By using equivalence
classes of components, we can abstract from their particular
implementations. In this way, applications can be designed
with some degrees of freedom, needed to model the dynamic
behavior of open systems. For instance, this definition
allows components to evolve or even to be replaced by
other equivalent components.

In our notation it is also possible to indicate the existence
of more than one component of the same type, as it happens
in the case of an application with one producer and two
consumers. In general we denote by [C]m the parallel
composition ofm components equivalent toC. Each of
them will have a different identifier when executed, i.e.
each process will have a distinct mailbox address. This
notation can be extended to indicate avariable number of
components of the same type. We denote by [C]* the paral-
lel composition of a indeterminate number of components
equivalent toC, a number that can even change over time.
An example of an application where this happens is shown
later.

Applications can be also composed to build up another
applications. Operatori can be extended for application
composition, where it is an associative and commutative
operator.

Given an application, it is important to know the sets of
components needed to carry it out. In that sense we say that
an applicationA is closedif all methods requested by its
constituent components are implemented by other compo-
nents in the application. With this, aclosure C(A) of an
applicationA� �C1�i…i�Cn� in a domaind is the parallel
composition of its components together with the minimum
set of componentsD1,…,Dm available in d, such that
application

C�A� � �C1�i…i�Cn�i�D1�i…i�Dm�

is closed. By definition, the closure of an application does
not have to be unique for a given domain, although this is
not an issue at this point.

In order to execute an application we need to close it first,
and therefore add to it the extra components required (if
any). In general, these extra components will be taken
from the existing ones in the domain where the application
is run, and this is the reason why the closure of an applica-
tion depends on the domain. In this way, applications are
built incrementally and from existing components.

It is also important to note that the closure of an applica-
tion coincides with its initiator’s closure. This is one of the
key aspects of our model, whereby applications can be
defined by their initiators which, when executed in a
domain, ‘pull along’ with them the set of required compo-
nents to build up the whole application. This, together with
the ability to find them and adapt to their interfaces consti-
tute the basis of the idea ofSelf-Coordinationof compo-
nents, that has given the name to the model.
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2.6. Implementation

As a general model, theSC mechanisms are designed
independently from any specific language or platform, and
can be added to any of them as a library, set of classes,
packages, or whichever natural importation mechanism is
available for that particular language.

A first prototype of the model has been implemented in
Java, where the model is available as a set of packages. The
implementation is based just on the core Java classes, and
uses sockets for component communication.

2.7. A first example

Let us see in this section an example that illustrates the
use of the model mechanisms and shows its adequacy to
develop components and applications for ODS. It is the
typical application of a farm of processes, where a master
has to compute a set of expressions, using worker compo-
nents to do the job. The idea is to use as many workers as
possible from the ones available in our environment.

The scheme of this example constitutes the basis of
many distributed applications, that in open systems have
to deal with a dynamic number of workers, that can even
vary during the application lifetime. The application can
be defined in our model in terms of two components, a
master and a worker:A� [Master ]i[Worker ]*. A
possible implementation of componentMaster is as
follows:

public class Master {
final static int N �…;// No. of
expressions
Queue expr � new Queue ( );// The
expressions
Queue sols � new Queue ( );// Their
solutions
....
public static void main (String args
[ ]) {

Init (expr);// Initializes the
expressions
Mailbox mb � new Mailbox (args [0]);
mb. Send (BCST, “?Compute”, “0”);
while (sols.size ( ) , N) {// main loop

Msg r �mb.Receive ( );
if ((r.Subj.equals (“Re:?Compute”))
&& (r.Result � �OK) && (expr.size
( ) . 0)) {

mb.Send (r.Reply, “!Compute”,
expr.Get( ));

} else if ((r.Subj.equals
(“Re: !Compute”)) && (r.Result �
�OK)) {

sols.Put (r.Info);

if (expr.size ( ) . 0) mb.Send
(r.Reply, “!Compute”, expr.Get
( ));

}
} // end of while: here we’ve got the
solutions for the N expressions

}
}

As we can see, componentMaster sends first a
message to its domain asking for components implement-
ing methodCompute , and distributes the tasks as work-
ers answer the messages. On the other hand, component
Worker deals with the calculation of the expressions,
and can be implemented as follows:

public class Worker {
....

