Last modification date: 19/12/2017

Solutions and metaheuritics for 2-designs

1 BIBD: Formulation

A BIBD can be specified with five parameters v,b,r,k,λ. Using this notation, a v,b,r,k,λ-BIBD problem consists of dividing a set of v objects into b subsets of k < v objects each, such that each object belongs to r different subsets and any pair of objects appear together in exactly λ < b subsets. A standard way of representing the solution to such a problem –termed here as the primal (or binary) model (B)– is in terms of its incidence matrix M ≡{mij}v×b, which is a v × b binary matrix where mij ∈{0,1} is equal to 1 if the ith object is contained in the jth block, and 0 otherwise; thus, it is easy to see that each row corresponds to an object and each column to a block, and that a matrix representing a feasible solution has exactly r ones per row, k ones per column, and the scalar product of any pair of different rows is λ.

Then the problem of finding a BIBD solution can be formulated as follows:

             v           b           v-1  v
min fI(M ) = ∑  ϕ (M, r)+ ∑  ϕ′(M, k)+ ∑   ∑  ϕ ′′(M, λ)
            i=1  i       j=1 j        i=1 j=i+1  ij
(1)

where

                |         |
                ||   ∑b    ||
      ϕi(M,r) = ||r -    mij||,       ∀i ∈ [1,v]        (2)
                |   j=1    |
               ||   ∑v     ||
      ϕ′j(M, k) = ||k -   mij||,        ∀j ∈ [1,b]        (3)
               |    i=1    |
          ||   ∑b        ||
ϕ′′ij(M, λ) = ||λ-   mihmjh ||,  ∀i,j ∈ [1,v] : i < j     (4)
          |   h=1       |

The dual formulation of the BIBD problem corresponds to a relaxed CSP problem defining an objective function that accounts for the number and degree of violations of constraints defined only on two parameters k and λ. Basically the solution (or candidate) to the BIBD is now defined by a dual incidence matrix Md ≡{mijd}v×r, which is a v × r integer matrix where mijd b+ contains a value from the range [1,b] that identifies a block containing the object i. Note that there are r columns (i.e., j [1,r]), so that each object i is contained exactly in r blocks (in the case that one considers to impose an all-different constraint in the list of values of each row in the incidence matrix).

              b            v-1  v
min fI(M d) = ∑ ψ (M d,k)+ ∑   ∑   ψ′(M d,λ)
     d       j=1  j        i=1j=i+1 ij
(5)

such that

∀j,h ∈ ℕ+r : j ⁄= h ⇒ mdij ⁄= mdih, ∀i ∈ [1,b]
(6)

where

           ||   ∑v ∑r         ||
ψj(M d,k) = ||k-      [mdih = j]||,  ∀j ∈ [1,b]         (7)
           |   i=1h=1        |
             ||    r  r           ||
  ψ′(M d,λ) = ||λ- ∑ ∑  [md = md ]||,                 (8)
   ij         |   h=1 l=1  ih    jl|
                           ∀i,j ∈ [1,v] : i < j

In Eq. (7) and Eq. (8) we employ the Iverson brackets [] (i.e., [P]=1 if P is true, and 0 otherwise).


PIC


Fig. 1: (Left) Primal/Binary and (right) dual/decimal encodings of the 7,7,3,3,1⟩-symmetric BIBD (right). The number of columns (7 and 3 for the primal and dual representations, respectively) and rows (7 in both cases) are identified for clarity.


In this work we have addressed 86 instances commonly attacked by different techniques shown in the literature [12], (see the Table 1). For more details check [3].


Table 1: BIBD instances considered in this work.



















ID    v b r kλ    vb         ID    v b r kλ    vb


















1 814 7 4 3 112 44 2525 9 9 3 625
2 1111 5 5 2 121 45 154214 5 4 630
3 1015 6 4 2 150 46 213010 7 3 630
4 918 8 4 3 162 47 164010 4 2 640
5 1313 4 4 1 169 48 164015 6 5 640
6 1018 9 5 4 180 49 97232 412 648
7 82814 4 6 224 50 154521 7 9 675
8 1515 7 7 3 225 51 135216 4 4 676
9 112210 5 4 242 52 135224 610 676
10 1616 6 6 2 256 53 107236 516 720
11 122211 6 5 264 54 193818 9 8 722
12 103012 4 4 300 55 116630 512 726
13 1620 5 4 1 320 56 223312 8 4 726
14 93616 4 6 324 57 145226 712 780
15 84221 4 9 336 58 27271313 6 729
16 1326 8 4 2 338 59 213515 9 6 735
17 132612 6 5 338 60 107530 410 750
18 103618 5 8 360 61 2530 6 5 1 750
19 1919 9 9 4 361 62 20381910 9 760
20 113315 5 6 363 63 164815 5 4 768
21 142613 7 6 364 64 164818 6 6 768
22 1624 9 6 3 384 65 126622 4 6 792
23 123311 4 3 396 66 126633 615 792
24 2121 5 5 1 441 67 99040 415 810
25 85628 412 448 68 136520 4 5 845
26 104518 4 6 450 69 117735 514 847
27 153014 7 6 450 70 214210 5 2 882
28 163015 8 7 480 71 214212 6 3 882
29 114420 5 8 484 72 21422010 9 882
30 95424 4 9 486 73 165621 6 7 896
31 133912 4 3 507 74 109036 412 900
32 133915 5 5 507 75 156028 712 900
33 163212 6 4 512 76 185117 6 5 918
34 153514 6 5 525 77 2242211110 924
35 124422 610 528 78 156321 5 6 945
36 23231111 5 529 79 166015 4 3 960
37 105427 512 540 80 166030 814 960
38 87035 415 560 81 3131 6 6 1 961
39 173416 8 7 578 82 31311010 3 961
40 106024 4 8 600 83 31311515 7 961
41 115520 4 6 605 84 118840 516 968
42 115525 510 605 85 224414 7 4 968
43 183417 9 8 612 86 25401610 6 1000



















2 BIBD: Solution

2.1 For Basic and integrative approaches


Table 2: ID ( 1) v = 8, b = 14, r = 7, k = 4, λ = 3








457 9 121314
3 5610111213
125 6 7 1114
1 35 7 8 9 10
28910111214
234 7 8 1113
134 6 8 1214
124 6 9 1013









