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Traditional IDLs were defined for describing the services that objects offer, but not those services
they require from other objects, nor the relative order in which they expect their methods to be
called. In this paper we propose an extension of the Common Object Request Broker Architecture
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1. INTRODUCTION

Component-based software engineering is an emergent
discipline that is generating tremendous interest due to
the development of plug-and-play reusable software, which
has led to the concept of commercial off-the-shelf (COTS)
components. Under this new setting, constructing an
application now involves the use of prefabricated pieces,
perhaps developed at different times, by different people
unaware of each other, and possibly with different uses in
mind. The ultimate goal is to be able to reduce development
costs and efforts, while improving the flexibility, reliability
and reusability of the final application due to the (re)use of
software components already tested and validated.

This approach moves organizations from application
development to application assembly. The development
effort now becomes one of gradual discovery about the
components, their capabilities, their internal assumptions
and the incompatibilities that arise when they are used
in concert. Therefore, software-components search and
retrieval have become crucial in these environments, since
we need to be able to check whether a given component can
successfully replace another in a particular application, or
whether the behavior of two components is compatible for
them to interoperate.

Interoperability deals with these issues, and can be defined
as the ability of two or more entities to communicate and
cooperate despite differences in the implementation lan-
guage, the execution environment or the model abstraction
[1]. Basically, three main levels of interoperability between
objects can be distinguished: the signature level (names and
signatures of operations), the protocol level (relative order-
ing between exchanged messages and blocking conditions),
and the semantic level (the ‘meaning’ of the operations) [2].

Interoperability is currently well-defined and understood
at the signature level, for which middleware architects and

vendors are trying to establish different interoperational
standards (e.g. Common Object Request Broker Architec-
ture (CORBA), JavaBeans, or DCOM) and bridges among
them. However, all parties are starting to recognize that
this sort of interoperability is not sufficient for ensuring the
correct development of large applications in open systems.

Object interoperability should be studied in general at
the semantic level, which deals with operational semantics
and behavioral specifications, as well as with agreements
on names, context-sensitive information, agreements on
concepts (ontologies) etc. [3]. The problem is that this
semantic level covers a very broad set of issues and there is
not even a consensus on the full scope of what those issues
are. In the literature, most of the authors that say ‘semantics’
really mean just ‘operational semantics’ or ‘behavioral
specifications’, and propose different formalisms to deal
with object interoperability at this level, such as pre/post
conditions, temporal logic or refinement calculus (see [4]
for a comprehensive survey on these proposals). But even
dealing with behavioral specifications needs very heavy
machinery, which makes most approaches impractical for
real applications. Dealing with the full semantics is a too
broad and general problem to be tackled in full.

As a first step, in this paper we concentrate on the
interoperability of reusable components at the protocol
level—which deals with the relative order among their
incoming and outgoing messages and their blocking
conditions—where the basic problems can be identified and
managed and where practical solutions can be proposed to
solve them. And instead of using any theoretical or academic
model on which to base our proposal we have chosen
CORBA, one of the leading commercial object platforms.

Our work proposes an extension to the CORBA interface
description language (IDL) that allows the description of
certain dynamic behavior of CORBA objects, in addition
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to the static description of the object services (i.e. method
signatures) provided by the standard CORBA IDL facilities.
Our approach enriches IDLs with information about the way
objects expect their methods to be called, how they use other
objects’ methods and even some semantic aspects of interest
to users, deployers and implementors of objects.

Protocols are described using a sugared subset of the
polyadic m-calculus, defined separately from the IDLs. In
this way current repositories can be easily extended to
account for this new information and to manage it. In
addition, having this protocol information available at run
time also allows the definition of dynamic compatibility
checks in open and extensible applications. Therefore
we will be able to reason about the compatibility and
substitutability of their components and to infer some safety
properties directly from the description of the behavior of
their constituent components.

In general, software components are binary units of possi-
bly independent production, acquisition and deployment that
interact to form a functioning system [5]. In this CORBA
context, the term component will simplistically refer to
CORBA distributed objects.

The structure of this paper is as follows. After this
introduction, Section 2 briefly describes the CORBA IDL
and introduces an example application that will be used
throughout the paper to illustrate our proposal. Section 3
describes our contribution in detail, showing how the
m-calculus can be used for our purposes. Section 4
discusses what sort of information protocols should include,
while Section 5 is dedicated to a discussion of the sort
of checks that can be carried out once we have extended
traditional IDLs with protocol information. In particular,
we concentrate on object compatibility and substitutability
checks (i.e. some kind of behavioral subtyping [6, 7]),
and on proving some safety properties of applications
(e.g. absence of deadlocks). Additionally, we discuss when
those checks can be carried out, since we are not only
concerned with static analysis of applications during design
time, but also with the dynamic checks needed in open
and reactive systems during their lifetime. Later, Section 6
discusses some of the limitations and problems that this sort
of proposal introduces and Section 7 relates our work to
other similar approaches. Finally, Section 8 draws some
conclusions and describes some future research activities.

2. OBJECT INTERFACES AND IDLS

Traditional object interfaces provide a description of an
object functionality and capabilities, in terms of the
attributes and the signature of the operations offered by the
object. IDLs have been defined for describing those object
interfaces at the signature level. Apart from providing a
textual description of the object’s functionality, there are two
main benefits of using IDLs. First, IDL descriptions can
be stored in repositories, where service traders and other
applications can locate and retrieve components and use
them to learn about object interfaces and build service calls
at run-time. Second, IDL descriptions can be ‘compiled’

into platform-specific objects, providing a clear frontier
between object specification and implementation, which
facilitates the design and construction of open heterogeneous
applications. However, traditional IDLs were originally
defined for closed client—server applications and therefore
they present some limitations when being used in open
component-based applications.

(1) IDLs describe the services that objects offer, but not
the services that they require from other objects in
order to accomplish their tasks [8]. At most, in some
CORBA applications some IDL modules contain not
only the servers’ interfaces, but also the definition of
‘call-back’ interfaces that need to be satisfied by clients
(e.g. in the CORBA Event service [9]). However, this
only happens at the module level, while there is no
syntactic support for this distinction between offered
and required interfaces at the individual component
level.

(2) Typical IDLs provide just the syntactic descriptions
of the objects’ public methods, i.e. their signatures.
However, nothing is said about the correct way (e.g. the
order) in which the objects expect their methods to be
called, or their blocking conditions [10].

(3) In general, the use of IDL descriptions during run-
time is quite limited. They are mainly used to
discover services and to dynamically build service
calls. However, there are no mechanisms currently in
place to deal with automatic compatibility checks or
dynamic object adaptation, which are among the most
commonly required facilities for building component-
based applications in open and independently extensi-
ble systems [5].

2.1. CORBA and its IDL

CORBA is one of the major distributed object platforms.
Proposed by the OMG (www.omg.org), the object man-
agement architecture (OMA) attempts to define, at a high
level of description, the various facilities required for
distributed object-oriented computing. The core of the
OMA is the object request broker (ORB), a mechanism
that provides transparency of object location, activation and
communication. The CORBA specification describes the
interfaces and services that must be provided by compliant
ORBs [11].

