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Interoperability

“The ability of two or more entities to communicate and coop-
erate despite differences in the implementation language, the ex-
ecution environment, or the model abstraction” [Wegner, 1996].

e We distinguish three main levels of Object Interoperability:

— The Signature level (signature of operations)
— The Protocol level (partial order between messages)

— The Semantic level (real “meaning” of operations)



Traditional IDLs

e Describe supported services, but not required ones.
e Describe the syntactic interfaces of objects, not their behavior.

e Are mainly used at compile time, but not during object execution.

Therefore, from an object IDL | know what an object does, but:

e | don't know how to use its services.

e | don't know the external services it needs.



Our main aim

e Extend IDLs with protocol information:

— Supported and required services.
— Partial order in which objects expect their methods to be called.

— Partial order in which objects call other objects’ methods.

Our present contribution

e Extend the CORBA IDL.

e Use Milner's m-calculus for protocol descriptions and compatibility
checks.
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2. The CORBA IDL: A case study

A simple E-commerce application:

interface AccountFactory {
Account create();

+;

interface Account {
exception NotEnoughMoney {float balance; float requestedAmount};
float getBalance () ;
string deposit(in float amount);
string withdraw(in float amount) raises (NotEnoughMoney) ;

};



interface Bookshop {
struct BookRef { string ISBN; float price; };
BookRef inStock(in string title, in string author);

void order (in BookRef b, out account a, out string purchaseld);
date deliver (in string purchaseld,in string rcpt,in string addr)
Y
interface BookBroker {
void add (in Bookshop b);
oneway void remove(in Bookshop b);
boolean getABook(in string author, in string title,

in float maxprice, 1n string addr,
out date when) ;



3. The polyadic m-calculus

e A process algebra with synch communications through channels
e Not only values but channel names can also be transmitted

e Semantics expressed in terms of a reduction system, and labeled
transitions (commitments)

e Operators:

— Sending values: ch! (v)
— Receiving values: ch?(x)
— Creation of fresh names: ("z)P
— Process composition: | +

— Matching operator: [x=z]P

— Specials: tau zero
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e Main rule of communication in the m-calculus:

(.- +ch!'(w).P+--) | -+ +ch?7x).Q + --) — P | Q{v/x}

e Global choices are non-deterministic

e Local choices are expressed combining ‘tau’ and '+':
(tau.P + tau.Q)

e In the polyadic m-calculus, tuples can also be sent along channels

e Extensions to the standard polyadic 7-calculus:

— Basic data types (lists, sets, ...)

— Enriched matching operator, and the [else] construct:
( [G]P; + [GolPo + --- + [G,]P, + [elselP; )



Extending CORBA Interfaces with textual m-calculus

e Modeling Approach

— Object reference  +— one 7-calculus channel

— Method call — ref!(m, (inArgs), (replyl,excepl,...
— Method reply — reply! (returnValue,outArgs)

— Raising exceptions +— excep! (excepParams)

— Object state — Recursive eqgs and process parameters

e Syntatic sugar

—ref!(m, (args), (rep)) — ref!m(args,rep)
—ref! (m, (args), (ref)) — ref!m(args)

—ref?(m, (args), (rep)) . [m="op’]P +— ref?op(args,rep).P
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4. Extending the example IDLs with protocol information

protocol AccountFactory {
AccountFactory(ref) =
ref?create(rep)
(Tacc)
( Account(acc,0) | ( rep!(acc) . AccountFactory(ref) ) )
+ [elsel
AccountFactory(ref)
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protocol Account {
Account (ref,balance) =
ref?getBalance(rep)
rep! (balance)
Account (ref ,balance)

+ ref?deposit (amount,rep)
("receipt) rep! (receipt)
Account (ref ,balance+amount)

+ ref?withdraw(amount,rep,notEnough)
( tau .

("receipt) rep! (receipt)

Account (ref ,balance—-amount)
+ tau .

notEnough! (balance,amount)

Account (ref,balance) )

+ [else]

Account (ref ,balance)
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5. Checking protocols

[\ Yes, protocol information can be added to CORBA [DLs.

But now we have it.... What can we do with it?

e \What to check?
e \When to check?

e How to check?

e \Who carries out the checks?
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Static Checks

e Static analysis of ‘closed’ applications at compile/design time
e \WWhat can be checked?

— Liveness and safety properties (eg. absence of deadlocks)
— Component Substitutability
— Component Compatibility

e How to check?