Table 3: ID ( 2) v = 11, b = 11, r = 5, k = 5, λ = 2






123 6 7
2 34 8 9
245 6 10
1 25 9 11
567 8 9
1 47 9 10
2781011
3691011
345 7 11
135 8 10
146 8 11







Table 4: ID ( 3) v = 10, b = 15, r = 6, k = 4, λ = 2







13 4 8 9 15
3 5 8 111213
35 6 7 1415
2 6 7 8 9 11
12 3 7 1012
2810131415
47 9 121314
4610111215
12 4 5 6 13
15 9 101114








Table 5: ID ( 4) v = 9, b = 18, r = 8, k = 4, λ = 3









234 7 12141517
1 34 6 8 101317
136 7 9 111218
2 67 9 10131516
3591014161718
456 8 12151618
1251112131617
248 9 11131418
157 8 10111415










Table 6: ID ( 5) v = 13, b = 13, r = 4, k = 4, λ = 1





1 3 1011
1 5 8 12
9101213
1 4 7 13
2 3 5 13
1 2 6 9
3 7 8 9
5 6 7 10
2 7 1112
2 4 8 10
3 4 6 12
6 8 1113
4 5 9 11






Table 7: ID ( 6) v = 10, b = 18, r = 9, k = 5, λ = 4










478121314151617
1 23 7 8 9 131618
123 7 1011121517
3 69101214161718
124 5 6 12151618
156 7 1011131416
245 7 9 11141718
589101112131518
234 5 6 8 101317
134 6 8 9 111415











Table 8: ID ( 7) v = 8, b = 28, r = 14, k = 4, λ = 6















3567 8 101415161723242526
3 57910111213161718192728
247913151618212223252627
1 236 8 9 1118192224252628
146810111317182021232427
245610121419202223262728
125912131415172021242528
1347 8 111214151619202122
















Table 9: ID ( 8) v = 15, b = 15, r = 7, k = 7, λ = 3








12 3 4 6 1011
2 4 5 7 9 1014
12 5 6 7 8 15
4 6 7 10121315
45 6 8 111314
1 3 4 5 9 1315
35 6 8 9 1012
2 3 8 10131415
24 8 9 111215
13 4 7 8 1214
17 8 9 101113
151011121415
12 6 9 121314
36 7 9 111415
23 5 7 111213









Table 10: ID ( 9) v = 11, b = 22, r = 10, k = 5, λ = 4











46810111214171821
1 37 9 141718202122
348 9 121314151920
2 5711121415162021
157 8 101215181922
1 28 9 111316181921
235 8 101314161722
234 6 7 1113151822
245 6 9 1019202122
145 6 7 9 12131617
13610111516171920












Table 11: ID (10) v = 16, b = 16, r = 6, k = 6, λ = 2







24 7 8 1115
4 6 8 9 1416
12 3 6 1516
1 3 7 8 9 10
14 9 121315
5 910111516
35 8 131415
3 4 6 101113
1711131416
12 4 5 1014
2810121316
6710121415
25 6 7 9 13
15 6 8 1112
34 5 7 1216
23 9 111214








Table 12: ID (11) v = 12, b = 22, r = 11, k = 6, λ = 5












234 6 8 101112141921
2 56 7 8 9 1013141720
345 7 8 101215171822
1 391011121314152022
125 6 7 121519202122
1 481013161719202122
6781113141516181922
357 9 10111618192021
124 5 9 111417181922
456 9 11121315161721
123 4 6 8 9 15161820
123 7 12131416171821













Table 13: ID (12) v = 10, b = 30, r = 12, k = 4, λ = 4













17 9 111617182325262730
1 4 5 101214161819222930
23 9 101114192022242527
1 5 6 7 8 14171920242628
12 3 8 9 12151718212228
47 8 111213141519212327
6815162021222324252930
35 6 7 1013182125272829
23 4 5 6 9 121323242630
2410111315161720262829














Table 14: ID (13) v = 16, b = 20, r = 5, k = 4, λ = 1






1 2 101218
3 4 8 9 18
1 4 6 7 19
2 4 5 1620
1 8 131516
7 9 101416
2 3 7 1317
7 11151820
3 6 111216
5 6 131418
6 8 101720
2 8 111419
412141517
3 5 101519
912131920
1 5 9 1117







Table 15: ID (14) v = 9, b = 36, r = 16, k = 4, λ = 6

















247 9 111314181922232629303133
1 2311131416172021222427293236
68910111517202329303132343536
1 35 8 9 1418212223252832333435
367 9 101213162425262829333536
56711151617181921252627283032
24510121416171819202425313435
147 8 121519202123242728313336
123 4 5 6 8 101213152226273034


















Table 16: ID (15) v = 8, b = 42, r = 21, k = 4, λ = 9






















12 4 6 8 9 101114151719212425343537384142
2 6 7 9 1012131416181923262728293334373941
1411121617202123262729303133353637383942
3 4 5 7 8 10151617182122252628293133344042
23 7 8 1218192022242529303132353738394041
12 5 6 1112131415161718202122242832363940
35 6 8 9 13141523262728303132353638404142
13 4 5 7 9 101113192022232425273032333436























Table 17: ID (16) v = 13, b = 26, r = 8, k = 4, λ = 2









1 6 101317192526
5 6 7 8 9 121321
810121517202224
1 10111214182123
5 8 111618192225
2 4 121316222326
2 3 7 9 10111617
1 3 4 9 19212224
4 6 9 1115202325
2 7 151819202126
3 7 8 1423242526
1 2 5 6 14162024
3 4 5 1314151718










Table 18: ID (17) v = 13, b = 26, r = 12, k = 6, λ = 5













14 5 6 1314151619222324
3 4 7 8 1015161718222426
45 7 111214151719202526
1 2 5 6 7 8 101114151821
12 3 6 7 9 111216171924
3 4 6 9 1011131516202125
23 5 8 1113192122242526
24 8 9 1112131416182326
7910121315171819212223
13 7 8 1012131420232425
16 8 161718192021232526
23 5 6 9 10141720222326
12 4 5 9 12182021222425