In the OMA model, objects provide services, and clients
issue requests for those services to be performed on their
behalf. The purpose of the ORB is to deliver requests to
objects and return any output values back to clients, in a
transparent way to the client and the server. Clients need
to know the object reference of the server object. ORBs use
object references to identify and locate objects to redirect
requests to them. As long as the referenced object exists,
the ORB allows the holder of an object reference to request
services from it.

Even though an object reference identifies a particular
object, it does not necessarily describe anything about the
object’s interface. Before an application can make use of
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an object, it must know what services the object provides.
CORBA defines an IDL to describe object interfaces, a
textual language with a syntax resembling that of C++. The
CORBA IDL provides basic data types (such as short,
long, float,...), constructed types (struct, union)
and template types (sequence, arrays). These are used
to describe the interface of objects, defined by set of types,
attributes and the signature (parameters, return types and
exceptions raised) of the object methods, grouped into
interface definitions. Finally, the construct module is
used to hold type definitions, interfaces and other modules
for name scoping purposes.

2.2. A case study

In order to illustrate our proposal, let us describe a simple
e-commerce application: a distributed auction system. Three
main players are involved in this application: an auctioneer
that sells items on behalf of their customers, bidders that bid
for the items being auctioned and banks that deal with money
transactions.

Let us start with the description of the interface of each of
those objects in the CORBA IDL. The first ones define the
bank services:

interface AccountFactory
Account create() ;

}i

interface Account ({
exception NotEnoughMoney {float balance;};
float getBalance();
string deposit(in float amount) ;
string withdraw(in float amount) raises
(NotEnoughMoney) ;

}i

As we can see, bank accounts are created using an
AccountFactory object, which has a method called
create () that returns the reference of a newly created
account. Each account offers three methods, that allow the
user to know the current balance, to deposit, or to withdraw
some money from the account. Methods deposit () and
withdraw () return a string that may serve as a receipt
of the operation carried out, and method withdraw () can
also raise an exception if we attempt to extract more money
than currently available in the account.

The second player is a bidder, defined by the following
interface:

interface Bidder ({
bool wannaBid(in string itemdesc, in float
price);
void youGotIt (in string itemdesc, in float
price, in Account acc, out string address) ;
void itemSold(in string itemdesc) ;

}i

This interface defines three methods to be invoked by the
auctioneer. They allow the bidder to decide whether he
is interested in a given item or not, to be notified that he
has the item he was bidding for and to notify all bidders
(including the successful one) that the item has been finally

sold. Method youGotIt () has four arguments: the item
description and its price, the auctioneer’s account so the
bidder can deposit the money there and the address to which
the bidder wants the item to be delivered.

Finally, an auctioneer is an object that maintains a list
of bidders and which is able to sell items on behalf of a
customer.

interface Auctioneer
void register (in Bidder b);
void unregister (in Bidder b);
bool sell(in string itemdesc, in float
minprice, in float maxprice, in Account
acc, out float finalprice);

}i

In this interface, methods register() and
unregister () are for adding and deleting references
from the list of bidders that the auctioneer keeps.! Method
sell () implements the main service offered by the object.
The customer specifies an item, the range of prices she is
happy to sell it for and the account where the auctioneer
will deposit the money once the item is sold. This method
returns a Boolean value indicating whether the operation
has succeeded or not and the final price for which the item
was sold.

As we can see, it is very difficult to discern the behavior
of those objects from their interfaces alone. Actually, from
them and from their description in natural language, we
could at best try to guess the bidding protocol they follow,
and how they use each other’s services. Although this sort
of specification is the one currently used by the OMG for
specifying CORBA services, many experiences show how
insufficient and ambiguous it can be [12, 13]. For instance,
does the auctioneer follow a normal or a Dutch bidding
protocol? (In a Dutch auction the price is reduced by the
auctioneer until a buyer is found.) May bidders join an
ongoing auction as soon as they register, or do they have to
wait until an auction for a new item starts? What happens if
a bidder receives a youGot It () message for an item that
he is not bidding for? How do money transactions happen
between the seller, the bidder and the auctioneer? Those
(and many others) are questions that are left unanswered by
the IDL descriptions of the participant objects.

3. EXTENDING CORBA INTERFACES WITH
PROTOCOLS

In this section we will concentrate on how to add protocol
information to the description of the CORBA object
interfaces. By protocol we mean the description of
the object’s interactions, and the rules governing those
interactions.

Protocols will be described using a sugared subset of
the polyadic m-calculus, a process algebra particularly
well suited for the specification of dynamic and evolving
systems. The m-calculus has proved to be a very expressive

IThis is a very simplistic way of registering objects, but we
will use it here for the sake of clarity; other methods for object
registration/unregistration can be found in [9].

THE COMPUTER JOURNAL,

Vol. 44, No.5, 2001




EXTENDING CORBA INTERFACES WITH PROTOCOLS 451

notation for describing the dynamic behavior of objects in
applications with changing topologies (such as those that
live in open systems). In this sense, it is more appropriate
than other process algebras such as CCS or CSP.

In our approach we can also define component interaction
protocols that make use of operation parameters and
return values when considering alternatives, which is an
important issue concerning the expressiveness of protocol
specifications, and which represents some advantages over
other approaches, such as those based on state-machines.

Another extra benefit of this formal notation is that it
allows us to specify, in addition to the specific protocol
information, some of the details of the object’s internal
state and semantics that are relevant to its potential users,
while hiding those which we want to leave open to possible
implementations. In this sense, m-calculus also offers
this advantage over other formal notations for describing
mere protocol information, such as message sequence charts
(MSCs).

Finally, we think that the subset of the polyadic
mw-calculus we have chosen, together with the syntactic
sugar added, provides a quite natural notation for describing
protocols, and that it should not present major difficulties
for CORBA component designers and developers—not
generally familiar with process calculi—when describing
their interaction protocols. It may not be as intuitive as
MSCs (e.g., it is not graphical), but it is more expressive
(as previously stated) and has the formal underpinnings
lacking in MSCs. It is definitely not more difficult to learn
than other formal notations for describing protocols, such
as Petri nets or temporal logic. In this sense, we think that
the m-calculus is indeed a valid alternative for the formal
description of protocols.

3.1. The polyadic x-calculus

The m-calculus was originally proposed by Milner, Parrow
and Walker in 1992 [14]. Although also called ‘a calculus of
mobile processes’, no processes are actually moved around,
just the identities (names) of the channels that processes use
to communicate among themselves. It can be considered as
an extension to CCS, where not only values can be passed
around, but also channel names.

The polyadic m-calculus [15] is a generalized version of
the basic w-calculus, extended to allow tuples and compound
types to be sent along channels. Semantics is expressed in
terms of both a reduction system and labeled transitions.

A very brief description of the calculus follows. If ch is
a channel name, then ch! (v) . P represents a process that
sends value v along ch and then proceeds as process P.
Conversely, ch? (x) .Q is the process that waits for a
value v to be received by channel ch, binds the variable x
to the value received and then proceeds as Q{v/x}, where
Qf{v/x} indicates the substitution of the name x with v in
the body of Q. Process communication is synchronous and
channel names can be sent and received as values.