String Compute (String expr) {....};
....
public static void main (String args
[ ]) {

String dest � BCST;
Mailbox mb � new Mailbox (args [0]);
if (args.length . � 2)
dest 1� “@” 1 args [1];
mb.Send (dest, “Re:?Compute”, “”);
while (true) {

Msg r �mb.Receive ( );
if (r.Subj.equals (“?Compute”))
mb.Send(r.Reply, “Re:?Compute”,
“0”, r.Ref);
if (r.Subj.equals (“?Compute”))
mb.Send(r.Reply, “Re:!Compute”,
Compute(r.Info), r.Ref);

}
}

}

Function Compute computes an expression. In both
components the first argument is the mailbox name,
and component Worker ‘s second argument is the
domain name to get tasks from (it can beliving in a
machine but advertising its services in a bigger domain).
It is important to note the first message sent by the
Worker , that allows the component to dynamically
join any application requesting for the services it offers.

Clear advantages shown by this example are the dynamic
configuration of applicationA, and the independence
achieved between the master and the workers. They do
not have to statically know each other’s identities, neither
the master should know the number of workers, that may
dynamically vary. Moreover, from the worker point of view,
it does not care whether there is one or more masters in the
domain, it just gets its tasks from whoever requests them.
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3. Properties and controllers

At the beginning of this paper we mentioned some of
the specific problems related to ODS. So far we have seen
an abstract model of a system, together with a set of basic
communication mechanisms between components.
However, one of the main contributions of our proposal
is based, as previously mentioned, on minimizing the
systems and the components requirements, dealing with
every specific problem in a modular and independent
way through the use of controllers. What happens in the
previous example when aWorker suddenly stops work-
ing? Or, could we reuse theMaster in an environment
where methodCompute has a different syntax? Or, could
we add security controls (e.g. encryption or signatures) to
the application?

3.1. Some basic properties

Many behavioral properties of components and applica-
tions can be implemented by means of controllers, like
security, dynamic reconfiguration, adaptability or some
forms of high availability (we refer the reader to the biblio-
graphy for a list of properties orilities that can be imple-
mented using the different refelective approaches cited in
there). However, not all applications’ requirements can be
implemented that way, since reflection on black-box entities
presents some limitations when trying to deal with some of
the non-functional requirements of the applications, like
fault-tolerance, efficiency or timeliness, for instance. Never-
theless, we claim that for those properties that naturally
accept a reflective implementation, reusable controllers
provide a very general and appropriate solution, with the
additional benefits already mentioned: controllers are
defined independently from the components they will be
later attached to, they are reusable and composible, and
easy to build because of their uniform structure.

Among all requirements relevant to the development of
applications in ODS, we have selected four examples that
can be easily implemented by using controllers. They all try
to provide components with some specific feature (property)
needed for surviving in open and independently extensible
environments:

Independence.A component should be self-governed,
able to discover the services it needs and free to
decide the provider to use. A controller implementing
this property maintains a list of the services used by
its component, updated with the information from the
messages received by the component. When deliver-
ing a message, the controller checks whether the
destination is active or not, sending always the
message to a known active component. The controller
is also able to interrogate its environment for valid
service providers. In this sense, the Independence
controller is responsible for making the component
‘environment-aware’.
Self-protection.A component should protect itself against
external failures and avoid never-ending waits. Control-
lers of this property use a timeout table for outgoing
messages, together with the component instructions for
handling timeout conditions.
Adaptability.A component should be extensible and able
to accommodate to different interfaces and protocols.
Regarding extensibility, controllers of this property find
available service providers and re-divert to them the
incoming service requests not implemented by the
component. Regarding interoperability and interface
adaptation, they try to findtranslators for the outgoing
messages they handle, components with a similar func-
tionality to Wiederhold’s mediators [24].
Integrity.Controllers of this property check pre-requisites
on the component interface. Typical examples are user-
defined pre-conditions on the incoming and outgoing
messages, like control over their partial order or the
time intervals between them, or the addition of security
controls to the component interfaces, like encryption,
signatures, or software licensing mechanisms. Also laws
[15] can be defined and enforced using the controllers of
this property.