Table 19: ID (18) v = 10, b = 36, r = 18, k = 5, λ = 8



















124 6 7 12131517181922253031333536
3 45 6 8 11131417192122242931323435
237 9 1011141517222325262729313236
1 48 9 1013141516182122232425263334
349111216181923242628293032333536
567111415161819202124252627283031
289101213141519202127282930343536
123 5 7 8 121820212324273132333436
134 5 6 8 9 1012161720222527283032
125 6 7 10111316172023262829333435




















Table 20: ID (19) v = 19, b = 19, r = 9, k = 9, λ = 4










23 4 5 1012151819
3 4 5 6 9 13161719
12 3 6 7 9 101419
2 5 6 8 9 10111216
24 7 111214161719
1 2 6 8 1213151719
14 6 101213141618
1 2 3 5 8 14161718
13 4 7 8 9 121516
3 8 9 111213141819
23 6 7 1113151618
57 8 101314151619
13 5 7 1011121317
24 7 8 9 10131718
14 5 6 7 8 111819
34 6 8 1011141517
1910111516171819
12 4 5 9 11131415
56 7 9 1214151718











Table 21: ID (20) v = 11, b = 33, r = 15, k = 5, λ = 6
















12 3 6 1112141617182023262731
1 4 5 6 7 12151819202122242633
25 7 8 1016182324262729303233
1 4 8 9 1317192023242628293031
4812131415162021252730313233
5 611121415172223242528293032
35 6 8 9 10131416171921222427
23 9 111315161819202228293233
12 7 9 1014171821222528303133
13 4 5 7 9 101112132526272832
23 4 6 7 8 101115192123252931

















Table 22: ID (22) v = 16, b = 24, r = 9, k = 6, λ = 3










1 3 4 8 1416192022
2 3 4 6 9 11131722
41011121516222324
3 4 5 7 1213142123
5 8 9 172021222324
6 8 10111314192124
2 3 5 6 1015192023
1 3 5 8 9 10111218
1 4 6 7 9 18192324
2 7 8 111316182023
1 2 5 121316171924
1 6 12131518202122
1 2 4 7 8 10151721
6 7 9 101214161720
5 7 11141517181922
2 3 9 141516182124











Table 23: ID (23) v = 12, b = 33, r = 11, k = 4, λ = 3












1 4 7 1519232526273033
1 4 6 7 9 141718222429
1 3 101112131421222630
2 5 141819212627293132
2 5 7 8 9 101316172633
1 2 8 1020242528293031
2 3 4 6 7 121620212532
3 8 121517182022273133
3 5 6 8 9 111523293032
610111416171920232728
513151618212223242528
4 9 111213192428313233













Table 24: ID (24) v = 21, b = 21, r = 5, k = 5, λ = 1






2 5 7 1216
8 11121819
4 7 111315
1 2 3 1121
3 7 8 1017
1 4 101214
2 6 8 1314
7 14192021
3 4 5 6 19
6 12151721
1 6 7 9 18
1 5 8 1520
314151618
610111620
113161719
5 9 111417
4 8 9 1621
2 4 171820
3 9 121320
2 9 101519
510131821







Table 25: ID (25) v = 8, b = 56, r = 28, k = 4, λ = 12





























124 5 6 7 9 111516182021222325293032343538404446495153
1 23 4 6 8 12131415162226303135373844454748495052545556
157 8 101318192021222426282934373940414345495051545556
2 46 9 101113161720212324272831333839414346475052535455
23811121415161718192123272829303233363740424345475051
145 7 111214151719242526293031333436394243464852535456
36910121314172022242526272832343536404142444748515356
357 8 9 1018192325273132333536373839414244454648495255






























Table 26: ID (26) v = 10, b = 45, r = 18, k = 4, λ = 6



















3 4 8 111215172224252627293236373941
1 3 8 141618212426283033353637404445
2 5 6 101214171823252831363941424445
1 3 4 5 1011131819212227283338414243
1 2 4 7 8 11141920233031323437414344
2 6 7 9 1317192223262731333536373840
91314151617192021222526303439424345
2 4 5 6 9 11121518242930343538404345
1 3 6 7 1012131516202829313233343539
5 7 8 9 1016202123242527293238404244




















Table 27: ID (29) v = 11, b = 44, r = 20, k = 5, λ = 8





















57 8 1011121415161823252832353739404144
1 3 6 8 14161720232426272829303235364143
12 3 4 10111213171821222627303539414244
7 8151617192122242527293133343536394244
16 7 9 10111314192223262931363739404243
2 5 6 1316171819212325303132343738414243
23 6 9 12141821222324252628293334384044
13 4 5 6 7 1012131415202527323334363842
13 4 5 8 9 1113151920212428313440414344
24 9 1112161920222728303132333536373840
24 5 7 8 9 1015171820242629303337383943






















Table 28: ID (30) v = 9, b = 54, r = 24, k = 4, λ = 9

























15 7 9 1014151720212526282931323539434445474954
1 4 8 121315182022232529303334364043444647485254
12 3 4 6 12131517202127313233353738414245465052
2 4 8 9 1017192324262728323436373843454851525354
25 6 7 9 16181920212224252628303637394041465052
23 6 7 8 11141516171822232729313639424649515354
14 5 7 8 9 111213141624282930353841424448505153
3610111213161921232425263334353940424547484951
3510111418192227303132333437384041434447495053


























Table 29: ID (31) v = 13, b = 39, r = 12, k = 4, λ = 3













4 7 8 121314202223293538
5 6 7 9 1518202333363739
3 7 9 182122242627293234
4 6 10161719222324313334
2 3 4 111217262829333739
1 2 7 141718242530313537
1 3 4 5 1516202126303138
1 2 5 6 1223252728323438
11011161920272932353637
91114151719212225283638
81112131518192730313439
2 6 8 9 1013162125263539
3 5 8 101314242830323336














Table 30: ID (32) v = 13, b = 39, r = 15, k = 5, λ = 5
















12 4 5 6 8 121819232831323839
3 4 7 131417181923242627323536
26 9 111315161721233234363738
3 4 7 9 1215242531333435373839
23 6 8 1214202122252730323435
1 4 5 6 7 10111216172026303537
4811131420212224262829313738
57 9 101114181920212223333439
2310121316222326293031333639
35 6 8 9 10131718252728293337
12 7 101516171921222425272831
1914151618202728293035363839
15 8 111519242526293032333436

















