
Extending CORBA Interfaces with π-calculus
for Protocol Compatibility

C. Canal, L. Fuentes, J.M. Troya and Antonio Vallecillo

University of Málaga, Spain.

TOOLS Europe 2000

June 6, 2000

1

Interoperability

“The ability of two or more entities to communicate and coop-
erate despite differences in the implementation language, the ex-
ecution environment, or the model abstraction”[Wegner, 1996].

•We distinguish three main levels of Object Interoperability:

– The Signature level (signature of operations)
– The Protocol level (partial order between messages)
– The Semantic level (real “meaning” of operations)

2

Traditional IDLs

• Describe supported services, but not required ones.

• Describe the syntactic interfaces of objects, not their behavior.

• Are mainly used at compile time, but not during object execution.

Therefore, from an object IDL I know what an object does, but:

• I don’t know how to use its services.

• I don’t know the external services it needs.

3

Our main aim

• Extend IDLs with protocol information:

– Supported and required services.
– Partial order in which objects expect their methods to be called.
– Partial order in which objects call other objects’ methods.

Our present contribution

• Extend the CORBA IDL.

• Use Milner’s π-calculus for protocol descriptions and compatibility
checks.

4

Agenda

1. Introduction (X)

2. The CORBA IDL

3. The polyadic π-calculus

4. Extending CORBA Interfaces with π-calculus

5. Checking protocols

6. Open Issues

7. Conclusions

5

2. The CORBA IDL: A case study

A simple E-commerce application:

interface AccountFactory {
Account create();

};

interface Account {
exception NotEnoughMoney {float balance; float requestedAmount};
float getBalance();
string deposit(in float amount);
string withdraw(in float amount) raises (NotEnoughMoney);

};

6

interface Bookshop {
struct BookRef { string ISBN; float price; };
BookRef inStock(in string title, in string author);
void order(in BookRef b, out account a, out string purchaseId);
date deliver(in string purchaseId,in string rcpt,in string addr);

};

interface BookBroker {
void add(in Bookshop b);
oneway void remove(in Bookshop b);
boolean getABook(in string author, in string title,

in float maxprice, in string addr,
out date when);

};

7

3. The polyadic π-calculus

• A process algebra with synch communications through channels

• Not only values but channel names can also be transmitted

• Semantics expressed in terms of a reduction system, and labeled
transitions (commitments)

• Operators:

– Sending values: ch!(v)
– Receiving values: ch?(x)
– Creation of fresh names: (^z)P
– Process composition: | +
– Matching operator: [x=z]P
– Specials: tau zero

8

•Main rule of communication in the π-calculus:

(· · · + ch!(v).P + · · ·) | (· · · + ch?(x).Q + · · ·) τ−→ P | Q{v/x}

• Global choices are non-deterministic

• Local choices are expressed combining ‘tau’ and ‘+’:

(tau.P + tau.Q)

• In the polyadic π-calculus, tuples can also be sent along channels

• Extensions to the standard polyadic π-calculus:

– Basic data types (lists, sets, ...)
– Enriched matching operator, and the [else] construct:

([G1]P1 + [G2]P2 + · · · + [Gn]Pn + [else]P0)

9

Extending CORBA Interfaces with textual π-calculus

•Modeling Approach

– Object reference 7→ one π-calculus channel
– Method call 7→ ref!(m,(inArgs),(reply[,excep1,...]))
– Method reply 7→ reply!(returnValue,outArgs)
– Raising exceptions 7→ excep!(excepParams)
– Object state 7→ Recursive eqs and process parameters

• Syntatic sugar

– ref!(m,(args),(rep)) 7→ ref!m(args,rep)
– ref!(m,(args),(ref)) 7→ ref!m(args)
– ref?(m,(args),(rep)).[m=’op’]P 7→ ref?op(args,rep).P

10

4. Extending the example IDLs with protocol information

protocol AccountFactory {
AccountFactory(ref) =

ref?create(rep) .
(^acc)
(Account(acc,0) | (rep!(acc) . AccountFactory(ref)))

+ [else]
AccountFactory(ref)

};

11

protocol Account {
Account(ref,balance) =

ref?getBalance(rep) .
rep!(balance) .
Account(ref,balance)

+ ref?deposit(amount,rep) .
(^receipt) rep!(receipt) .
Account(ref,balance+amount)

+ ref?withdraw(amount,rep,notEnough) .
(tau .

(^receipt) rep!(receipt) .
Account(ref,balance-amount)

+ tau .
notEnough!(balance,amount) .
Account(ref,balance))

+ [else]
Account(ref,balance)

};

12

5. Checking protocols

�X Yes, protocol information can be added to CORBA IDLs.

But now we have it.... What can we do with it?

•What to check?

•When to check?

• How to check?