In addition to those, currently implemented in our model,
new properties can be defined and implemented using
controllers, that can be later reused in other applications
(controllers for billing on usage of the components they
wrap, for monitoring the access to specific components,
service brokers, middlemen, facilitators, etc.).
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3.2. Controllers

Controllers are first-class entities that can be attached to
mailboxes, capturing their incoming and outgoing messages
and modifying them according to their purpose. Each one
implements a specific concern or requirement, what we have
called aproperty. As we mentioned before, all controllers
share the same structure, with their own thread of control
and two basic operations, Received ( ) and Deliver ( ), that
deal with the incoming and outgoing messages, respec-
tively:

void Received (Msg m, Queue outq, Queue
inq);
void Deliver (Msg m, Queue inq, Queue
outq);

In them,mis the message that has been received or is to be
deliver, respectively, andinq and outq are the mailbox
queues of incoming and outgoing messages. Controllers are
attached to component mailboxes, and the mailbox is in
charge of calling the appropriate methods of the controllers
when a message is received or delivered by the component.
Each controller will deposit in the mailbox queues the
resulting messages after its treatment (Fig. 2).

When multiple controllers are attached to a component
mailbox, they are chained in such way that outgoing
messages from a controller become incoming messages to
its successor. Hence, there is a common way of composing
controllers, allowing to enforce several properties to a given
component.

One of our main contributions is to define the controllers
to be reusable, so once they are defined and implemented for
certain properties, they can be reused when building up
applications, adding them to existing components. Users
can therefore count on a market of reusable components,
together with a market of reusable controllers that imple-
ment common properties (adaptability, security, etc). And
as well as new components can be developed if no existing
component fit our necessities, new controllers can also be
developed to fulfill some user specific requirements. Since
they all have a common structure, this task gets reduced to
specifying the controller basic operations, and our commu-
nication infrastructure takes care of the rest of the issues.

3.3. Customizing controllers

In order to be reused, controllers need to be configured to
take into account the user specific requirements when
attached to a component’s mailbox. In the same way
controllers share the same structure, they also share the
way of being customized. This customization is achieved
through the specialization of the class with itspreferences, a
class which contains all the variables and methods config-
urable by the controller’s users. Every controller will define
its own specific preferences, although there are two methods
common to all controllers, which are defined by the follow-

ing Java interface:

public interface Preferences {
public boolean relatedMsgIds_In
(Msg m);
public boolean relatedMsgIds_Out
(Msg m);

}

These methods determine the (incoming and outgoing)
messages that a controller deals with, letting the rest of
the messages pass through it unmodified.

3.4. Implementing controllers

Controllers can be implemented by simply providing the
body of methodsDeliver andReceived , that determine
their behavior, and by defining the class with their prefer-
ences. The following Java class corresponds to the simplest
case of a controller that let all messages pass unmodified.
All controllers inherit from this class.

public class Controller {
private static NumControllers � 0;
int Cid;
Preferences Prefs;
public Controller ( ) {Cid �1 1
NumControllers;}
public void setPreferences
(Preferences P) {Prefs � P;}
public void Received (Msg m, Queue outq,
Queue inq) {inq. Put (m);};
public void Deliver (Msg m, Queue inq,
Queue outq) {outq.Put (m);};

}

To show an example of the implementation of controllers,
let us describe here with more detail one of them. For space
limitations, we have chosen the controller of the property of
Self-Protection. Although a quite simple and straightfor-
ward controller, it allows to show concisely how controllers
can be implemented. As previously mentioned, the control-
ler of this property maintains a list of the component’s
outgoing messages, which is updated every time a message
is sent out or a reply is received for one of them. A clock is
also started for every outgoing message with a timeout
condition. If the timeout is reached without having obtained
a response for that message, the controller will produce a
reply to the component, indicating that situation. The basic
structure of this class is as follows:

public class SelfProtectionController
extends Controller implements Runnable {

private Queue Pending, SLEEP, INQ;
public SelfProtectionController ( )
{…class constructor…}
public void Deliver (Msg m, Queue inq,
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Queue outq) {....}
public void Received (Msg m, Queue outq,
Queue inq) {....}
public void run ( ) {....}

}

As we can see, this class inherits from general class
Controller , and it also has its own thread of control,
therefore implementing interfaceRunnable and defining
method run ( ). The attributes are the list of outgoing
messages waiting for a response (Pending ), a message
queue for synchronizing the controller’s thread with the
clocks started for every message (SLEEP), and the compo-
nent’s incoming message queue where the controller should
deposit the reply it builds in case a timeout is reached (INQ).