Table 31: ID (35) v = 12, b = 44, r = 22, k = 6, λ = 10























125 6 7 8 9 101316172023242526293136373844
2 38 9 101112141619222324263032353638394143
12511121314182122232526273031323337414244
3 47 8 101416181922232627282931333436404244
123 6 7 8 12151718202123273033343536394344
2 46 9 111314161718192124293034353739404244
136 9 101213141519202528303334363738404142
134 5 8 9 11131519202124262728313540414344
47911161720212225272831323334353637383941
245 7 101214151820212426282932333738394043
345 6 7 1013151722232529303132353940414243
156 8 111215161718192224252728293234384243
























Table 32: ID (36) v = 23, b = 23, r = 11, k = 11, λ = 5












67 8 1011131519212223
2 3 4 5 9 111320212223
35 7 1213151718192023
1 4 7 9 10111516182023
12 3 5 6 7 1516172123
3 4 8 9 10141517192021
12 4 7 8 9 1213141723
1 2 4 5 7 101418192122
13 4 6 11131415171822
2 3 4 8 10121315161821
34 5 6 7 8 1011121423
5 9111214161718192123
24 6 8 16171819202223
12 3 6 9 101113171819
23 7 8 9 111415161922
13 6 7 8 9 1218202122
12 5 8 10111215172022
25 6 9 10121415182223
15 6 8 11131416182021
24 6 7 11121617192021
56 7 9 10131416172022
14 5 6 8 9 1213151619
13101213141619202223













Table 33: ID (37) v = 10, b = 54, r = 27, k = 5, λ = 12




























145 8 1112151718202425262728293132353943454748495154
2 36 8 1213151721222425293032333537404243444648505254
234 5 6 8 9 1012151920232627283133363840424346495253
4 56 7 9 10111314162022242630313236374546474850525354
678111415161718192021222526283436374041424449515354
134 7 8 9 111214162324252829323334383941424446475053
123101113141619212324263031333538394041424548495154
235 9 1015171819222325273031323435373841444547505153
156 7 9 13161718212327282933343637383940434548505152
124 7 1012131418192021222729303435363941434446474952





























Table 34: ID (38) v = 8, b = 70, r = 35, k = 4, λ = 15




































13 4 6 7 101215171819222628313234384042454650555658616263646566676869
3 7 8 1516171921262728303334363741424346484951525354555759606165666770
12 3 5 7 9 1011121314202225262930313435363740414851525458596264656870
2 3 4 1014182021222324252728323436383940434447485052535456596063666970
12 4 5 6 7 8 9 111213141516172124313336383941444549535760626366686970
68131415181920232425272930313233354041424445464748495157585961636469
15 6 8 9 111620212223272829323335373839434446474950515255565862656768
24 5 9 10111213161718192324252629303537394243454750535455565760616467





































Table 35: ID (40) v = 10, b = 60, r = 24, k = 4, λ = 8

























16 8 9 1011161822232426272932343643495052545960
2 913151617192022273132374043444748495153565859
12 4 6 1013172223242528293033363941454748515556
2 3 5 6 9 10111419212426304041424648495355575860
37 8 111215161721232526293338404143444647505657
24 7 8 1214171819202429313435384045465154555960
14 5 7 9 13141516212830323334374243454651525457
3612131418212526272831323536373839424754565860
3512152022233034353637383941424445495052535559
14 5 7 8 10111819202527283133353944485052535758


























Table 36: ID (41) v = 11, b = 55, r = 20, k = 4, λ = 6





















2 5 6 1011141925272931333642444648495055
1 4 7 1015172021242529303234364044454952
4 6 131415161719212226303138434447485154
1 5 6 8 9 131820222426293336394047535455
3 4 8 1017182327283337383943444549505354
2 3 6 7 9 162123242728293138404146515253
3 7 111215171820222326273035414246474955
1 2 4 8 11121416181924313437394142454752
1 5 7 9 10111213192528303235383942435153
812131621232526323334353740434648505255
2 3 5 9 14152022283234353637414548505154






















Table 37: ID (42) v = 11, b = 55, r = 25, k = 5, λ = 10


























47 8 9 101415171820212325272933343840424950525455
2 3 4 5 8 1213151721222526304043444547484951535455
15 9 12131516192022242627293033343638394547505152
1 21011121617212223242728333739414243454649505354
25 6 7 111518202124262729313237384041424346474851
1 2 4 5 7 8 11141516181922242830323435374446495255
17 9 11121314192325272831323536384243444751535455
36 8 10111213141624252631323334353940414348505255
34 5 6 9 1014171820252830323335363739414546475154
36 7 9 131617181923262829313637404445464849505253
12 3 4 6 8 10192021222329303134353638394142444853



























Table 38: ID (45) v = 15, b = 42, r = 14, k = 5, λ = 4















1 3 5 8 11121520253235373841
1 3 4 6 13151618192123262835
1 6 7 1417202223263133343741
1 2 4 1112131725262933363942
4 9 101621252631323437383940
1 2 3 7 8 101121222830344042
3 6 8 9 17182127293036373941
2 6 7 1012141618222932353638
412151820222427282931374042
2 3 5 9 14161723242527283842
5 6 9 1113141528303132333640
4 5 7 8 19202123242932333436
7 9 101213151922232425303941
510131718192733343538404142
2 8 111416192024262730313539
















Table 39: ID (47) v = 16, b = 40, r = 10, k = 4, λ = 2











10111215192126273133
1 6 1316202226293336
5 8 9 10131524353639
1 7 1112142432343637
1 3 4 8 9 2125323338
1 2 6 7 9 1927303940
3 4 1116171928303536
2 5 8 11182021223034
2 5 1426272829323538
4 6 1315171827343738
7 9 1216182023313538
7 8 1017232829333440
14151620212528373940
3 5 1319222331323740
2 4 1217222324252639
3 6 1014182425293031












Table 40: ID (49) v = 9, b = 72, r = 32, k = 4, λ = 12

































157 9 10111214181922262728323537383941424347484952575859626572
1 23 4 7 8 1115161820222934353943444549505356575961636466677072
345 6 12131617202122252627293031323536384648596064656669707172
2 38 9 10151819202324252729313334353738414251525455616566676971
125 6 7 9 1415161719212325323340424647484950515355565961646871
4781213141517212830323334373941444546515254555660626567687072
4681112131418202324263031333640414243454749505355586062636671
5691011171921222324283134363738394044505354575860636467686970
1231013162425262728293036404344454647485152545657586162636869


