Special process zero represents inaction, internal actions
(also called silent actions) are denoted by tau, and the

creation of a new channel name z in a process R is
represented as (”~z)R, where the scope of z is restricted
to R. This scope can be extended to include other processes
by simply sending the new name in an output action, as in
("z)ch! (z).S.

The parallel composition operator |’ is defined in the
usual way: P | Q consists of processes P and Q acting in
parallel. The summation operator ‘+’ is used for specifying
alternatives: P + Q may proceed to P or to Q (but not to
both). The choice can be globally or locally taken. In
a global choice, two processes agree in the commitment
to complementary transitions, matching synchronously two
complementary actions. This provides the main rule of
communication in the w-calculus:

3

(v +x!(2) . P+--2) | (-0 +x?2(y).Q+ )

= P | ofz/y}.

On the other hand, local choices are expressed by
combining operator ‘+” with silent actions. Thus, a process
like (tau.P + tau.Q) may proceed to P or Q with
independence of its context by performing one internal
action tau. We use local and global choices for stating the
responsibilities for action and reaction, respectively.

There is also a matching operator, used for specifying
conditional behavior. Thus, the process [x=z] P behaves
as P if x=z, otherwise as zero.

Although the standard polyadic m-calculus does not
provide for built-in data types and process parameters, they
can be easily simulated. Therefore we will use numbers and
some basic data types, such as lists (with operators <>, ++
and - - for list creation, concatenation and difference and the
usual head and tail operations). Additionally, we have
enriched the 7 -calculus matching operator so that within the
square brackets we can use any logical condition, that acts as
a guard for the process specified after the brackets. In order
to make the manipulation of data structures easier, we will
also use the ‘=" symbol for representing term unification,
i.e. an expression like t1=t2 may produce a binding on
variables appearing either in t1 or t2. We will also use
the construct [else]l, that provides some syntactic sugar
for expressing that a process given by

([G11P1 + [GplP2 +--- + [Gy]1P, + [elselPy)

behaves as any process P; for which guard [G;] is true, or as
Pg if all guards G; (1 < j < n) are false. Please note that if
we do not include the [else] part and all guards are false,
the semantics of the matching operator in the m-calculus
makes the process deadlock.

3.2. Modeling approach

The main modeling techniques that we propose and that we
shall put into action in the next sections are the following.

e Each object is supposed to own a channel, through
which it receives method calls. This channel will
logically correspond to the object reference.
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protocol AccountFactory {
AccountFactory (ref) =
ref?create (rep)

protocol Account {
Account (ref) =
ref?getBalance (rep) ("balance)
+ ref?deposit (amount, rep) ("receipt)
+ ref?withdraw (amount, rep, notEnough)
( tau . ("receipt) rep! (receipt)
+ tau . ("balance)
)
i

("acc) ( Account (acc)

notEnough! (balance)

rep! (balance)
rep! (receipt)

( rep! (acc) . AccountFactory(ref) ) )

. Account (ref)
. Account (ref)

. Account (ref)
. Account (ref)

FIGURE 1. An Account protocol description for bank services.

e Together with every request, the calling object should
include a channel name through which the called
object will send the results. Although channels are bi-
directional in the w-calculus, in this way request and
reply channels can be kept separate in order to permit an
object to accept several simultaneous calls, while using
specific channels for replying.

e From the client’s point of view, invocation of method m
of an object whose reference is ref is modeled by
one output action ref ! (m, (args), (r)), where m
is the name of the method, args is a tuple with its
in and in-out parameters, and r is a tuple containing
the return channel and, optionally, other reply channel
names (for possible exceptions).

e Once the method has been served, the normal reply
consists of a tuple sent by the called object through the
return channel. This tuple consists of the return value of
the method, followed by the out and in-out parameters.
Arguments are transmitted in the same order they were
declared.

e Exceptions are modeled by channels. For instance, if
method m can raise exception excp, a channel named
excp has to be sent along within the return channels
tuple. The server object may either reply using the
first return channel if the method is served without
problems, or send the exception parameters through
channel excp if the exception is raised.

e The state-based behavior of the objects can be modeled
by recursive equations, where the various parts of the
object state (i.e. the state variables we want to make
visible to exhibit the object behavior) are parameters.

We have also added some syntactic sugar for the sake of
clarity and brevity when writing the specifications of the
objects’ protocols.

e Method invocation ref! (m, (args), (reply))
is abbreviated to the simpler form
ref!m(args, reply), or even to ref Im(args)
if the reference and reply channels are the same.

e Similarlyy, on the server side, we  write
ref?m(args, reply) for accepting the
invocation of method m(args), instead of writing
ref? (meth, (args), (reply)) . [meth="m’]

Protocols are defined using the special construct
‘protocol’, which consists of a name followed by
the protocol description in textual m-calculus enclosed
between curly brackets. Each protocol description
corresponds to one CORBA interface declaration and
serves as the specification of its behavior—described as one
or more w-calculus processes. Unless otherwise stated, the
name given to the protocol description is used to identify
the interface it relates to. We will see later how to associate
different protocols with a given interface.

3.3. [Extending the example specification

In this section we will show how the observable behavior
of the objects in the previous example can be described.
We will start with the bank services, for which Figure 1
is a possible protocol description. There are two
protocol descriptions, one for each of the two related
interfaces. The first one describes the behavior of object
AccountFactory and uses a m-calculus process with
only one argument: the name of the channel that the object
will use (i.e. the object reference). The process starts by
reading from that channel and then it creates a new channel
name for referring to the new account (“acc) and spawns
two processes: one that behaves as an Account and another
one that replies to the request through the given channel and
goes back to the original state.

The Account protocol in Figure 1 describes a behavior
in which a process waits for a request to arrive through
the object reference. In case it is a valid operation, the
object replies to the request (the withdraw () method may
also raise an exception) and behaves again as an account.
Please note how the extra channel not Enough is used by
method withdraw to raise the exception, as discussed in
Section 3.2.

The Account protocol description only shows the
interactions of Account objects with their clients, but
without any of the object’s behavioral semantics, such as
how the operations handle the balance, or when the object
decides to raise the exception (e.g. maybe the account allows
some credit). Protocols have been designed for describing
objects’ interactions mainly, although they also have the
ability to specify some semantic information too by means
of process variables that store the object’s internal states.
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protocol Bidder ({

Bidder (ref,auctioneer) = auctioneer!register (ref)

Bidding (ref,auc) = WaitingRound(ref,auc) + aucl!unregister (ref)

WaitingRound (ref,auc) =
ref?wannaBid (item, price, reply)
+ ref?itemSold(item) Bidding (ref, auc) ;
Deciding (ref, reply,auc) =
tau . reply! (TRUE) . Waiting(ref,auc)
+ tau reply! (FALSE) . Bidding(ref,auc) ;

Waiting(ref,auc) =
ref?youGotIt (item,price,acc, reply)
accl!deposit (price) acc? (receipt)
+ WaitingRound (ref, auc)

}i

("addr)

auctioneer? () Bidding (ref,auctioneer) ;

auc? () Bidder (ref,auc) ;

Deciding (ref, reply, auc)

reply! (addr) Bidding (ref, auc)

FIGURE 2. Protocol Bidder, defining a possible behavior of an object compliant with interface Bidder.