Coming down to the methods of this class, the first one is
the constructor, that simply initializes the attributes and
starts the controller’s thread:

public SelfProtectionController ( ) {
super ( ); Pending � new Queue ( );
SLEEP� new Queue ( );
Thread t � new Thread (this);
t. setDaemon (true); t. start ( );

}

MethodsReceived andDeliver are the ones that deal
with the incoming and outgoing messages of the controller,
respectively. They are the user’s preferencesPrefs for
determining the messages to be filtered, assigning timeout,
and recognizing their responses:

public void Received (Msg m, Queue outq,
Queue inq) {

if (Prefs. relatedMsgIds_In (m)) {
int i � 0;
while (i , Pending. size ( )) {
// checks whether the received message

Msg p� Pending. Element (i));
// is the reply for a pending message
if (Prefs. IsTheAnswer (p,m))
Pending.Delete (i); else i 11l
// If so, deletes it

}
}
inq. Put (m);
} public void Deliver (Msg m, Queue
inq, Queue outq) {
INQ � inq; int tout;
if (Prefs. relatedMsgIds_Out (m)) {
if (m. ReplyBy . m. Sent) tout � (int)
(m. ReplyBY-m. Sent); // timeout
specified in the msg
else tout � Prefs. setTimeout (m);
// else, timeout from the preferences
if (tout . 0) { // starts a clock and

updates the list of pending messages
m. ReplyBy �m. Sent 1 tout; new
Sleeper (tout, SLEEP, m); Pending.
Put (m);

}
}
outq. Put (m);

}

Method Deliver uses another class to start the clocks.
Each object of thisSleeper class simply sleeps the speci-
fied period, and then deposits the given message into the
SLEEPqueue. This queue is used by the controller’s thread
of control to know about the end of the clocks:

public void run ( ) {
while (true) {

Msg m� SLEEP. Get ( ); // blocked until
a timeout occurs
int i � Pending. Find (m);
if (i! �21) {Pending. Delete (i);
INQ. Put (Prefs. answerTout (m));}

}
}

In order to finish with the description of the implementation
of the controller of SelfProtection, we need only to define
the class with its preferences:

public class SelfProtectioPreferences
implements Preferences {

public boolean relatedMsgIds_In (Msg m)
{return false;} // no incoming msgs
related
public boolean relatedMsgIds_Out (Msg
m) {return false;} // no outgoing msgs
related
public boolean isTheReply (Msg r,Msg m)
{return r.RefTo � � m.Ref;} // does r
reply to m?
public int setTimeout (Msg m) {return
0;} // timeout assigned to msg m
public Msg answerTout (Msg m) { // builds
the reply to msg m in case of timeout

Msg r � new Msg ( ); r.Subj � “Re:” 1 m.
Subj; r.Result � TIMEOUT; r.RefTo �
m. Ref; return r;

}
}

Users will only have to override those methods for config-
uring the controller according to their preferences.

3.5. An application

To show an example of the use and the capabilities of
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controllers, let us consider a typical coarse grain massive
parallel computation with 104–108 large records that have to
be independently analyzed, each one requiring considerable
computational effort. One common idea to solve this kind of
problems is based on using the idle times of LAN, WAN (or
Web!) interconnected workstations, trying to make use of
their potential CPU power, currently wasted. In Ref. [10]
Jeong gives a good introduction to the problem, many refer-
ences to different solutions, and his own solution based on a
fault-tolerant approach, using Linda, checkpointing and
transactions. What we shall see here is how the problem
can be solved using our model.

In the first place, the solution to the problem can be
expressed as a master–worker application, where a master
holds the data to be evaluated, and multiple workers do the
computations, following the scheme described in Section 2.
The question is how to reuse the components defined in that
section, and how to incorporate the application specific
requirements to them.

We know that worker processes will run on different
workstations (or PCs or Macs) and that the master generates
tasks for them. Each worker is created when the WS detects
that is idle, and abruptly eliminated as soon as the WS is
busy again. The reason for not letting the worker finish its
current task is to ensure that a user has his WS available as
soon as he requests it; in that way, detection of activity in a
WS is equivalent to its sudden (unrecoverable) failure from
the master’s point of view: in any case there is no answer
from the worker. This is why this problem has been usually
treated from the fault-tolerance point of view.