Table 41: ID (51) v = 13, b = 52, r = 16, k = 4, λ = 4

















1121316181925262830313437394345
3 7 9 11161819202224283538414246
6 8 1113141621252633384144495052
2 3 5 12151720212426313638394448
2 5 6 7 8 9 12192123303234425051
4 8 1026273135363741424346485051
2 7 9 10131415202225273036404349
3 6 1718202325272934354045485052
1 2 1519212728323335374044464752
1 4 7 8 111415171832394245474849
4 5 6 9 111317222328293133363747
1 3 5 10121416232429434647495152
4102224293032333438394041444551


















Table 42: ID (52) v = 13, b = 52, r = 24, k = 6, λ = 10

























15 8 9 1213141618222428293031333537404143495051
1 3 4 7 1011131420232628303638404142434648495152
12 4 5 6 9 111315192124253031323641434447485052
1 210111214161718212224252634373941424446474851
37 8 121315161820222425273031343638394245485052
2 3 6 7 8 11131416171923252627293031333738404447
4910111516171921232427282931333639404245465051
5610111216182021233032333435384044454647495052
23 5 6 8 10151719222324323334353637384243484951
23 4 5 7 9 202223252627293132343539414446495051
16 7 9 1012141920212225262728293233353637454852
12 4 8 9 13151718202126272832343738394043454749
34 5 6 7 8 121415171819282935394142434445464752


























Table 43: ID (53) v = 10, b = 72, r = 36, k = 5, λ = 16





































237 9 1012141618192024262832363741424346495254565759606465666768697172
2 78 9 1315161719202223272829303133353638394344474950545557586164666772
135 6 1112131415161921222530313536373840414248495052535559606164666970
1 24 8 1114151820212223252627293334353739414647485152535459616465687172
246 7 8 9 121314151617212530323334373940424445465051555660626567687072
346 8 1011121314182324262830333435364041434445474951535455586062636671
145 9 1011172021222324262829303436373844454648505356575860636467686970
235101315161719232425262729313234384142434546474849515256586162636570
145 6 7 10111718192125272829313235394042434445505457596162636566686971
135 6 7 8 9 1218202224273132333839404748515253555657585962636769707172






































Table 44: ID (55) v = 11, b = 66, r = 30, k = 5, λ = 12































124 6 7 11121314151821222425303236383941444752535455596062
2 47101416171920222631333841454648505152535456585961626466
235111314151623242629323335384043454749515355586063646566
2 37111213181920212325272829313234353844464849505456616365
124 5 8 9 101214171819212730343738394243454749515659636566
4 56 7 8 11121314162023282930313436373940424650515760626466
368101317212425283033394041424345464849505455575859606165
568 9 1115202122262730313334353637414344484951525558616263
137 9 1218222425262728323334363740424346474852535657586466
158 9 1015161719202223242527293132353741424445475053545760
134 6 9 10151617181923262829353639404452555657596162636465
































Table 45: ID (60) v = 10, b = 75, r = 30, k = 4, λ = 10































1 2 3 7 9 12131416192021252728343949505153545859616266687071
1 2 5 7 1116182021232930333536374145515255585963646569707275
4 6 11121317192326282932373941434546495152535760666768697375
3 7 8 101517212427283132333536373942444950525762636770727374
1 3 4 5 8 9 111517192122232426303440434854565758596367717475
2 4 6 8 1314151618202226303233384041424453606162647071737475
71215161819222729313234353842434445464748535556586163656768
4 5 6 9 1012142324253134353638414344474951555662646669717274
1 6 8 9 1014182225272930363738394042464748505254575960656669
2 3 5 101113172024252628313340454647485054555660616465687273
































Table 46: ID (61) v = 25, b = 30, r = 6, k = 5, λ = 1







91112142124
101115162630
1 5 11132329
6 8 14152223
4 9 13222530
2 1314252627
111719222728
8 1316182128
2 5 16202224
2 6 7 111825
1 3 7 212226
2 3 12232830
5 6 17212530
7 9 16192325
1 1418192030
2 4 15192129
3 6 10131924
4 5 7 101428
6 9 20262829
1 2 8 9 1017
4 1718232426
7 1213151720
3 5 9 151827
1 4 6 121627
7 8 24272930








Table 47: ID (63) v = 16, b = 48, r = 15, k = 5, λ = 4
















1 5 6 9 2426282931323338394045
1 3 4 8 1213171923262732384748
7 1112152325263035383942434546
2 5 13141519252729333441424548
4 5 6 181922243034353638414647
2 4 5 7 8 11192132373940444648
1 4 7 101318212225262833344344
2 3 14161820232425323335373844
161720212223242728404143454648
6 7 10122025283132363741424748
1 3 6 111314172029343637394346
4 9 12141516212627313435363740
2 3 5 7 8 9 101417223135434547
9 1011131618192022232930314042
2 8 10121517182427282930363944
1 3 6 8 9 11151621303341424447

















Table 48: ID (65) v = 12, b = 66, r = 22, k = 4, λ = 6























1 7 8 15171821262830323445475455575960626566
1 4 6 10111624253032353640444548525358596264
2 4 7 14161819202526333941454648505256576166
2 5 8 11121523242628293335404144474950536366
2 3 5 12171819272931323839465253545859606364
3 9 1314182021232425283132353738495356616265
2 4 6 9 101319232627343638424344555659636566
1 3 5 8 9 1014151619202229303637394042475456
1 4 7 11121314162223282931344243465051606264
6101317242527313337404142464748495154555760
3 6 8 11122122273033363839434549505157586165
5 7 9 15172021223435374143444851525558616364
























Table 49: ID (66) v = 12, b = 66, r = 33, k = 6, λ = 15


































14 5 6 8 11121314151821242529303233343536404850515253555758596066
1 2 3 7 8 10141516181922263132333638394041434546484950515759626466
7910111314152122232426272932343841444647484953545556586062646566
2 3 4 6 8 9 131819202123252731323334363842444749505154565961636566
1810111213161719202129303234353739404243444547495456575859626364
2 3 4 5 6 7 131416172024252829303337383942454647484951545557606265
23 5 6 9 11122021222328303134353638394143444548505255575861626465
12 4 7 8 9 121517202224252633343741424345464750515253555658616364
35 8 9 1012151617181920222324252728293135374041424445485053546066
14 5 6 7 9 151617182326272829333536394044465253545657596162636465
13 4 6 7 10111214161819212225262728303135374346474952586061636566
2510111314171923242627283031323637383940414243515253555659606163



