Thus, in addition to the specific protocol information, the
designer could specify some of the details of the object’s
behavior and semantics that are relevant to its potential
users, while hiding those which we want to leave open to
possible implementations. In general, this sort of semantic
information to be included in a protocol description will
depend on the level of detail that the component’s designer
wants to specify. More on this issue will be discussed later
in Section 4.

Going back to the auction example in Section 2.2,
protocol Bidder in Figure 2 defines the possible behavior
of an object compliant with interface Bidder. The
process has two arguments: the object reference channel
and the reference channel of the auctioneer. It specifies
that the bidder starts by registering itself, then it waits for
a confirmation from the auctioneer and behaves as process
Bidding. This process waits for the auctioneer to start a
new round for selling an item (process WaitingRound),
but it also gives the bidder the possibility of leaving the
auction (unregister). In process WaitingRound the
bidder is either informed that the auctioneer is ready for
receiving bids for an item (ref?wannaBid) or that an
item has been sold (ref?itemSold). In the first case
(Deciding) and provided the bidder is interested in an
item, it replies positively to the auctioneer and behaves as
process Waiting, that keeps waiting until (a) he gets the
item (ref?youGotIt), then pays for it, and replies to
the auctioneer with the address he wants the item to be
delivered at; or (b) a new round is started by the auctioneer
(WaitingRound). Local decisions are modeled by internal
actions tau, which leaves open to the object implementor
the mechanism used to make the decisions.

A possible behavior of the Auctioneer object is
described in Figure 3, where we can see how the auctioneer
accepts operations register () and unregister ()
from the bidder, in order to update the list of bidders it knows
about. When a sell () method is received, the auctioneer
spawns a new process (Auct ioning) that notifies the item
price to the bidders currently registered (by means of process

NotifyBid, which also waits for their replies). Once this
notification process is over, it behaves as EndOfRound,
that allows the auctioneer to: (a) decide to sell the item
to one of the bidders, (b) start a new round, or (c) give
up selling the item. In the first and last cases the bid
is over, which is notified to all the bidders by process
NotifySale.

It is important to notice that Figure 3 represents a possible
behavior. Of course, alternative behaviors could have been
specified. For instance, instead of using a list and notifying
the bidders according to the order in which they appear there,
the order of notification could have been left unspecified
(and hence left open to the implementor). On the other
hand, the above protocol also leaves some other details open,
e.g. both normal and Dutch auctions could conform to it and
it does not state how the price is determined in each round.

3.4. Where do protocols live?

Before we finish this section, let us describe how protocols
are created, stored and assigned to interfaces. In the
first place, analogously to where object IDLs live, each
protocol resides inside a text file (with extension .pt1l).
As previously mentioned, each protocol description
corresponds to one CORBA interface declaration and
serves as the specification of its observable behavior.
Different protocols can be associated to a given IDL: in
case we want protocol Prot to describe the behavior
of an interface named Intfc we can use the keyword
‘describes’ in the protocol definition

protocol Prot describes Intfc

{/*...protocol description goes here...*/};

In particular, since every component interface should have
a protocol associated, the first version of this protocol will
usually have the same name as the interface it describes.
In this case, the describes clause may be omitted.

At specification level a component is characterized by
an interface and a protocol description. By changing the
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protocol Auctioneer
Auctioneer (ref,bidders)

ref?register (b, rep)

+ ref?unregister (rep)
+ [bidders!=<>]

rep! ()
rep! ()

Auctioning(ref,bidders, rep, acc)
( ("done) NotifyBid(bidders,NULL, done)
| done? (winner)

EndOfRound (ref,bidders, winner, rep, acc)
[winner != NULL] %

tau . %
("item, price)
rep! (TRUE, price)

+ tau . % or to start a new round
Auctioning (ref,bidders, rep, acc)

+ tau % or to give up selling the item
rep! (FALSE,0) . NotifySale(ref,bidders)

o

NotifyBid (bidders,winner, done)
[bidders !=<> and b=head(bidders)
("item, price)

( [yesorno

+ [else]
[else] done! (winner) .zero ;

b!wannaBid (item, price)
TRUE]

+

NotifySale (ref,bidders)

[bidders !=<> and b=head(bidders)
("item)b!itemSold (item)

[else]

+ Auctioneer (ref,bidders)

}i

7

. Auctioneer (ref,bidders++<b>)
. Auctioneer (ref,bidders--<b>)
ref?sell (item, initial, giveup, acc, rep)

Auctioning(ref,bidders, rep,acc) ;

EndOfRound (ref,bidders,winner, rep,acc) ) ;

there is at least one bid for the item
and the auctioneer decides to sell the item

winner!youGotIt (item,price,acc)
. NotifySale (ref,bidders)

. winner? (addr)

and others=tail (bidders) ]
. b? (yesorno)
NotifyBid(bidders, b, done)

NotifyBid (others,winner,done) )

and others=tail (bidders) ]
. NotifySale (ref,others)

FIGURE 3. A possible behavior of the Auct ioneer object.

protocol description and maintaining the interface, we can
obtain different versions of a component. Likewise, for
each protocol we may produce, or find inside a repository,
different component implementations.

Protocols are defined to describe the behavior of a given
interface and they do not make sense in isolation (without
the interface they refer to). However, keeping protocol
descriptions separated from object IDLs permits the addition
of protocol information to CORBA object interfaces in
an incremental and independent manner. In this way,
new CORBA tools, repositories and traders can be defined
as extensions to the new ones, while keeping backwards
compatibility with the current tools and applications that do
not make use of this new protocol information.

The protocol description file .ptl will be used by
application builders during the architectural design and
verification and at runtime by the ProtocolTracer,
a m-calculus interpreter used by the CORBA object
interceptors for verifying the correctness of input and output
messages with respect to the object protocol (see Figure 5).
This issue will be explained in more detail in Section 5.2.

4. WHAT INFORMATION SHOULD BE INCLUDED
IN PROTOCOL DESCRIPTIONS?

In general, there are no precise guidelines about what should
and should not be included in a protocol specification.

It will depend, of course, on the level of abstraction or
detail required. As an example, think of a queue and
a stack. They are ‘functionally’ different, although they
may present the same access protocols. On the contrary, a
bank could offer several access protocols for its transactions,
e.g. two-phase commit or three-phase commit protocols.
The ‘operational semantics’ of each bank operation is the
same, the only thing that changes is the access protocol.
Although there is always a compromise, our suggestion
is to include in protocol descriptions just the information
about the components’ interactions, keeping away as
much as possible the ‘functional’ aspects of components.
However, the separation of concerns between computation
and coordination aspects is often subtle, as the following
example shows.

Suppose that we have the Account interface described
in Section 2.2. A possible behavior of this interface was
already specified in Section 3.3, although that Account
protocol described a pretty abstract component; we only paid
attention to its coordination aspects. It did not even disclose
how the operations modified the balance of the account, or
when the exception was risen.