But in our case it is enough to provide the master compo-
nent with the property of Self-Protection, that deals with the
absence of replies. In this way, any outgoing message
requesting a computation would be assigned a timeout. If
the timeout expires, the master can conclude that the worker
has been eliminated and it replies back to the master with an
error, forcing the corresponding task to be put back into the
master’s pending list. The way of configuring this property
to our particular requirements is by simply specializing the
class with the Controller preferences:

public class MySelfProtectionPreferences
extends SelfProtectionPreferences {

public boolean relatedMsgIds_Out (Msg m)
{return m. Subj. equals (“!Compute”);}
public boolean relatedMsgIds_In (Msg m)
{return m. Subj. equals (“Re:
!Compute”);}
public int setTimeout (Msg m) {return
10000;}

}

To incorporate this property to the master, it is enough to
attach the controller to the component mailbox, replacing
the previous way of creating the component mailbox with:

Vector Controllers � new Vector ( );
SelfProtectionController SP � new
SelfProtectionController ( );
SP.setPreferences (new
MySelfProtectionPreferences ( ));
Controllers.addElement (SP);
Mailbox mb � new Mailbox (args [0],
Controllers);

As we can see, mailboxes admit a second argument during
their creation: a vector with the controllers that we want to
attach to it.

There is also another case to cover in the application:
when a communication delay makes the master think that
the worker is dead while the reply is on its way. To cope with
this potential problem it is enough to provide the master with
the property of Integrity, that does not allow duplicated
responses. Other interesting use of this property is to add
some sort of security controls, e.g. message encryption.

Summarizing, we are able to solve the problem by reusing
components, and treating each requirement in a modular
way. Moreover, the properties used here are already devel-
oped, so we do not need to develop any specific software for
the application.

Comparing our solution with the ones proposed by other
authors, we see that what really complicated other solutions
was the intrinsic nature of the problem, typical of ODS.
Since our model is specifically designed to cope with
these issues, the benefits we obtain are important. In the
first place, there is no need for the master to register or
monitor the workers, whose number can be absolutely vari-
able. Second, the application’s fault tolerance can be greatly
simplified by just discarding late replies, independently
from the type of failure the workers may experience. And
finally, the sort of application (coarse grain and parallel)
suits very well our communication mechanisms and the
Internet open and distributed infrastructure, as opposed to
other approaches based on shared memory.

What we do not get with this solution is partial recovery
of the workers’ job. Once a worker is eliminated all its work
is lost, since we have not contemplated checkpointing and
state recovery in the components of the example. However,
the problem can be solved by the use of passive replication
if the components can incorporate these two mechanisms,
through the use of the property of High Availability. On the
other hand, multiple masters can co-exist in a domain, dyna-
mically sharing the workers.

4. Building applications

Using SC, applications are built mainly from existing
components, that are customized through the use of control-
lers to incorporate the context-specific requirements. Only
those components and controllers not available need to be
developed, always encapsulating just the computations into
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the components, and leaving the rest of the concerns to the
controllers. This is a well-known methodology for building
applications, currently defended by most software archi-
tects. However, once the components and the controllers
of our application are identified (or at least, their initiators),
we need to provide some sort of tool support for their
deployment, configuration and execution in a particular
domain.

4.1. CDL: a description language

Once all the parts of the application are defined, we need
some sort of description language for identifying, configur-
ing and composing them. The main purpose of the descrip-
tion language is to provide the users of components and
controllers with a high-level definition that abstracts the
relevant aspects of their interfaces and configuration para-
meters. We have therefore defined CDL, a language for the
description of the components and the controllers interfaces.
It is devised to be used by both application developers and
the run-time system. Application developers use it for iden-
tifying the services offered by a component, learning about
the way a controller modifies the interface of a component,
and expressing the composition of controllers and their
addition to a given component. On the other hand, the
run-time system uses CDL to configure and build the final
executable components out of the basic components and
controllers. It is also used among components for describing
their interfaces, when asked for them by special message
selector ‘??’.

CDL will be introduced by examples, using the compo-
nents and controllers defined in the previous application. In
CDL they can be described as follows:

Component Master { Component Worker {
CoreComponent: Master; CoreComponent:
Worker;
Controllers: { }; Controllers: { };
Parameters: String Mailboxname;
Parameters: String MailboxName;
String DomainName � ““;
Out: ?Compute( ); Out: Re: ?Compute( );

!Compute(String expr); Re:!Compute
(String ‘sol);

In: Re: ?Compute( ); In: ?Compute( );
Re:!Compute(String sol); !Compute
(String expr);

} }

The names of the components are at the top, followed
by the five parts of their descriptions. The first one
(CoreComponent ) identifies the name of the original
component that was wrapped with the controllers listed
in part Controllers to produce the current compo-
nent. Part 3 (Parameters ) describes the arguments of
the component as a set of variables and/or functions

(e.g. its mailbox name), that must be given when
executing the component. The last two parts describe
the component interface in terms of their incoming
and outgoing messages. At this level, only the message
selectors and their arguments are relevant.