Table 50: ID (67) v = 9, b = 90, r = 40, k = 4, λ = 15









































23 4 5 7 9 11151618192022283031323335394142444751606468697374757879818485878889
1 3 6 9 111519202325273235363738394345464749525354555661636869707576788083868890
471213141718252627283032333437383940424347515357626566697274767779808283868990
1 2 7 10111213171819232426293136384041434446495052555758596062646668697376818590
25 8 9 171819212224323437404142454648495153545557585961636567707577818284878990
47 8 14162123242526272829313641424546505152545659606166677071727475798083858788
12 3 6 101214161720293031333435363743444548545657586164656768717273747778808287
14 5 6 8 9 10111213151621222324262829333944484950535862636567717276788384868889
35 6 8 101314152021222527303435384047485052555659606263646670717377798182848586










































Table 51: ID (68) v = 13, b = 65, r = 20, k = 4, λ = 5





















5 6 7 9 13171819212324343739464749535758
1 10111213162223272932343537424450576163
2 7 141516182022252627323639434557586065
1 3 8 9 12141524263032383940424952535561
1 4 5 8 11232833343843454654555859606165
2 3 8 9 10121719252627283334454748516364
713151723262830313335363744485255566062
4 9 102122242530354041434447505155586265
4 8 101416171819202829353640495053545659
6 7 111214151819293031414651596162636465
2 5 131625273138394041424446475254565964
1 3 6 2021293738414345485051525356576064
2 3 4 5 6 112021222431323336424849546263






















Table 52: ID (69) v = 11, b = 77, r = 35, k = 5, λ = 14




































12 8 1012131415192124272830313437404446505255566163646567686972757677
2 6 8 1113161719202122282930353637384245464748535962646567707173747677
35 6 7 11121517212224262730323337383940444551535456575859636468707475
2 3 4 9 10131516182123252729313336373839404143444549515257596569717377
16111314161720232526273234353639404247495052535455575960636566727577
4 7 8 1215161819232528293234353739434445464748495456586062646669707275
24 6 7 9 101418212425263235364244474850515256575860616466676871737476
12 3 5 8 9 1114222326282930313839404143464849505253555658606266687174
56 9 1011141617182022242527283133344142434548495155586162636769707576
13 4 5 7 8 1012181920263031333441424647515354575961626365666971727374
13 4 5 7 9 1213151719202223242932333536384143505455606167687072737677





































Table 53: ID (74) v = 10, b = 90, r = 36, k = 4, λ = 12





































24 5 7 9 11151618192024263233384144474951555859606465667173757879808489
6 917192224252730333435363941424445485455566163666974767880828384858990
4711131416172021262832343739434647525354606263656668697274768082868790
3 510121315182526273031323438404344465160616467686970757681838586888990
12 5 6 7 9 111517181921232731374041424648495053576162636870737781848790
23 4 8 1416171819222325282932384042455152535456575861636567757779828388
17 8 101112212227282930353741424344454650515558596267717274757980858788
12 3 6 1012151620293031333435364345474854565758596465687072737778828687
45 6 8 9 10121314202123242628293133363739495052565767697172788183848889
13 8 131422232425353638394047484950525355596062646670717374767779818586






































Table 54: ID (75) v = 15, b = 60, r = 28, k = 7, λ = 12





























1 2 3 4 6 8 10121316171922282931323435364043484950525460
1 2 3 6 7 1315171819232428303233363741424449515253555658
1 3 4 7 9 1011131421222426293031363740424445464749515760
2 5 6 7 8 9 11121623242526293132343541424650515355575860
2 3 4 8 161718192021222324293031333839414345465657585960
1 5 7 9 131617202127283233343538414243454647484951525759
3 6 1112131417182125262728313437383941454750515254565860
3 5 8 9 101112151819202122263034353638414445495052535559
2 4 5 8 101113141920252728303233343740444546485053565758
1 2 6 7 8 9 11141520222425273031323638394344485152545859
4 5 6 7 141516181920222325262932373940414546474849525455
1 4 5 8 9 1415161718212426273335363740424850545556585960
2 4 6 7 9 1012141517182327293438394042434447495053565759
1 3 1011121315162023252628303133353940424346475354555659
5101219212223242527282933353637383943444748515354555760






























Table 55: ID (78) v = 15, b = 63, r = 21, k = 5, λ = 6






















5 6 7 141517202331323641444548515253555759
2 4 8 9 1214162021232830333436424655596263
2 3 5 141516171819242530313840434950585963
1 6 10111518222325273031333437414247516063
2 4 9 101218202627313741434549525657586162
3 7 18202224272829333542434648495253545960
3 8 11121315161819252632333647485354565762
1 4 5 8 9 10141619222935384445474849516062
1 4 6 7 1213151921222829323739404957596163
111316232426272930323537384445465355586163
1 3 5 6 1011202836373940434446475054555862
5 9 10171921252628293032343941465052535660
2 3 4 6 7 8 131721252733353942444550515658
2 7 9 121323243134353638394041474850546061
1 8 11141721222426343840424351525455565761























Table 56: ID (79) v = 16, b = 60, r = 15, k = 4, λ = 3
















1 3 19242631343744484950545660
8 1215162932343639404348555658
2 8 10131921232730444752545558
7 9 13162123243134414243465159
3 5 10131729303536374041515760
6 7 14202126293032394546474960
7 9 10111214161719263350535758
1 4 8 101520222728313241465057
9 1718202223282933404952545659
4 6 8 122433353840444546515354
2 4 6 9 1518192535424349555760
1 5 11141827323334354247485152
3 5 6 111721252728313843455658
131415182324252836373839475053
1 2 5 121620222526303638424459
2 3 4 7 1122373941454852535559

