We could argue that protocol Account is therefore
too abstract and it does not represent precisely the
behavior of the account we are trying to specify. Thus,
we could write a slightly lower level (less abstract) protocol
Account2:
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protocol Account2 describes Account {
Account (ref,balance) =
ref?getBalance (rep)

. Account (ref)

+ ref?deposit (amount, rep)
("receipt) rep! (receipt)

. Account (ref,balance+amount)

+ ref?withdraw (amount, rep, notEnough)

rep! (balance)

( [amount<=balance] ("receipt) rep! (receipt)
. Account (ref,balance-amount)
+ [else] ("balance) notEnough! (balance)

. Account (ref,balance)

Please note the use of the second argument of the process
to store the internal state of the object. In this case we are
specifying not only protocol information, but also some of
the object’s behavioral semantics: how the three methods
modify the balance of the account. Furthermore, protocol
Account?2 also denies money overdrafts by raising the
exception when a user wants to withdraw more money
than currently available in the account. However, most
people could argue now that we are overspecifying the
interface of our account, since protocol Account2 above
describes not only the coordination pattern it follows, but
also some of its computational aspects, i.e. its semantics.
Protocol Account 2 makes visible its internal state and also
its policy for overdrafts. It also rules out other different
behaviors of an account, e.g. those behaviors that allow
some credit, those that charge commissions on the account
operations, or those that pay interest.

Which one is the correct level of detail for representing
the behavior of the account? Unfortunately, we cannot
give a definite answer to this question; it will depend on
the system being specified and on the level of abstraction
desired by the specifier. In order to check its compatibility
or substitutability with other components, probably the first
protocol Account is enough, but if we want to be more
precise on the behavioral semantics of the account, protocol
Account?2 may be required. All this can be applied to
the protocol describing the behavior of the Auctioneer
also. For instance, we could have described how it increases
or decreases the price of the item in each round, how the
winner is selected, etc. Once again, the semantic details to
be included in the protocol will depend on the particular
requirements of the protocol specifier.

Another interesting possibility to be considered is the
separation of behavioral aspects. Mixing all syntactic,
protocol and semantic aspects within one component
specification will produce too large, complex and brittle
specifications to be of practical interest. Furthermore, using
(imagined) internal states in the specification of interaction
protocols (as in state-machine-based approaches) renders
the specification more abstract, makes the specification
less understandable and may discourage practitioners from
using protocol specifications altogether. Therefore, it seems
like a good idea to be able to specify each aspect of the
specification in a modular way, so different protocols can be

associated to the same (functional) services, or that separate
specification aspects can be composed to meet complex
and changing requirements. Thus, signature, protocol and
semantic specifications can be separately specified, which
may lead to more modular specifications, achieving in this
way a beneficial separation of concerns.

5. CHECKING PROTOCOLS

Once we have enriched IDLs with protocol information,
this section discusses the sort of checks that can be carried
out, the moments in which those tests can be done and the
mechanisms required for that purpose. We will distinguish
between static and dynamic checks.

5.1. Static checks

Static checks are those carried out during the design phase
of applications prior to the execution of the components and
are based on the IDL of the constituent components and
the binds among them (i.e. the structure of the application).
This information can be used at design time to perform
static analysis of some safety properties of the composed
applications. With this approach we will also be able to
address one of the shortcomings of the development of
distributed applications using commercial platforms, such as
CORBA or EJB: they do not provide the mechanisms for
explicitly describing the architecture of the applications, just
the interfaces of their components.

In our approach the m-calculus specifications of the
components’ protocols will be used for the checks, with
the additional benefit that sr-calculus tools (animators) can
execute the specifications, hence automating all checks.
It is our view that tools are indispensable for checking
formal specifications, in particular in the production of
real applications (with hundreds of components offering
thousands of operations). Without those tools, the industrial
use of formal methods will definitely fail to materialize.

We will discuss here some possible protocol checks,
namely object compatibility and substitutability.

5.1.1. Object compatibility

Object compatibility can be described as the ability of two
objects to work properly together if connected, i.e. that all
exchanged messages between both objects are understood
by each other and that their communication is deadlock-
free [10].

This is exactly what we do, since our approach allows the
absence of deadlocks to be checked during the application’s
lifetime, which guarantees the correct interworking among
all its components (i.e. their compatibility). Please note
that these are the sort of checks commonly carried out
by software architects using their ADLs (e.g. ACME [16],
Wright [17] or LEDA [18]), testing that the architecture of
an application is complete (there are no missing components
or services), and deadlock-free. We will show how those
tests can also be achieved with our proposal, right from the
objects’ protocol specifications.
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Based on the previous example, suppose that we have an
application with one bank, two bidders, one auctioneer and
one seller and that we want to check whether this system is
deadlock-free or not. In order to do that, the behavior of the
application can be modeled as a set of w-calculus processes
running in parallel, whose channels are related according to
the application’s topology.

)
f)

1
( a % AccountFactory’s address
("bl,b2) % Addresses of the two bidders
(" u) % Auctioneer’s address
("sl) % Seller’s address
(
Bidder (bl,au) | Bidder (b2, au)

AccountFactory (af) | Auctioneer (au, <>)
|
| seller(sl,af,au) )

In this case the Seller process models the environment,
by simply representing an object that calls the auctioneer
method sell () when trying to sell an item and waits for
its reply. More precisely, its observable behavior can be
described as follows:

protocol Seller ({
Seller (ref,bank,auctioneer) =
bank!create() . bank? (acc)
("item,minprice, maxprice)
auctioneer!sell (item,minprice, maxprice,
acc) . auctioneer? (yesorno, finalprice)
zZero

}i

In a first approach we could consider that a software
system, specified by a w-calculus process, is deadlock-free
when it terminates without requiring any interaction with its
environment, i.e. when it always performs a finite number of
silent actions tau leading to the inaction zero. However,
most server components are not terminating since they
provide their services running on an infinite loop. Therefore,
we must extend this definition in order to accommodate
also infinite sequences of silent actions. Thus, we give a
negative definition, saying that a m-calculus process fails
when, considered as isolated from its environment, it may
perform a finite sequence of silent transitions leading to
a process which is neither the inaction process nor can it
perform any transition by itself. Now, we can say that a
process is deadlock-free, or that it succeeds, when it does
not fail. Formal definitions of these notions of success and
failure in the context of the s -calculus can be found in [19].

The distinction between global and local choices, to
which we referred in Section 3.1, plays a significant role
in deadlock-freedom. Suppose that a certain component
performs a local choice; then the rest of the system must
be able to follow this decision, otherwise the system would
deadlock. Thus, every local choice must be taken into
account when analysing absence of deadlocks. However, if a
certain component presents a global choice, this choice will
only take place if another component in the system presents
the complementary action, that is, if there is a component
willing to accept the choice. If not, the global decision
will not occur. Hence, only global decisions which are
common (in the form of complementary actions) to two or

more system components must be taken into account for
determining deadlock-freedom.