On the other hand, the controller of Self-Protection is
described as follows:

Controller SelfProtection {
Preferences: Received: Deliver:

bool relatedMsgIds_In(Msg m);
!f - . {!f}c, {-}e; !f - . {!f}e, {Re:
!f,-}c;
bool relatedMsgIds_Out(Msg m);
?f - . {?f}c, {-}e; ?f - . {?f}e, {-}c;
bool isTheAnswer(Msg org, Msg ans);
Re:!f - . {Re:!f}c,{-}e;
Re:!f - . {Re:!f}e, {-}c;
Msg answerTout(Msg m);
Re:?f - . {Re:?f}c,{-}e;
Re:?f - . {Re:?f}e, {-}c;
int setTimeout(Msg m);

}

The name of the controller is at the top, followed by three
parts. The first one contains a set of functions that determine
the user preferences, while the last two parts of the control-
ler description determine its interface. PartReceived
deals with the messages received from the environment.
For each possible message selector received (!f , ?f ,
Re:!f and Re:?f ) the controller produces two lists of
message selectors: those which are handled to the compo-
nent ({ }c ), and those returned to environment by the
controller itself ({ }e). In this case, all received messages
are passed to the component unmodified. PartDeliver
deals with the messages that the component wants to send
out. For each message selector, it also produces two lists,
with the same meaning. Items in the lists indicate the differ-
ent alternatives the controller may produce, and ‘-’ means
‘no output’.

4.2. Wrapping

The interface parts of this description may also serve as a
set of rulesthat describe the changes in the component
behavior when wrapped by a controller. Therefore, given
the descriptions of a componentC and a controllerL, the
description of the new componentD obtained by wrapping
C with L is obtained as follows:

(a) The name of the new component isD, the component
in partCoreComponent is C, andL is added at the end
of the list in partControllers .
(b) D parameters are the same asC‘s.
(c) Message selectors in sectionsIn and Out are
obtained by applying the changes described inL sections
Received andDeliver to C message selectors.
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In the example, the component obtained by wrapping the
Master with the controller of Self-Protection can be
described in CDL as follows:

Component SPMaster {
CoreComponent: Master;
Controllers: {SelfProtection
[MySelfProtectionPreferences]};
Parameters: String Mailboxname;
Out:?Compute( ); !Compute(String
expr);
In: Re:?Compute( ); Re:!Compute(String
sol);

}

The preferences class is indicated in square brackets besides
the corresponding controller.

4.3. Putting all pieces together

Once we have the CDL description of all components and
controllers, the run-time system is able to build the applica-
tion from them. Each component is executed with the
launch command in the chose machine, specifying the
name of the component and the actual value of its para-
meters.

For instance, the command “launch SPMaster
mastermailbox ” executes theMaster component
with the property of Self-Protection. This command exam-
ines first the fileSPMaster.cdl , with the CDL descrip-
tion of this component, and pulls along the appropriate java
classes (components and controllers), building the final
component (SPMaster.class ) from them. This class
is then executed on the Java virtual machine with the
given parameters. The rest of the workers can be launched
in a similar way in the machines we want them to execute, if
not already running. Please note that this is an alternative
way of adding controllers to (binary) components, instead of
attaching them to the mailbox in the actual component’s
code when creating it, as shown in Section 3.5.

On top of those basic facilities we are currently develop-
ing a visual Integrated Development Environment (IDE)
that includes palettes for displaying as icons the components

available in a given domain; a ‘canvas’ container onto
which components are configured and placed to build up
applications; a browser for inspecting and locating compo-
nents that match some user defined search criteria; and
access to an object-oriented editor and some compilers for
developing new components and include them into the IDE.

5. Other considerations

Once we have the overall picture of the model, let us
discuss some other issues of special interest to the model
and to its potential users.

5.1. Interoperability

Having (yet) another component model is not useful
unless we offer smooth integration with the rest of the
component models. Bridges need to be defined to other
technologies and to existing legacy systems in order for
them to seamlessly interoperate.