Table 57: ID (81) v = 31, b = 31, r = 6, k = 6, λ = 1







91014151826
6 1122262728
1 8 11121516
1 4 5 6 1431
6 1218202129
3 1114192125
4 1012252830
5 1517252729
161819273031
1 3 7 102027
1 2 9 192829
3 4 16232629
2 3 6 152430
5 7 12192426
3 9 12172231
2 5 10162122
7 8 14222930
141617202428
6 7 9 131625
4 1315192022
2 1213142327
1 1317212630
101113242931
7 1521232831
3 5 8 131828
2 4 7 111718
4 8 9 212427
5 9 11202330
6 8 10171923
2 8 20252631
1 1822232425








Table 58: ID (84) v = 11, b = 88, r = 40, k = 5, λ = 16









































291112131516181921242732333440414346474850525960636466676971727376787983858687
3 5 9 10141519202224252729313234353841424344465152535458606566676869717475818488
46 7 10111314172425283031333738414244454649505961626465676972737475788082848687
1 2 3 4 5 6 7 101116181921232426272829303637444547505357586163676871747576798388
26 8 9 151718212225263031343739404142444547495051525354555660626873767980828588
1 4 7 8 111214162021252627282940424345474849515455586061646568707173777881848586
34 5 6 9 1215161720232930313233343538404445495455565759616364667071727577808385
15 9 10121320212226272830323536373839424348505657626670727374757677818285868788
13 8 13141920222325293334363739434647495253555759616263656869707276777982838487
12 4 7 8 1011141516171819222331353638394041485152565758596769707778808182838688
23 5 6 7 8 12131718232426283233353639464851535455565860626364656674787980818487









































2.2 For Colaborative approaches


Table 59: ID (21) v = 14, b = 26, r = 13, k = 7, λ = 6














234 5 9 1012131721242526
5 7810121415171920212225
123 5 6 8 10111214181926
2 8910131416181920212324
356 7 101618202223242526
1 24 7 9 1214151820232526
245 6 7 9 10111314151622
136 7 8 9 11121316202125
135 7 111314151718212324
12612131516171819222425
234 6 7 8 15161719212326
134 8 9 1011151922232425
145 9 111617181920212226
46811121314172022232426















Table 60: ID (27) v = 15, b = 30, r = 14, k = 7, λ = 6















45 9 1015161719202125282930
6 7101214161718212223242930
12 3 4 11141516172122262730
1 5 6 7 8 101113141520222830
34 7 8 9 101112131719242630
2 4 5 1213141920222324252730
23 6 8 12151720222425262829
1 2 4 6 7 8 9 14161924272829
12 7 9 10121518232526272830
34 8 1013141820212326272829
56111315161718192324262728
13 5 8 10111216181922252729
13 6 7 9 131619202122232526
23 5 7 9 111314151821242529
12 4 5 6 8 9 11121718202123
















Table 61: ID (33) v = 16, b = 32, r = 12, k = 6, λ = 4













1 5 7 8 9 10111217192830
1 5 6 101316202122242628
61213141718192127282931
3 7 10111314171820222532
1 2 3 6 7 9 131523282932
1 2 4 6 1114151722262730
1 3 8 151718192023242631
4 7 9 192224252627283132
3 5 6 121516192025273032
2 8 10151618222528293031
1 4 5 8 9 13141618232527
2 4 10111213151921232425
2 5 7 141617212324303132
2 3 4 5 9 10121420262931
4 6 8 9 1118202124293032
3 7 8 111216212223262729














Table 62: ID (34) v = 15, b = 35, r = 14, k = 6, λ = 5















48101113141517192224252835
1 6 8 1112171920262728293033
23 5 8 11121316181921283132
1 3 4 7 8 9 1214192123263435
34 6 7 9 101118232428293032
2 3 8 1014151824262729313334
45 9 1011121622273031333435
1 5101417182021222328323334
23 6 7 12131415161722233033
24 5 7 8 9 1617182022252629
45 6 1213142021232425272931
12 7 1113212224252627303234
16 9 1013151617212629313235
13 5 6 15161819202425303435
27 9 1519202325272831323335
















Table 63: ID (48) v = 16, b = 40, r = 15, k = 6, λ = 5
















1 3 4 6 1114161721232628363740
3 5 7 131420212226273032363839
111213151824252627303435363740
1 2 5 6 8 9 182125313536383940
1 4 6 8 1213141523243031323339
1 2 9 101315161727293233363738
2 4 7 151719212324252728343839
3 7 9 101213171920233135373940
2 3 5 7 8 12182325262829323337
1 3 4 9 1620222425262933343539
3 5 6 101113161925283031333438
2 7 8 111415161920212930333540
6 8 10161819202223242728323536
2 4 9 101112141518202226283138
5 6 7 8 9 11141722242729313437
1 4 5 101217181921222930323440

















Table 64: ID (73) v = 16, b = 56, r = 21, k = 6, λ = 7






















7 9 11121314151618222326283132334146515255
2 6 7 101517182021222527313539404150515456
4 8 10111217181922242931344243444547505155
5 1012141722232425263032373839404247495256
2 3 5 6 7 12181920262829303744484951535556
1 3 4 5 1011121520212324262728333536444754
1 7 8 121314151925272830333435404243455356
3 4 5 8 1314161721273041444546495052545556
3 6 8 9 1011162628343538394041424348495455
2 4 6 8 9 13161823242728313637383945475356
5 6 9 101314192021232930313334363943485052
1 7 9 152224272930323638394344454648495154
1 2 3 4 1317202223252932333435373841454855
1 2 3 141618192124293132354042464748525354
1 5 6 8 9 11161720253233363740424446505153
2 4 7 111519212526343637384143464749505253























Table 65: ID (44) v = 25, b = 25, r = 9, k = 9, λ = 3










6 9 13152021222325
5 7 8 141516232425
1 4 7 131417182223
1 9 10121516171825
3 4 5 121518192023
2 4 5 7 9 11182125
41011141619202225
3 6 7 121417192125
2 4 13151617192124
1 3 7 9 1115192224
3 8 10111314151821
2 4 6 7 8 10121522
51011121721222324
5 7 8 9 1013171920
1 2 3 7 1016202123
2 6 9 101418192324
1 2 8 111213192325
1 2 5 6 1114151720
1 3 4 5 6 10132425
2 3 5 9 1213141622
1 5 6 8 1618192122
1 4 8 9 1214202124
3 4 6 8 9 11161723
6 7 11121316182024
2 3 8 171820222425