— Executing the components’ protocol descriptions, using m-calculus
standard tools

e Who carries out the checks?

— The application designer

14



Example of static checks

protocol User {

User (ref ,bookbroker) =
(Tauthor,title,price,addr)
bookbroker!getABook (author,title,price,addr)
bookbroker?(yesorno,when)

Zero
s
Appl() = (Tac) // AccountFactory’s address
("bl1,b2) // Addresses of the two bookshops
("bb) // Book-broker’s address
("u) // User’s address

( AccountFactory(ac) | Bookshop(bl,ac) | Bookshop(b2,ac)
| BookBroker (bb,<bl,b2>) | User(u,bb) )

Deadlock-free test: Appl () T zero
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Static checks: summary

Based just on the IDLs of the application’'s components and the binds
among them, they allow powerful interoperability tests prior to the
components’ execution

However. ..

e They are useful for closed applications, but not so much for open ap-
plications in which the architecture is unknown, or the components
may dynamically evolve

e Static analysis of m-calculus processes is an NP-hard problem
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Run-time checks

e Dynamic analysis of ‘open’ applications, during the application’s
execution time

e What can be checked?

— Safety properties of applications (eg. absence of deadlocks)
— Component compatibility

e How to check?

— CORBA interceptors reproduce the object run-time trace and
check incoming messages against protocol specifications

e \Who carries out the checks?

— The object interceptors
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Run-time checks

They eliminate the heavy burden of static checks, are tractable from a
practical point of view, and are valid in open environments

However. ..

e They need a lot of accountancy by the interceptors

e Detection of deadlocks or other undesirable conditions is delayed
until just before they happen
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6. Concluding Remarks

e We have succeeded in extending CORBA |DLs with protocol info:

— Description of both supported and required operations
— Specification of partial ordering among them

e Benefits obtained:

— Additional information available for component reuse
— Some of the application’s architectural information is available
— Improved interoperability checks

. Component compatibility and substitutability

. Safety and liveness properties of applications

. Static and dynamic checks
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Concluding Remarks (cnt'd)

e Object reference manipulations and client-server invocations have a
good semantic matching with the m-calculus

— Easy and natural modeling of object interactions
— Formal support for reasoning about the applications

— Standard tools available for the checks

However. ..

— The m-calculus has a too low level syntax (despite the sugar)

— Some static interoperability checks are too costly
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Open Issues

e Adaptors
e Many-to-one substitutability
e Connection-time checks

e Conformance to specifications

Ongoing and future work

e Extensions of other models’ IDLs (COM, EJB, CCM, ...)
e Extend repositories and traders to deal with this sort of information
e Second version of our prototype

e Adding more semantic information to IDLs (Is it really practical?)

21



2nd Workshop on Object Interoperability

In Association with ECOOP'2000
Sophia Antipolis, France.
June 12, 2000.

http://webepcc.unex.es/juan/woi00/

22



protocol Bookshop {
Bookshop(ref ,bank) =
("rep) bank!create(rep)
rep?(account)
SellingBooks(ref,account)

SellingBooks (ref,account) =
ref?inStock(title,author,rep)

("bookref) rep! (bookref)
SellingBooks(ref,account)

+ ref?order (bookref,rep)
("purchaseld) rep!(account,purchaseld)
ref?deliver (pid,receipt,deliv,rep)
("date) rep!(date)
SellingBooks (ref,account)

+ [else]
SellingBooks (ref,account)
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protocol BookBroker {

BookBroker (ref ,bookstores) =
ref?add(bs,rep)
rep! ()
BookBroker (ref ,bookstores++<bs>)

+ ref?remove (bs,rep)
BookBroker (ref ,bookstores——-<bs>)

+ ref?getABook(auth,title,price,addr,rep)
( Buy(ref,auth,title,price,addr,rep,bookstores)
| BookBroker (ref,bookstores)

)

+ [else]

BookBroker (ref ,bookstores)
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Buy(ref,auth,title,price,addr,rep,stores) =

[ stores = NIL ]

rep! (FALSE,NIL) . zero

+ [ stores = <bg>++dB ]

bs!inStock(title,auth)

bs? (book)

( [(book!=NIL)&&(book.price<=price)]
bs!order (book)
bs?(account,pid)
account!deposit (book.price)
account?(receipt)
bs!deliver(pid,receipt,addr)
bs?(date)
rep! (TRUE,date)
Zero

+ [elsel
Buy (ref,auth,title,price,addr,rep,dB) )