Our model was originally designed to express and imple-
ment, in a natural way, most of the specific requirements of
ODS applications. However, we also decided to keep the
model as simple, neutral and general as possible. The reason
behind this decision was that simple and neutral models are
easy to implement, to reason about them formally, and to
integrate with other component models.

For interoperation we have chosen proxies that serve as
gateways to the components of other models and systems.
Therefore, if we want to use a CORBA component, for
instance, and incorporate it into an application built using
our model, we just need to create a proxy for it (Fig. 3). A
proxy of a CORBA component will be a CORBA compo-
nent but with anSCmailbox, thus being able to talk to both
worlds. In this way components from other models or plat-
forms can also benefit from the specific features of our
model, like inspection, local broadcasts, and the use of
reusable controllers for customizing their behavior. Proper-
ties (such as Independence, Self-Protection) can be also
added to third-partyalien components by simply attaching
the appropriate controllers to their proxies.

The use of proxies provides a smooth form of interopera-
tion between different kinds of components. In the particular
case of our master-worker application, we have defined
CORBA, JavaBeans and COM components implementing
the methodCompute ( ) and made them interoperate easily
with SCworkers to get the master’s tasks done.

5.2. Formal support and methodology

There are many advantages derived from defining a
simple and neutral component model likeSC. In this section
we will cite two among them, although we will not discuss
them in detail for being outside the scope of this paper.

In the first place we have the possibility of using
formal methods for reasoning about the components, the
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controllers, and the applications built using the model. In
this sense,SC counts with a formal framework that uses
Object-Z [8] and temporal logic for specifying and support-
ing the model and its mechanisms [20].

Another benefit of our model comes from the fact that
controllers share a uniform structure. Based on that, it is
possible to define a methodology for their systematic
construction. That methodology is the subject of ongoing
research, and covers all their life-cycle, defining processes
for guiding the specifications of the controllers in the formal
framework, reasoning about their behavior, deriving their
description in CDL, and implementing them.

5.3. Limitations

In general, the reflective approach followed by our model
with independent layers (the controllers) for implementing
the properties has some known limitations. For instance,
requirements that affect the internal behavior of components
(like efficiency),hard requirements (such as fault-tolerance
or timeliness), or those that cross-cut different dimensions
of the applications are difficult to manage with anonion-like
layered approach, as pointed out by Aspect-Oriented
Programming [13]. Nevertheless, it is a very good approach
for building applications from reusable back-box compo-
nents, where users are not willing or cannot change their
internals. Besides, most ODS requirements can be imple-
mented with a combination of controllers and specialized
components, the only entities in our model (we requested
systems to offerjust the infrastructure for the creation and
communication of components). In this sense, transactions
and algorithms can be encapsulated into specialized compo-
nents, which is, by the way, a good design practice for ODS
applications since it helps producing more modular and
maintainable applications. Also,soft versions of some of
the hard requirements can be easily achieved (using proper-
ties like Self-Protection or High Availability). The charac-
terization of the properties that can be implemented using a
layered reflective approach like this is still an area of
ongoing research.

On the other hand, we have initially restricted our model
to a syntactic level of interoperation between components
(i.e. signature of operations), the same level the rest of the
distributed component platforms currently support.
However, interoperability at theprotocol (partial ordering
between messages and blocking conditions) andsemantic
(meaning of operations) levels is now recognized as neces-
sary for building up applications in ODS. The provision of a
semantic framework for components to interoperate at these
levels is yet to be explored.

6. Related work

The idea that originated this work was born from the
original papers from Tokoro and Takashio [19], and from
Minski and Leichter [15]. The former mention real time,

asynchrony and autonomy as key issues in ODS, but only
deal with the first two in their paper, without paying atten-
tion to autonomy. On the other hand, Minski’s Law-
Governed Architectures can be seen as a one-property
scheme defined for a shared memory model (Linda), that
we have extended and generalized to produce our general
model.

Layered reflective models are well known and widely
used. Apart from the two aforementioned papers, we can
also cite the Composition Filters model [3], the Layered
Object model LayOM [5], the meta-actors defined in the
Actors model [1], the object filters [11], the MetaCombiner
approach by Mezino [14], COM’s containment [17], Orbix
filters [4] or the message handlers in Oberon-2 [16], among
others. However, our controllers are first-class reusable enti-
ties, they all have the same structure, and are more than just
computational filters, while the meta-components of those
models suffer from the limitations we pointed out in the
introduction of this paper.