With all this, the absence of deadlocks in the application
gets reduced to analysing the m-calculus process Appl ()
and proving that it is deadlock-free.

On the other hand, it is important to notice that we
are relying strongly on the application’s internal structure;
there is no problem here for closed applications, but this is
definitely a very strong assumption for open and evolvable
applications.

5.1.2.  Object substitutability

Object substitutability refers to the ability of an object to
replace another in such a way that the change is transparent
to external clients, i.e. so that the new object offers the same
services as the old one [7]. Substitutability and compatibility
are the sides of the object interoperability coin. This issue is
not difficult to solve at the signature level; it is just a matter
of checking that the interface of the new object contains all
methods of the object to be replaced. However, the situation
is different at the protocol level.

e In the first place, we also need to check that the
services required by the new object (hereinafter called
outgoing operations) when implementing the old
object’s methods are a subset of the outgoing operations
of the old one. Otherwise, we may require to add
some additional components to the application when
replacing the old object with a new one.

e And second, the protocols (relative order among
incoming and outgoing messages, and blocking
conditions) should be consistent between the old and
the new versions of the object.

The first issue can be easily managed in our proposal. Since
all methods are called and responded using channels, the
set of the incoming (respectively outgoing) operations of
an object can be calculated as the union of all the method
names read (respectively written) by the object through all
the channels it uses.

With regard to the order of operations, the m-calculus
offers the standard axiomatization of bisimilarity, which sup-
ports the replacement of processes. However, bisimulation
is too strict for our purposes since it forces the behavior of
both objects to be undistinguishable. Effective replacement
of a software object often implies that it must be adapted or
specialized to accommodate new requirements [7]. For this
reason, we make use of a specific mechanism for behavioral
subtyping of processes, which we have called protocol
inheritance (less restrictive than bisimilarity) defined in [19],
that allows the decision of whether a given object with
protocol description Py can be replaced by another with
protocol description Py, while keeping the object’s clients
unaware of the change.

The detailed description of this relation of protocol
inheritance is beyond the scope of this paper, we are here
more interested in showing its applicability than its technical
aspects in the w-calculus. However, we may roughly say that
a certain protocol Pj inherits from another one P if:
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protocol FairAuctioneer extends Auctioneer (

redefines EndOfRound (ref,bidders,winners, rep,acc)

[winners!=<> and w=head (winners) and tail (winners)=<>] %only one bid, the item is knocked down

("item,price) w!youGotIt (item,price,acc) . w? (addr) rep! (TRUE, price)
NotifySale (ref,bidders)

+ [winners != <> and tail (winners) !=<>] % several bids received, new round starts
Auctioning(ref,bidders, rep, acc)

+ [winners = <>] % no bids, the auctioneer gives up

rep! (FALSE, 0)
ref?register (b, rep)
+ ref?unregister (rep)

. NotifySale (ref,bidders)
rep! ()
rep! ()

+

redefines NotifyBid(bidders,winners,done) =

EndOfRound (ref,bidders++<b>, winners, rep, acc)
EndOfRound (ref,bidders--<b>,winners, rep, acc) ;

[bidders!=<> and b=head(bidders) and others=tail (bidders)]

("item,price) b!wannaBid(item,price)

. b? (yesorno)

( [yesorno = TRUE] NotifyBid(bidders,winners++<b>,done)

+ [else] NotifyBid(others,winners,done) )
+ [else] done! (winners) .zero

}i

FIGURE 4. Protocol FairAuctioneer, specifying another behavior of the Auctioneer object (Figure 3).

(a) P, preserves the semantics of behavior of Py (i.e. if any
global choice offered by Py is also offered by P»);

(b) P, does not extend P; (i.e. if any action present in Pj
has been inherited from P;); and

(c) P, terminates when P; does also terminate. If these
conditions are fulfilled we can ensure that P, may
replace P in any context, that is, when combined with
any other component. Since the second condition (b)
seems to be too restrictive, we have also introduced
a relation of protocol extension, derived from that of
inheritance, that also allows the child protocol to extend
its parent by adding new methods that do not interfere
with the inherited behavior, therefore ensuring safe
substitutability.

In order to illustrate the notion of protocol substitutability,
let us consider again one of the objects in our example:
the Auctioneer. In the first place, from its protocol
description we can easily compute its incoming and
outgoing operations:

(a) as incoming messages we find the component’s
supported operations, as well as the replies it gets when
calling external methods

(b) as outgoing operations we find the invocations to the
Bidder objects methods wannaBid (), youGotIt ()
and itemSold ().

Now, let us suppose that we have another Auctioneer
object whose behavior is specified by the protocol
FairAuctioneer (Figure 4). We see that the incoming
and outgoing operations of the Auct ioneer (Figure 3) and
the FairAuctioneer (Figure 4) protocols are the same,
but that their behavior is not. The FairAuctioneer
protocol extends the Auct ioneer protocol, detailing some
of its features and also improving it. The protocol describes
now a fair auctioneer, i.e. who only knocks down the item
when exactly one bidder remains bidding for it (in the
previous version she could decide to assign it to a certain
bidder, even when several others were bidding against him).

Notice also that now bidders may also join or leave the
system while an auction is in progress (at the end of each
round), not only in the interlude between auctions. In
order to specify this new behavior, two processes have been
redefined. First, we have substituted the tau actions in
the EndOfRound process, representing local choices, by
guards describing how these decisions are made. In addition,
we have modified the process NotifyBid so it returns a
list with all the bidders having a bid (winners list), instead of
answering with only one of them (as was the case in protocol
Auctioneer).

Now, if we make use of our relation of protocol
inheritance, it is not difficult to prove that the behavior
described by protocol FairAuctioneer inherits from
that of Auctioneer. Thus, we can replace an object
exhibiting the former behavior by one compliant with the
latter protocol without affecting the safety and liveness
properties in the system.

5.2. Run-time checking

Apart from the static checks, there are many situations in
which protocol compatibility has to be checked at run-time.
Typical cases are the applications developed in open and
independently extensible systems [5], in which the evolution
of the system and its components is unpredictable: new
components may suddenly appear or disappear, while others
are replaced without previous notification. The Internet is
probably the most well-known example of such systems.
Unfortunately, in such situations the architecture of the
applications is not made explicit anywhere and therefore
the static checks previously mentioned are no longer valid,
since they cannot be used for dynamic attachments among
unknown components.

Protocol compatibility can be checked at run-time by
intercepting messages and verifying their correctness with
regard to the current state of the component. In this way
system inconsistencies and deadlock situations can be de-
tected before they happen and the appropriate actions can be
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reject

request

®._

e P reject

4 request

inRequestPreMarshal

v

System.out.println(“Input message ”+r);
if (ProtocolTracer.isValidInput
(r.operation(),r.arguments()))
return true; // allows the request
else
return false; // rejects the request

reply

outReplyPreMarshal

.

public boolean inRequestPostMarshal (Request r)

¢
public boolean outReplyPreMarshal (Request r) {
System.out.println(“Reply message ”“+r);
if (ProtocolTracer.isValidReply
(r.operation(),r.arguments (), r.result()))

else

return true; // allows the reply

return false; // rejects the reply

7

FIGURE 5. Component interceptors.

taken beforehand. This sort of information is very useful for
system debugging and it may help components to make run-
time decisions about their behavior within an application.
Components entering in a deadlock state can be notified by
an error event about the situation, so they can react accord-
ingly if they wish. Likewise, the system could prevent illegal
or incompatible messages reaching destination components,
avoiding incompatibility issues and further deadlocks.