•Who carries out the checks?

13

Static Checks

• Static analysis of ‘closed’ applications at compile/design time

•What can be checked?

– Liveness and safety properties (eg. absence of deadlocks)
– Component Substitutability
– Component Compatibility

• How to check?

– Executing the components’ protocol descriptions, using π-calculus
standard tools

•Who carries out the checks?

– The application designer

14

Example of static checks
protocol User {

User(ref,bookbroker) =
(^author,title,price,addr)
bookbroker!getABook(author,title,price,addr) .
bookbroker?(yesorno,when) .
zero

};

Appl() = (^ac) // AccountFactory’s address
(^b1,b2) // Addresses of the two bookshops
(^bb) // Book-broker’s address
(^u) // User’s address
(AccountFactory(ac) | Bookshop(b1,ac) | Bookshop(b2,ac)
| BookBroker(bb,<b1,b2>) | User(u,bb))

Deadlock-free test: Appl() τ∗=⇒ zero

15

Static checks: summary

Based just on the IDLs of the application’s components and the binds
among them, they allow powerful interoperability tests prior to the
components’ execution

However...

• They are useful for closed applications, but not so much for open ap-
plications in which the architecture is unknown, or the components
may dynamically evolve

• Static analysis of π-calculus processes is an NP-hard problem

16

Run-time checks

• Dynamic analysis of ‘open’ applications, during the application’s
execution time

•What can be checked?

– Safety properties of applications (eg. absence of deadlocks)
– Component compatibility

• How to check?

– CORBA interceptors reproduce the object run-time trace and
check incoming messages against protocol specifications

•Who carries out the checks?

– The object interceptors

17

Run-time checks

They eliminate the heavy burden of static checks, are tractable from a
practical point of view, and are valid in open environments

However...

• They need a lot of accountancy by the interceptors

• Detection of deadlocks or other undesirable conditions is delayed
until just before they happen

18

6. Concluding Remarks

•We have succeeded in extending CORBA IDLs with protocol info:

– Description of both supported and required operations
– Specification of partial ordering among them

• Benefits obtained:

– Additional information available for component reuse
– Some of the application’s architectural information is available
– Improved interoperability checks

. Component compatibility and substitutability

. Safety and liveness properties of applications

. Static and dynamic checks

19

Concluding Remarks (cnt’d)

• Object reference manipulations and client-server invocations have a
good semantic matching with the π-calculus

– Easy and natural modeling of object interactions
– Formal support for reasoning about the applications
– Standard tools available for the checks

However...

– The π-calculus has a too low level syntax (despite the sugar)
– Some static interoperability checks are too costly

20

Open Issues

• Adaptors

•Many-to-one substitutability

• Connection-time checks

• Conformance to specifications

Ongoing and future work

• Extensions of other models’ IDLs (COM, EJB, CCM, ...)

• Extend repositories and traders to deal with this sort of information

• Second version of our prototype

• Adding more semantic information to IDLs (Is it really practical?)

21

2nd Workshop on Object Interoperability

In Association with ECOOP’2000
Sophia Antipolis, France.

June 12, 2000.

http://webepcc.unex.es/juan/woi00/

22

protocol Bookshop {
Bookshop(ref,bank) =

(^rep) bank!create(rep) .
rep?(account) .
SellingBooks(ref,account)

SellingBooks(ref,account) =
ref?inStock(title,author,rep) .

(^bookref) rep!(bookref) .
SellingBooks(ref,account)

+ ref?order(bookref,rep) .
(^purchaseId) rep!(account,purchaseId) .
ref?deliver(pid,receipt,deliv,rep) .
(^date) rep!(date) .
SellingBooks(ref,account)

+ [else]
SellingBooks(ref,account)

};

23

protocol BookBroker {

BookBroker(ref,bookstores) =
ref?add(bs,rep) .

rep!() .
BookBroker(ref,bookstores++<bs>)

+ ref?remove(bs,rep) .
BookBroker(ref,bookstores--<bs>)

+ ref?getABook(auth,title,price,addr,rep) .
(Buy(ref,auth,title,price,addr,rep,bookstores)
| BookBroker(ref,bookstores)
)

+ [else]
BookBroker(ref,bookstores)

...

24

Buy(ref,auth,title,price,addr,rep,stores) =
[stores = NIL]

rep!(FALSE,NIL) . zero
+ [stores = <bs>++dB]

bs!inStock(title,auth) .
bs?(book) .
([(book!=NIL)&&(book.price<=price)]

bs!order(book) .
bs?(account,pid) .
account!deposit(book.price) .
account?(receipt) .
bs!deliver(pid,receipt,addr) .
bs?(date) .
rep!(TRUE,date) .
zero

+ [else]
Buy(ref,auth,title,price,addr,rep,dB))

};

25