Regarding the properties, there exists a lot of literature
about them in the field of Artificial Intelligence, where
heated discussions take place about the precise definition
of Autonomous Agents and their properties [9,12].
However, apart from informal definitions we do not know
of any other work that try to formally define and specify
them. The properties we have mentioned here are well
known, and many systems and components already imple-
ment them, although usually hard-wired into the compo-
nents’ or the systems’ code. The model we have
introduced here has proven its powerfulness by being able
to specify them in a natural way, and implement them in a
unified and modular fashion.

Neither the layered model or the communication mechan-
isms used inSCtry to be a novelty, but to be general, simple,
and expressive enough for our purposes. Other approaches
use different communication paradigms, such as shared-
memory or ports and channels. The PageSpace coordination
model [7] and the Infospheres project [6] represent both
alternatives. The first one combines Linda tuple spaces,
services, and Web technology to build up a coordination
model for Internet applications using a shared-memory
approach. The Infospheres 1 project uses message channels
and ports to compose components, and has been enhanced to
Infospheres 2, that uses temporal logic to reason about inter-
actions of dynamically reconfigurable components commu-
nicating through RPC, messages and event-oriented
middleware. However, our approach is based on distributed
components that use message passing to communicate
among themselves. Services are not located in a shared
places butownedby other components, and mailboxes are
used instead of channels. We think that mailboxes are more
appropriate to deal with the ODS dynamic changes, and the
main drawback of this paradigm, the need of being aware of
the targets identities, can be easily and naturally solved in
our model using the appropriate controllers (e.g. Indepen-
dence). In this respect our work is similar to the Actors
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model [1], although our reusable controllers try to overcome
some of the limitations that meta-actors currently have:
dependability on the actors they wrap, lack of common
structure, and difficult reusability.

Finally, our model offers a much more lightweight
compositional infrastructure when compared to existing
middleware component platforms, such as CORBA,
DCOM or Java Beans. The main aim of our model is to
serve as a neutral platform with the minimum set of features
required for developing distributed applications in open
systems, but expressive enough to do so in a natural way.
We do not try to compete with them in those areas and
specific takes where they are more powerful than any
other model, but to integrate and complement them where
they have shown their weaknesses. This is why interoper-
ability with other models is so important inSC.

7. Conclusions

Component-Oriented Programming (COP) has been
described as the natural extension of Object-Oriented
programming to the realm of independently extensible
systems. COP aims at producing software components for
a global component market and for late composition [22].
However, the design of those components is challenging the
software community with its specific issues. Reusability and
late composition are two driving forces towards the separa-
tion of the computational and interoperational aspects of
components, while ODS-specific requirements have to be
incorporated into the user application too, in an orderly
manner. Our contribution tries to address these goals, offer-
ing a component model that allows the modular, reusable
and extensible composition of components in open and
distributed environments to build up applications. It is
based on the separation of the computational aspects of
components from their interoperational and context-specific
concerns, encapsulating the latter into reusable entities
(called controllers), an extension of traditional object wrap-
pers that try to overcome many of their limitations.

Our work is motivated by a more ambitious project that
aims at the development of reliable e-commerce and multi-
media applications for open systems, with the specific inten-
tion of providing the electronic access to our Faculty
resources, systems and premises.SC tries to serve as the
basic model where both existing and new components can
be integrated to build up the required applications.

With regard to the example used in this paper for showing
the expressiveness and adequacy of our model, it constitutes
the skeleton of many real and useful applications. In Ref.
[10] an elementary particle physics problem is cited, while it
can also be used in other NP-hard problems, like first-order
logic theorem proving, whose natural complexity can be
approached by using distributed solutions based on the
master-worker approach. With out model we also obtain a
simple solution that can easily take advantage of the idle

times of Internet-connected workstations. The expressive-
ness of the model has also been tested with other typical
distributed applications, like meeting schedulers or distrib-
uted auction bidding, that can be easily written using the
model mechanisms.

Ongoing research on the model is focused on three main
areas. In the first place, we want to study the interoperability
of components at the protocol and semantic levels, whereby
components could find the services they need by their speci-
fications, and not just by their names. Second, we want to
characterize the ODS specific requirements andilities that
can be implemented using our reusable wrappers, and the
ones that cannot. Finally, we plan to finish soon the meth-
odology for the systematic construction of the reusable
controllers. Besides, we continue improving the current
prototype, building a more efficient implementation based
on the users’ feedback and new requirements.
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