Table 66: ID (58) v = 27, b = 27, r = 13, k = 13, λ = 6














12 4 5 8 1112131416192022
1 6 7 8 121314161718232526
171011121315172021222426
1 3 5 6 101214161821222427
12 3 4 6 9 13151617222627
1 2 3 5 7 1516181920232426
12 4 9 121318202123242527
4 6 7 9 111215161819222425
26 7 8 131415192122232427
1 3 4 5 6 7 8 9 1011132324
13 7 8 9 1114151620212527
4 5 6 7 101316192021252627
24 5 7 9 1012141516172123
2 6 8 9 101116182021222326
23 5 6 7 1112172022232527
391013141617192022232425
25 8 10111315161718242527
12 5 6 9 1114171921242526
23 7 9 101112131418192627
45 7 8 9 1417182022242627
35 6 8 9 1213151718192021
34 5 11131415182122232526
15 8 9 101215192223252627
12 3 4 7 8 10171819212225
34 8 11121617192123242627
14 6 10111415171819202327
23 4 6 8 1012141520242526















Table 67: ID (64) v = 16, b = 48, r = 18, k = 6, λ = 6



















1 2 4 5 6 7 192021252729383943454748
2 3 5 7 9 10121516172024293031353747
3 8 14161922232426272931363943444647
7 1113141625283132353637384042434748
2 5 8 9 1113182022303233343940434647
1 3 4 8 9 14151718192833343536454748
1 3 4 6 1115182129303136373940414246
1 2 5 7 1011121417182225272836414446
6 8 11121617181921232425273032354045
1 2 9 111316172324262933384142454648
4 7 12131719222630343537394142434445
6 8 9 101215202125263335363842434446
51014151621262728303132333438394145
2 3 4 6 1012131415222325262932344048
1 4 9 101318192021222324283132373844
3 5 6 7 8 20232427283334374041424448




















Table 68: ID (57) v = 14, b = 52, r = 26, k = 7, λ = 12



























345 7 8 111217212324252930323334353738394547495152
3 46 7 10111213141819202122262830343738414344464749
123 4 8 101317192022252627293334363940424647495052
1 34 5 8 9 1011161819222324283134353638394346485051
367 9 14151617192126303132353638394042434748495052
2 45 6 8 9 1012141523272930313435404142434446495152
345 9 10121315161718192021242728293031323336404145
126 8 10131516181921232425263031323739424445464751
236 8 9 121617182022232426273335373841424445484950
125 6 7 101112131417202327313233363739414347485051
1891112131415192225262829323335363740434445484951
147 9 11141618212325272832333440414244454647485052
256 7 11151820222425272829303637383940424345464852
125 7 13141516172021222425262829313435384144505152




























Table 69: ID (50) v = 15, b = 45, r = 21, k = 7, λ = 9






















24 6 7 1314161718202324252628333637404243
3 5 6 121314181921222425262930333435404144
12 4 5 8 10131419232526272931323337384445
2 911121415171820212526282930323839434445
13 9 111416171922242526273134353738394243
1 3 4 5 8 9 101314151718222329303639414243
25 8 9 1116192021222325272829323536404142
1 2 7 121316182022232730343536373839414445
12 6 8 1011121824272829313334394041424345
14 5 6 7 9 121521222528313233343637394244
13 7 101112151617192026293031323336374041
24 6 7 8 9 101113151617212224263135414445
34 6 8 1012141519202124272830353637384245
34 5 7 9 10111518202324273233343538404344
35 6 7 8 13161719212328303132343839404345























Table 70: ID (28) v = 16, b = 30, r = 15, k = 8, λ = 7
















14 5 7 9 11141516182324262829
1 2 5 9 1013151819212325262730
13 6 7 8 9 101115181920222529
2 6 7 9 1112131516171920232430
35 8 121314151618192022232728
2 3 4 7 8 15171821222324272930
45 6 7 8 9 101416171922262730
1 4 8 111213171922232526282930
23 4 5 6 7 101112131521222628
34 5 6 9 11121420212325272930
12 4 6 8 10141516172021232528
23 4 5 1012161718192024252629
12 3 6 8 11131416192124262729
12 6 7 1214182022242526272830
3910111314161718212224252830
15 7 8 9 10121317202124272829

















Table 71: ID (39) v = 17, b = 34, r = 16, k = 8, λ = 7

















123 6 8 1112131415172023252932
1 37 8 101114151621222326273031
356 8 9 1117181920222326283033
2 67 9 101415161819202325313334
235 7 8 1314182123242728323334
2 34 5 7 8 9 101117222425293134
345 7 131516171920212930313233
2 7911121315192022242627283132
45610111213151821232628293134
146 7 8 1012151617182224283233
134 9 121416192021222324282934
145 8 9 1012131420252728303133
23410121316171819232425262730
125 6 9 1011161820212427293032
12812181921222526293031323334
156 7 141517192425262728293034
46911131416172122252627323334


















Table 72: ID (76) v = 18, b = 51, r = 17, k = 6, λ = 5


















5 6 8 1114172123242831343536414349
4 5 7 9 10141924262729313638444551
1 9 111518212223262829323442455051
2 3 4 5 6 9 1314283032333739414251
3 11121314192425293334414546474850
1 6 7 8 9 141516202224293335394047
7 10131622272832343940414344454849
1 2 7 1213141718192126303132354048
1 3 6 1011172629303337384043444950
1 3 101215161821243136373941424446
4 8 151718252832333536373844454748
1315181920212324252730333839434951
4 5 7 9 10111220212325323740434647
2 4 5 8 11121617182227293034383946
2 3 5 7 15203435363840424648495051
1 2 3 4 8 101922232526273541424749
2 6 8 1213162022252631363743455051
6 9 161719202327283031424446474850


















References

1.    S. Prestwich, A local search algorithm for balanced incomplete block designs, in: F. Rossi (Ed.), 9th International Conference on Principles and Practices of Constraint Programming (CP2003), LNCS, Springer, 2003, pp. 53–64.

2.    B. N. Mandal, Linear integer programming approach to construction of balanced incomplete block designs, Communications in Statistics - Simulation and Computation 44 (6) (2015) 1405–1411. doi:10.1080/03610918.2013.821482.

3.    D. Rodríguez, C. Cotta, A. Fernández-Leiva, Memetic collaborative approaches for finding balanced incomplete block designs, Computers & Operations Research In press (2017) 1 – 23.