In addition, these tests also provide an exception handling
mechanism when integrating systems from components and
applications that were not designed for open environments
and hence do not offer any support for dynamically handling
incompatibility issues.

To implement these facilities in CORBA we have used
a reflective facility that some ORB vendors provide:
interceptors [11] (also called filters). This mechanism
was originally defined and implemented in Orbix [20] and
allows a programmer to specify some additional code to be
executed before or after the normal code of an operation.
This code may perform security checks, provide debugging
traps or information, maintain an audit trail, etc. Although
less powerful than other object reflective facilities (such
as composition filters [21] or the object filters [22]), they
provide the mechanism that we need, since they allow the
interception and observation of messages exchanged among
components. Thus, a filter can be defined for each object
that captures incoming and outgoing messages, reproduces
its run-time trace and checks that received messages are
compatible with the behavior defined for that object.

In Figure 5 we have shown a schema of an in-
terceptor for an object called ‘Server’, following

the implementation structure defined in Orbix for ob-
ject interceptors. The interceptor in the figure de-
fines two methods, inRequestPostMarshal and
outReplyPreMarshal, which respectively capture the
incoming and outgoing messages. Each message is stored
in a structure of type Request, from which the method
name and parameters are accessible. As we can see in
the figure, upon reception of a message those filtering
methods invoke the ProtocolTracer, asking whether
the message is valid or not. The ProtocolTracer
is the tool we have developed, that simply reproduces
the run-time trace of a given object’s protocol (which is
determined when the interceptor is created and associated
to the object) and decides whether the message is valid
with regard to its current state. If so, the message is
allowed to proceed and the ProtocolTracer updates its
state, moving to the next action indicated in the protocol;
if not, the message is rejected and the state is unchanged.
Since ProtocolTracer just traces the protocol it is
not burdensome; it introduces basically the performance
penalties due to message interception.

Another issue that can be addressed with our approach is
about conformance to specifications, i.e. how to check that
a given implementation of an object conforms to a given
specification of its behavior. In general, there is no problem
at the signature level, where it is a matter of checking that all
methods defined in the interface are actually implemented by
the object. However, it is a completely different situation at
the protocol level. In this case we need to check that the
actual implementation conforms to the behavior specified in
the protocol, but this is usually impossible: we are dealing
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with black-box components whose code is unaccessible.
There is, however, one possible way to deal with this
problem using the aforementioned interceptors. They were
used for checking that incoming messages to an object were
valid with regard to its current state; but they can also capture
outgoing messages (using outRequestPreMarshal
and inReplyPostMarshal pre-defined methods of
Orbix interceptors) and therefore be used for checking that
the object’s behavior is valid with regard to the protocol it
is supposed to implement. In this way the interceptors can
be used to enforce behaviors, in a similar way to Minsky’s
Law-Governed Architectures [23].

5.3. How and when to check

Summarizing, we can identify two different stages where
compatibility between the components that form part of an
open application can be checked: (1) at design time, in
which a static analysis of components can be made prior
to their execution; and (2) at run-time, in which all the
messages exchanged between the objects are checked for
consistency with their current states, detecting deadlock or
starvation situations.

Both checks are possible with our proposal, but the
question is whether they are useful and, in practice,
achievable. For instance, design-time compatibility checks
are very useful in closed applications, but are rather limited
for open applications in which components may evolve over
time and there is no explicit framework context that defines
the relations and binds among them.

Another problem is the computational complexity of the
static checks. Static protocol checks do not need such
a heavy machinery as theorem provers, but still they are
(theoretically) intractable because they need to explore all
branches of the expansion tree of the protocols. However,
by means of a specialized transition system such as the one
proposed by Sangiorgi for bisimulation [24], it is possible
to develop efficient tools for the automated checking of
the relations proposed in this paper. In addition, most of
the component protocol descriptions in real applications are
usually very simple and therefore even the protocol tests
with an a priori exponential complexity can be practically
used in these situations.

On the other hand, run-time compatibility can be done on
the fly by the interceptors with even less of a heavy burden,
checking the conformance to a given protocol message by
message. This method delays analysis until run-time and
has the advantages of making it tractable from a practical
point of view and of allowing the management of dynamic
attachments in open environments in a natural way. Its
main disadvantages are the accounting process that filters
must carry out and also that the detection of deadlock and
other undesirable conditions is delayed until just before they
happen. However, the performance penalties introduced by
the filters that check protocols are not very significant, since
they only need to check that a given message is valid in a
certain state; they do not need to check the full protocol, so
performance penalties can be kept to a minimum.

6. FURTHER ISSUES

Apart from the issues discussed in this paper, there are still
some other topics related to object interoperability which are
worth mentioning here.

6.1. Mediation

Once we have characterized the protocols that components
obey, we can check their compatibility. However, if the
behavior of two components is incompatible, a new question
arises: Is it possible to build some extra components that
adapt their interfaces, so compensating for their differences?
Those extra components are usually called adaptors or
mediators and their automated construction right from the
description of the interfaces of the original components is in
general a difficult problem [10].

6.2. Checking compatibility at connection time

In addition to the benefits to open system debugging and
prototyping that we can obtain with the previous protocol
checks (both static and during system execution), we would
like to explore a third possibility and see whether we could
perform static analysis at connection time, just before a
new component joins an application. This is important in
open systems, where a given user may decide to include
a new type of component into a running application. We
know about the application’s architecture and the behavior
of its constituent components when correctly operating.
What we want to know is whether the new component
will be compatible with others, but without using filters
for dynamic checks on all those components, which may
add an unnecessary burden to an application that has been
previously tested for compatibility. Some sort of static
checks would be ideal in this situation. However, the
problem is that we may have to face compatibility checks
between components which are at different states, i.e. we
may have to check protocol compatibility between a source
component (the new one we are now dropping in the system)
which is in its initial state and the rest of the application
components, which are already running and that may be in
intermediate states.

6.3. Role compatibility

We have previously discussed how to achieve compatibility
checks among the constituent components of an application.
However, we could also think of simpler pairwise
compatibility checks between two objects only. Such
tests are needed when we want to study the compatibility
of two components in isolation, independently from the
applications they will be part of (for instance, the
compatibility between the Bidder and the Account).
The problem is that objects may simultaneously interact
with more than one other object and protocols describe all
interactions and how they interleave. Therefore in order to
define compatibility between just two objects we need to talk
about roles.
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Roles are abstract and partial descriptions of the behavior
(i.e. the role) an object plays in its interactions with
just another object. Hence, roles are partial protocol
specifications, in which we only pay attention to the
behavioral interface that a certain component presents to
another one. This allows pairwise compatibility checks,
which are more efficient because the full protocols of all the
application’s components do not need to be considered, just
the shared roles of the two components involved. A role
can be obtained from the corresponding object protocol by
restricting (projecting) it to a certain set of communication
channels (those shared with the component connected to
the role), while hiding the rest of channels. Each protocol
description could be divided into different separate roles,
each one describing pairwise object interactions. The
extension of our current proposal to deal with roles, the
sort of tests that can be carried out with them and how
they compare to full protocol descriptions are the subjects
of further research. Another interesting possibility which
may be worth considering is the description of protocols
in terms of roles only, instead of the full protocols. This
would provide simpler descriptions and more efficient
compatibility tests which would greatly benefit our proposal.
However, we may also lose some information, such as
how the different (pairwise) roles interleave, which may be
needed in some situations. Again, this is the subject of
further research.

7. RELATED WORK

The contributions we have presented in this paper fall into
two main categories: the extension of object IDLs for
dealing with some semantic aspects of their behavior and
the use of formal notations for describing those behaviors.

Several authors have provided a number of proposals
that try to overcome the limitations that current IDLs
present, defining extensions that usually cope for the
semantic aspects of object interfaces and behavior. We
will not cite here the proposals that try to deal with the
behavioral semantics of components (the interested reader
can consult [4]), just the ones that cover the specification of
the objects’ service protocols.

In the first place, Doug Lea’s PSL [25] proposes an
extension of the CORBA IDL to describe the protocols
associated to an object’s methods. This approach is based
on logical and temporal rules relating situations, each of
which describes potential states with respect to the roles of
components, attributes and events. Although it is a very
good and expressive approach, it does not account for the
services an object may need from other objects, neither is it
supported by standard proving tools.

Protocol specifications [10] is a more general approach
for describing object service protocols using finite state
machines that describe both the services offered and required
by objects. It is based on a very simple notation and
semantics that allow components to be easily checked for
protocol compatibility. However, this approach does not
support multi-party interactions (only contemplates two-

party communications) and the simplicity that allows the
easy checking also makes it too rigid and unexpressive for
general usage in open and distributed environments.

The approach by Cho, McGregor and Krause [26] uses
UML’s OCL to specify pre- and post-conditions on the
objects’ methods, together with a simple finite state machine
to describe message protocols. Similarly, Jun Han [27]
proposes an extension to IDLs that includes semantic
information in terms of constraints and roles of interaction
between components (but using no standard notation), which
aims at improving the selection and usage processes in
component-based software development. They are somehow
similar approaches, although none of them is associated to
any commercial component platform like CORBA or EJB,
nor supported by standard proving tools.

Reuse Contracts [28] is another well known proposal,
although it is based on textual annotations to facilitate the
reuse by humans, not by computer programs during object
execution.

Bastide, Sy and Palanque [12] use Petri nets to describe
the behavior of CORBA objects, providing their full
operational semantics, and supported by proving tools.
This is a very powerful and expressive approach, very
similar to ours, which has been successfully used to
detect inconsistencies in some CORBA services commercial
implementations [13]. The main difference between their
work and ours is in the notation used and what this implies.
For instance, the semantics of the behavior of operations
and the interaction protocols are defined altogether in the
Petri nets approach, without a clear separation of their
semantic dimensions. This is something that can be avoided
in the protocols defined using the m-calculus, which can
only contain ‘interaction’ information. On the other hand,
Bastide’s proposal allows much richer information to be
included in the objects’ behavioral descriptions, which may
be required in some cases.

Another interesting proposal is due to Biichi and
Weck [29], where a grey-box specification approach is
used to specify the semantics of components in terms
of pre-post conditions and invariants.  This proposal
successfully addresses many of the limitations that semantic
specifications of components currently have. However, it
mixes again protocol and semantic information altogether, it
is devised only for static checks, and also implies very heavy
compatibility proofs. One of the reasons for addressing
component interoperability at the protocol level only was
to try to avoid the complexity of the tests that are needed
when dealing with the whole semantic descriptions of
components.

On the other hand, current model checkers (e.g. those
based on Promela or SDL) also allow the specification
of the observable behavior of objects. They are very
good for cleaning up system designs quickly because of
their efficiency (they work in polynomial time) and the
quality and expressiveness of their feedback. However, a
disadvantage of model checkers is their inability to deal
with arbitrary numbers of instances, or with properties that
involve universal quantifiers.
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Message sequence charts (MSC) is a notation that also
permits the description of the interactions among objects.
Now part of UML [30], they are very expressive for
describing protocol interactions, but they do not allow the
formal proof of (safety or liveness) properties about the
system, or the inference of certain results.

Finally, some architectural description languages (ADLs)
also include the descriptions of the protocols that determine
the access to the components they define using standard
notations that derive from process algebras (like CSP, CCS
or -calculus). One of the benefits of using standard calculi
is that reasoning about system behavior and correctness can
be done using appropriate tools. ACME [16], Wright [17], or
LEDA [18] are examples of ADLs that make use of process
algebras such as the w-calculus for describing the behavior
of the components of a system. Our focus is somehow
different, since we are more concerned with the specification
of COTS components, independently from the applications
they will be part of.

With regard to the second topic, the use of formal
notations in commercial environments, we share the thesis
that formal methods (such as the smr-calculus) are mature
enough to be used in the design and validation of
components of large distributed systems and that the use of
such methods will lead to the better design of components
and of component-based applications in open systems.
Having methods to describe the behavior of such systems
formally gives us the ability both to explore alternative
designs and to validate chosen designs to ensure that they
have the behavior which we expect.

The m-calculus has also been successfully used for
describing some aspects of the internal architecture of
component models like COM [31] or CORBA [32]. In
this paper we have shown how it can also be used to
describe some of the semantics of the dynamic behavior of
the components, not only of the model’s communications
mechanisms.

The -calculus also offers good tool support, with several
products for animating m-calculus specifications such as
MWB [33] or epi [34]. Both are executable versions of the
polyadic m-calculus, with some enhancements added and
MWB is the one we have used for conducting our tests.
However, we did not want to commit ourselves to any one
particular tool. Following the CORBA IDL philosophy of
producing platform-independent interface descriptions, we
decided to produce tool-independent protocol specifications
that could be easily translated into different executable
versions of polyadic rr-calculus. The only requirements are
the support for basic data types and the simulation of the
syntactic sugar extensions we have defined.

8. CONCLUDING REMARKS

In this paper we have outlined the importance of
incorporating protocol information into object interface
descriptions. Our proposal extends traditional IDLs with
protocol descriptions (partial ordering of messages and
blocking conditions) described using w-calculus. As major

benefits, the information needed for object reuse is now
available as part of their interfaces and more precise
interoperability checks can be achieved when building up
applications.

Apart from the issues previously described, there are some
natural extensions of our work. We have seen how to
add protocol information to CORBA IDLs and the sort of
benefits that can be obtained from it. The addition of this
type of information to other object and component models—
like DCOM, EJB or the new CORBA Component Model
(CCM)—is an ongoing subject of research, as well as the
development of new services and tools that make use of it
such as protocol repositories and extended service traders.
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